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Abstract
Ice sheets and glaciers flow through basal sliding and internal deformation, each governed by phys-
ical laws commonly expressed as power-law relations. These formulations include coefficients—
the sliding coefficient and rate factor—whose values and units depend on the respective exponents.
This dependency complicates the systematic exploration of parameter space, especially in ensem-
ble simulations. To address this, we propose dimensionless formulations of both sliding and
flow laws, in which the coefficients are of order unity and decoupled from the exponents. This
separation simplifies sensitivity studies and parameter variations. The dimensionless laws are
straightforward to implement in existing models; we demonstrate this with the SICOPOLIS ice-
sheet model using three test simulations in an idealized set-up. These simulations illustrate that
independent variation of exponents and coefficients is feasible and practical, supporting the use of
dimensionless laws in efforts to better constrain ice dynamics in past and future climate scenarios.

1. Introduction

Ice sheets and glaciers flow due to two different processes, namely basal sliding and internal
deformation. Basal sliding describes the sliding of glacier ice on the underlying substrate, which
can be either hard bedrock or a deformable sediment layer between ice and bedrock. Internal
deformation is governed by the non-linear viscous properties of “hot” polycrystalline ice (that
is, with a homologous temperature T/Tm near unity, where T is the absolute temperature and
Tm the pressure melting point).

In a dynamic/thermodynamic ice sheet or glacier model, both processes must be included.
Basal sliding, which in reality is a complex process that depends on a multitude of factors such
as the basal temperature, roughness of the bedrock, softness of the subglacial sediment layer
(if existing) and hydrological conditions, is usually parameterized by a sliding law that relates
the sliding velocity to the basal stresses. Internal deformation can be modelled by a non-linear
viscous flow law that describes the relation between the macroscopic deformation (strain rate)
and internal stresses (e.g., Hooke, 2005; Greve and Blatter, 2009; Cuffey and Paterson, 2010).

Popular forms for such relations are theWeertman–Budd sliding law and the Nye–Glen flow
law (see below for references). They have in common that they are expressed as power laws
with some exponents, of which the optimal values are debated, and contain a factor to close the
respective equation. This factor, the “sliding coefficient” in case of the sliding law and the “rate
factor” in case of the flow law,may contain remaining dependencies, such as on the temperature.
In a dimensional formulation, the units and numerical values of these factors depend strongly
on the choice of the exponents, which makes it cumbersome to vary the exponents over their
potential range of values, for instance, within an ensemble of simulations for a given scenario.
To overcome this obstacle, we propose fully or partly dimensionless versions of the sliding and
flow laws, which have in common that the respective factor is dimensionless and generally of
order unity. These formulations decouple the value of the exponents from the value of the fac-
tor, so that the factors and exponents can be varied independently. We demonstrate this useful
feature by some simple simulations with the ice-sheet model SICOPOLIS (SImulation COde for
POLythermal Ice Sheets; SICOPOLIS Authors, 2025).

2. Basal sliding laws

Basal sliding laws (aka basal friction laws) relate the shear stress (drag) at the base of an ice
sheet or glacier, 𝜏b, to the basal normal stress, Nb and the basal sliding velocity, vb. In a general,
implicit form, a basal sliding law can be expressed as

f (vb, 𝜏b,Nb) = 0, (1)
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2 Ralf Greve

where f is a function unspecified at this stage. The list of vari-
ables is not necessarily exhaustive as further dependencies, for
instance on basal temperature or the presence of basal water, may
be included. Note that, in the presence of subglacial water, the basal
normal stress is often understood as the difference between the ice
overburden stress, Nb,i, and the basal water pressure, pb,w,

Nb = Nb,i − pb,w, (2)

and then called the reduced normal stress or, alternatively, the
effective pressure.

A popular form of a basal sliding law is the Weertman–Budd
sliding law, which results when assuming an explicit form of Eq. (1)
solved for vb, with power-law dependencies on 𝜏b and Nb:

vb = Cb
𝜏p
b

Nq
b

, (3)

where Cb is the sliding coefficient and (p, q) are the non-negative
sliding exponents (Weertman, 1957; Budd and others, 1979, 1984;
Budd and Jenssen, 1987). Alternatively, Eq. (3) can be solved for
the shear stress,

𝜏b = C⋆
b v

1/p
b Nq/p

b , with C⋆
b = C−1/p

b , (4)

whereC⋆
b is the basal friction coefficient. For the case q = 0, that is,

ignoring the dependence on the normal stressNb, the above forms
are often referred to as the Weertman sliding law.

In principle, vb and 𝜏b are vector quantities. For simplicity, we
formulate the sliding laws only with the respective magnitudes.
However, to interpret the results correctly, it must be kept in mind
that vb and 𝜏b are anti-parallel to each other due to the nature of
friction.

