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AN ANALOGUE OF BEURLING'S THEOREM
FOR THE HEISENBERG GROUP

JIZHENG HUANG AND HEPING LIU

In this paper, we prove an analogue of Beurling's theorem on the Heisenberg group.
Then we derive some other versions of the uncertainty principle.

1. INTRODUCTION

The uncertainty principle states that a function and its Fourier transform cannot
simultaneously decay very rapidly. This principle has several versions which were proved
by Hardy, Morgan, Cowling-Price and Gelfand-Shilov et cetera (see [6, 18]). A more
general version of uncertainty principle, which is called Beurling's theorem, has been
proved by Hormander [7] and generalised by Bonami, Demange and Jaming [4] as follows:

THEOREM 1 . Let f e L2(Rn) and d ^ 0. Then

/ R n ( l + | x | + M)'

implies that
f(x) = P(x)e-<Ax'x\

where A is a reai positive definite symmetric matrix and P is a polynomial of degree
< (d — n/2). In particular, / = 0 when d^n.

Beurling's theorem has been extended to different settings (see [11, 12, 19]). For
the Heisenberg group and the other nilpotent Lie groups, some theorems of Hardy type,
Cowling-Price type and Morgan type have been proved by various authors (see [1, 2, 3,
8, 9, 10, 13, 16, 17]). These versions of uncertainty principle are also established for
the semisimple Lie groups or the symmetric spaces. We refer the reader to [18, 19] and
the references therein.

The goal of this paper is to prove an analogue of Beurling's theorem for the Heisen-
berg group. As pointed out in [19], there are some difficulties in extending Beurling's
theorem to a general setting. It should be pointed out that Thangavelu (see [16, 17])
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gives a heat kernel version of Hardy's theorem on the Heisenberg group. The heat kernel
version of Beurling's theorem on the Heisenberg group is still open.

This paper is organised as follows. In the rest of this section, we recall some basic
facts about the Heisenberg group. The main result is proved in the next section. In the
last section we derive some other versions of uncertainty principle including some known
results mentioned above.

As the basic references for the Heisenberg group we refer the reader to [5, 15] or
[18]. The Heisenberg group H" is a Lie group with the underlying manifold C" x R and
the group law

(z, t)(w, s) = (z + w, t + s + -rlm(z -w)).

The Haar measure on H" coincides with the Lebesgue measure dzdt on Cn x R. For
A e R* = R \ {0}, let n\(z, t) denote the Schrodinger representation of H", which acts
on L2(R") by

where z = x + iy. The group Fourier transform of a function / € L^H") is the operator
valued function denned by

We note that

where ft\(z) = *\(z, 0) and

/(A)= f f(z,t)nx(z,t)dzdt.

f(X)= f fx(z)nx(z)dz,

= f f(z,t)eiMdt
J

is the inverse Fourier transform of / in the t-variable.
Let <$2 denote the Hilbert space of Hilbert-Schmidt operators on L2(Rn) with the

inner product (T,S) = tr(S'T). Let dfi(X) = (27r)-n-1|A|ndA and let L2(R*,S2,dn) be
the space of functions on R* taking values in S2 and square integrable with respect to
dfi. The Plancherel theorem on BI" states that the group Fourier transform is extended
to an isometric isomorphism from L2(H") onto X2(R',«^,d/x); that is,

(1) / \ f ( z , t ) \ 2 d z d t = / • 2

where | | / (^) | |# s denotes the Hilbert-Schmidt norm of /(A) and satisfies

(2) |Ar||/(A)||2¥5 = (27r)"/ \f\z)\2dz.
JO1

/ \
JO1

Now we introduce the special Hermite functions (see [14]). Let Hk{t) be the Hermite
polynomials defined by
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The normalised Hermite functions are defined by

hk{t) = (2*v^fc!)

The n-dimensional Hermite functions $Q are defined by taking the tensor products; that
is,

It is well known that {$o : a € N"} form an orthonormal basis for L2(Rn). Then we
define the special Hermite functions $a>/5 by

= (27T)-/2£ e^*Q (̂  + | ) *, (e - §) df.

Obviously,

(3) |$^(z)|<(27r)-"/2.

Also we have

LEMMA 1. The special Hermite functions {$a,/9 : a, /3 e N"} form an orthonor-
mai basis for L2(C").

2. AN ANALOGUE OF BEURLING'S THEOREM

In this section, we prove an analogue of Beurling's theorem for the Heisenberg group.
The result is stated as follows.

THEOREM 2 . Let f € L2(H") and d ^ 0. Suppose that

Then >>=0

where o is a positive constant, ipj € L2(Cn) and m < (d — ((n/2) + l ) ) /2. In particular,

f{z, t) = e~at2f(z, 0) when d ^ n/2 + 3 and / = 0 when d < (n/2) + 1.