Let us now non-dimensionalize the sliding law (3) by introduc-
ing scales (typical values) for the relevant quantities (e.g., Hutter
and Jöhnk, 2004). We consider a situation near the edge of an ice
sheet where basal sliding is most relevant:

[H] = 1 km (typical thickness), (5a)

𝜀 = 10−2 (typical surface slope), (5b)

[Nb] = 𝜌g[H] = 107 Pa (typical normal stress), (5c)

[𝜏b] = 𝜀[Nb] = 105 Pa (typical shear stress), (5d)

[vb] = 100ma−1 (typical sliding velocity), (5e)

where we have used approximate values 𝜌 ≈ 103 kgm−3 for
the ice density and g ≈ 10ms−2 for the acceleration due to
gravity, which is sufficiently accurate for the sake of a scaling anal-
ysis. This scaling is consistent with the linear sliding law [Cb =
10−3 ma−1 Pa−1, (p, q) = (1, 0)] used for the EISMINT Phase 2
Simplified Geometry Experiments (Payne and others, 2000):

100ma−1⏟
vb

= 10−3 ma−1 Pa−1⏟⏟⏟⏟⏟⏟⏟
Cb

× 105 Pa⏟
𝜏b

. (6)

An appropriate choice for the scale of the sliding coefficient results
from Eq. (3) as

[Cb] =
[vb][Nb]q

[𝜏b]p
. (7)

We now use the above scales to introduce dimensionless quantities
as follows:

vb = [vb] ̃vb, (8a)

𝜏b = [𝜏b] ̃𝜏b, (8b)

Nb = [Nb] ̃Nb, (8c)

Cb = [Cb] ̃Cb, (8d)

where the quantities marked by the tilde symbol are the non-
dimensional basal sliding velocity, shear stress, normal stress and
sliding coefficient, respectively. Inserting Eq. (8) in the sliding
law (3) yields its fully non-dimensional form,

̃vb = ̃Cb
̃𝜏p
b
̃Nq
b

, (9)

in which all quantities are supposed to be of order unity.
A dimensional form of Eq. (3) can be kept by only making use

of the scaling (8d) of the sliding coefficient,

vb = [Cb] ̃Cb
𝜏p
b

Nq
b

, (10)

which has the advantage that its implementation in an existing
model based on dimensional quantities requires only minimal
adaptations.

In order to obtain the fully or partly dimensionless counterparts
of Eq. (4), we note the scaling and non-dimensionalization of the
friction coefficient C⋆

b :

C⋆
b = [C⋆

b] ̃C⋆
b, with [C⋆

b] = [Cb]−1/p =
[𝜏b]

[vb]1/p[Nb]q/p . (11)

The fully non-dimensional form of Eq. (4) results then as

̃𝜏b = ̃C⋆
b ̃v1/p

b
̃Nq/p
b , (12)

and the dimensional form in which only the scaling (11) of the
friction coefficient is used reads

𝜏b = [C⋆
b] ̃C⋆

b v
1/p
b Nq/p

b . (13)

Why do we promote using Eqs. (10) or (13) instead of Eqs. (3)
or (4) in an ice sheet or glacier model? In Table 1 we have com-
piled some parameter combinations that were used along with
Weertman or Weertman–Budd sliding laws in the literature. The
impossibility of comparing the various dimensional sliding coef-
ficients Cb for different exponents (p, q) becomes immediately
evident. They do not even have a common unit, and the respec-
tive numerical value tells nothing about the actual strength of basal
sliding. In the second case, (p, q) = (1, 2), the numerical value
of Cb is greater than 109; however, the small dimensionless value
means that it produces only very little basal sliding ( ̃Cb ≈ 0.04).
By contrast, in the third case, (p, q) = (3, 0), the numerical value
of Cb is merely 10−12; however, it corresponds to pronounced basal
sliding ( ̃Cb = 10). The dimensionless sliding coefficients ̃Cb give a
much better idea about what the respective value means physically,
and allow comparing values across different sliding laws.

To further strengthen our point, suppose that we wish to test
a sliding law with a new set of exponents, for instance (p, q) =
(3, 1.5). Working with the dimensional sliding coefficient Cb, we
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Table 1. Sliding exponents (p, q), dimensional sliding coefficients Cb, scales
[Cb] and dimensionless sliding coefficients ̃Cb for several Weertman (q = 0) or
Weertman–Budd (q > 0) sliding laws used in the literature

(p, q) Cb [Cb] ̃Cb Reference

(1, 0) 10−3 ma−1 Pa−1 10−3 ma−1 Pa−1 1 Payne and
others 2000

(1, 2) 3.985×109 ma−1 Pa 1011 ma−1 Pa 0.03985 Budd and
others 1984†

(3, 0) 10−12 ma−1 Pa−3 10−13 ma−1 Pa−3 10 Cornford and
others 2020

(3, 1) 1.607 ×
10−6 ma−1 Pa−2

10−6 ma−1 Pa−2 1.607 Saito and
others 2016†

(3, 2) 6.72ma−1 Pa−1 10ma−1 Pa−1 0.672 Rückamp and
others 2019

†: Rather than using the normal stress Nb, these sliding laws were formulated with the
pressure head Z = Nb/(𝜌g). We converted the sliding coefficients given in these studies
accordingly, using 𝜌 = 910 kgm−3 and g = 9.81ms−2.

would not have any idea which order of magnitude may be suited
for its numerical value, and which range of values mean strong or
weak sliding. However, if the dimensionless sliding coefficient ̃Cb
is used, we can immediately start with an initial guess ̃Cb = 1 and,
from there on, refine the sliding lawby, e.g., tuning to observed flow
speeds. According to the scaling (7), (8d), the dimensional equiv-
alent of ̃Cb = 1 would be Cb = [Cb] = 10−2.5 ma−1 Pa−1.5 =
3.162 × 10−3 ma−1 Pa−1.5.

We have only discussed cases with a constant sliding parame-
ter; however, the non-dimensionalization method is of course not
limited to this. It can also be applied to a spatially variable slid-
ing coefficient, which may arise from an inversion procedure (e.g.,
Morlighem and others, 2013). Alternative sliding laws, such as the
Coulomb-limited rules discussed by Cornford and others 2020,
allow similar non-dimensionalization, although we refrain from
working out the details here.

3. Flow laws

A similar problem of units and hugely varying numerical values
arises for the flow law of polycrystalline ice. It is a viscous flow
law that relates the strain-rate (stretching) tensor dij to the stress
deviator tDij . The strain-rate tensor is defined as

dij = 1
2 (𝜕vi

𝜕xj
+

𝜕vj
𝜕xi

) (i, j = 1, 2, 3), (14)

where xi denotes the Cartesian coordinates (x1 = x, x2 = y, x3 =
z), and vi is the velocity vector. The stress deviator is the traceless
part of the full stress tensor tij,

tij = −p 𝛿ij + tDij , (15)

where p = −tii/3 is the pressure (we assume the Einstein sum-
mation convention: summation over the twice-appearing index i
implied, thus tii is the trace of the stress tensor), and 𝛿ij is the
Kronecker delta symbol, in other words, the unit tensor in index
notation.

For the flow law, usually collinearity between the symmetric
tensors dij and tDij is assumed. We note the form given by Greve
and Blatter 2009,

dij = Af (𝜏e) tDij , (16)

where A is the rate factor, 𝜏e = [(tDij tDij )/2]1/2 the effective stress
(summation over both i and j implied), and f (𝜏e) is the creep func-
tion. The rate factor depends on the temperature relative to the

pressure melting point, T′, via an Arrhenius law (e.g., Cuffey and
Paterson, 2010), but it is sometimes chosen as a constant parameter
for simplicity. In the Nye–Glen flow law (Glen, 1955; Nye, 1957),
the creep function is expressed as a power law,

f (𝜏e) = 𝜏n−1
e , (17)

so that
dij = A𝜏n−1

e tDij , (18)

where n is the stress exponent. A value of n = 1 would cor-
respond to a Newtonian fluid; however, the deformability of ice
differs markedly from that behaviour, and the value is frequently
chosen as n = 3, or within the range from 1.5 to 4.2 (Cuffey
and Paterson, 2010) (while recent evidence from laboratory exper-
iments actually supports n = 1 for temperate ice; Schohn and
others, 2025).

The Nye–Glen flow law (18) can also be inverted for the stress
deviator,

tDij = A⋆d−(1−1/n)
e dij, with A⋆ = A−1/n, (19)

where A⋆ is the associated rate factor and de = [(dijdij)/2]1/2 the
effective strain rate (e.g., Greve and Blatter, 2009).

Similar to the procedure in Sect. 2, we now introduce scales
(typical values) for the relevant quantities, considered suitable for
areas where rather large deformations take place:

[𝜏 ] = 105 Pa (typical deviatoric stress), (20a)

[d] = 2.5 × 10−2 a−1 (typical strain rate), (20b)

where the scale [𝜏 ] is deemed appropriate for both tDij and 𝜏e. Using
Eq. (18) entails the choice for the scale of the rate factor:

[A] =
[d]
[𝜏 ]n . (21)

We introduce the dimensionless quantities

tDij = [𝜏] ̃tDij , (22a)

𝜏e = [𝜏] ̃𝜏e, (22b)

dij = [d] ̃dij, (22c)

A = [A] Ã, (22d)

where the quantities marked by the tilde symbol are the non-
dimensional components of the stress deviator, effective stress,
components of the strain-rate tensor and rate factor, respectively.