PROOF: First we prove that / G L^H"). Let

https://doi.org/10.1017/S0004972700039812 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039812


474 J. Huang and H. Liu [4]

We may assume that A has positive Lebesgue measure. Otherwise, / = 0. By (4), there
exists Ao # 0 such that

JtHAol
e

Because there exists C > 0 such that ( l + \t\ + \X0\)
d

Therefore, / €

In view of (2) and Lemma 1, we have

(5)

Set

(6) flajj(*)= / f(z,

By (3),

(7)

By (5),

(8)

For any a,0,c/,P' € Nn, it follows from (7), (8) and (4) that

( 9 )

Now we prove

(10) f f ' y ^ 1 , 1 ^ , ^ 1 e""W dtdX < oo.
^ ' hh (1 + |«| + |A|)d
Given a,@£ N", we define

M(\)=
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It is concluded from (9) that there exists Ao ^ 0 such that M(A0) < oo. When a > d,

the function F(x) = (1 + o + x)~i^ax is increasing on [0, oo). Hence for |A| < |A0|,

(11) <

dt

Note that |&^(A)| ^ (27r)-n/2||/||Li. From (9) and (11) we obtain

JmJm (l +
f
\\\>\\o\

< oo.

'2 f [\E2M^^lem\X\n/2dtdX+ f
J\\\>\\o\ JK (1 + |A| + |*|)a J\\

This proves (10). In particular, for any a,p£ N",

kk (l +
By Theorem 1,

where Pa<p are polynomials, aa^ are positive constants. If degPatp ^ (d — ((n/2) + l) j / 2 ,

then (9) is false. So we have degPatff < (d - ((n/2) + l ) ) / 2 .

If aOt0 / Ua!,F for some a, ^, a/, /?' 6 N", then (10) will be false. So aQ>lg = a are
independent of a, 0. Let

3=0

Then

Where

The proof of Theorem 2 is completed. D
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3. SOME OTHER VERSIONS OF THE UNCERTAINTY PRINCIPLE

In this section we drive some other versions of uncertainty principle.

The following uncertainty principle of Gelfand-Shilov type is a direct consequence

of Theorem 2.

COROLLARY 1 . Letd^Q and assume that f 6 L2(H") satisfies

d"(A)<°o,L (1 + 1*1)" ^ ' ' ) < O ° ' iR (i +
where 1 < p, q < oo, (1/p) + (1/?) = 1 and a, 6 are positive numbers such that ab ^ 1.
Then / = 0 uniess p = q = 2, ab = 1 and d > (n/2) + 1, in which case,

j=o

wiere tpj{z) € L2(Cn) and m < d- ((n/2) +1) . In particular, f{z, t) = e~at2 f{z, 0) when
d < (n/2) + 2.

The lower bound 1 in Corollary 1 is not sharp for p ^ 2. The critical low bound
should be | cos(p7r/2)| as proved by Bonami, Demange and Jaming [4] on Euclidean
spaces.

THEOREM 3 . Let d ^ 0 and assume that f € L2(Br") satisfies

\f(z tM

(13)

wiere 1 < p < 2, (1/p) + (1/g) = 1 and a, b are positive numbers. Then f = 0 if

ab> |cos(j77r/2)|1/p.

P R O O F : We can choose e > 0 such that (a — e)(b — e) > | cos (p7r/2)| . By same
argument of Theorem 2, for any a, 0 € N", we get from (12) and (13) that

<oo,

' dX < oo,

where gaj is defined by (6). It follows that

JO
/R

By [4, Theorem 1.4], gaj = 0. Theorem 3 is proved.

As a consequence of Theorem 3, we have
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COROLLARY 2 . Letd^O. Suppose f e Ll(H") f l i 2 ( H " ) satisfies

\f(z,t)\dz V V

wiere C > 0, 1 < p < 2,l/p+ l/q = 1 and a, 6 are positive numbers. Then f = 0 if
ab>l/4\cos(pK/2)\2/p.

Finally we list some known results which are easy to derive from above.

COROLLARY 3 . (Bagchi and Ray [3]) Suppose f € L1(Wl)f)L2{Wl) satisGes

<oo,

where min(p, q) < oo, q ^ 2, a, b are positive numbers and ||{z, t) || = (|z|2 +12) is the
Euclidean norm of (z, ( ) e C " x R. Then / = 0 if ab> 1/4.

COROLLARY 4 . (Bagchi and Ray [3]) Suppose f is a measurabie function on H"
which satisfies

wiere o,6,C > 0, p ^ 2, 1/p + l/q = I and g € Ll(Cn)f)L2(Cn). U{apfl*{bqf^ > 1,
tien / = 0.

COROLLARY 5 . (Thangavelu [15]) Suppose f is a measurabie function on H"
which satisfies

where a,b,C > 0 and g G L ^ C J O i ^ C " ) . If a& > 1/4, then / = 0. Ifab = 1/4, then
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