For n = 3, Eq. (21) yields [A] = 2.5 × 10−17 a−1 Pa−3 =
7.922 × 10−25 s−1 Pa−3. This value is close to the recommendation
by Cuffey and Paterson 2010 for T′ = −6∘C, which demonstrates
the validity of our scaling.

We obtain the fully non-dimensional form of the flow law (18)
as

̃dij = ̃A ̃𝜏n−1
e ̃tDij , (23)

(all quantities supposed to be of order unity). A form with only A
scaled results if we only apply the scaling (22d):

dij = [A] ̃A 𝜏n−1
e tDij . (24)

Analogous to the sliding law (10), this form can be implemented
in a model based on dimensional quantities with only minimal
changes.
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Figure 1. Dimensionless rate factor Ã as a function of the temperature relative
to pressure melting T′, following the recommendation by Cuffey and Paterson
2010: Arrhenius law with activation energies Q = 60 kJmol−1 for T′ ⩽ −10∘C,
Q = 115 kJmol−1 for T′ ⩾ −10∘C, A = 3.5 × 10−25 s−1 Pa−3 for T′ = −10∘C and
n = 3.

To obtain the fully or partly dimensionless versions of Eq. (19),
we note the scaling and non-dimensionalization of the associated
rate factor A⋆,

A⋆ = [A⋆] ̃A⋆, with [A⋆] = [A]−1/n =
[𝜏]

[d]1/n , (25)

and for the effective strain rate, the scale (20b) is used,

de = [d] ̃de. (26)

The fully non-dimensional form of Eq. (19) is then

̃tDij = ̃A⋆ ̃d−(1−1/n)
e ̃dij, (27)

and the form with only A⋆ scaled reads

tDij = [A⋆] ̃A⋆ d−(1−1/n)
e dij. (28)

Figure 1 shows the temperature-dependent rate factor fol-
lowing the recommendation by Cuffey and Paterson 2010, non-
dimensionalized with the scaling (21), (22d). However, while
the original recommendation in dimensional form is valid only
for n = 3, this dimensionless form can be used for any
value of the stress exponent n. It is therefore much more
flexible.

Consider the case n = 4, which has recently been discussed by,
e.g., Bons and others (2018); Millstein and others (2022); Getraer
and Morlighem (2025). The unit of the rate factor A must then be
a−1 Pa−4, but what about suitable numerical values? When using
the dimensionless formulation promoted here, there is no problem;
𝒪(1) values will be suitable for the high-temperature regime (i.e.,
temperatures close to pressuremelting) just like for any other value
of n, and we can use the function shown in Figure 1 as a starting
point. According to Eq. (21), the scale forA changes to [A] = 2.5×
10−22 a−1 Pa−4 (compared to [A] = 2.5×10−17 a−1 Pa−3 forn = 3),
so that ̃A = 1 corresponds to A = 2.5 × 10−22 a−1 Pa−4.

The non-dimensionalization method is not limited to the Nye-
Glen flow law discussed above. A straightforward extension is for
its regularized versionwith the creep function f (𝜏e) = 𝜏n−1

e +𝜏n−1
0 ,

where 𝜏0 is the residual stress, a small constant introduced to
avoid the infinite-viscosity limit for vanishing stresses or strain
rates (Greve and Blatter, 2009). For this flow law, Eqs. (20)–(22)
remain applicable. However, it cannot be analytically inverted for
the stress deviator; this is only possible by numerically solving

Table 2. Set-up of the experiments H1, H2 and H3: Sliding exponents (p, q),
dimensionless sliding coefficient ̃Cb, stress exponent n, dimensionless rate fac-
tor ̃A ( ̃ACP10 denotes the non-dimensionalized rate factor by Cuffey and Paterson
2010 as shown in Figure 1). Note that ̃Cb and ̃A are the same for all experiments

Experiment (p, q) ̃Cb n ̃A

H1 (1, 0) 1 3 ̃ACP10
H2 (3, 2) 1 3 ̃ACP10
H3 (1, 0) 1 4 ̃ACP10

an implicit equation. Further flow laws shall not be considered
here.

4. Tests with the ice-sheet model SICOPOLIS

Replacing the previously implemented, dimensional versions, the
Weertman–Budd basal sliding law formulated with the dimen-
sionless sliding coefficient, Eqs. (10) and (13), and the Nye–Glen
flow law formulated with the dimensionless rate factor, Eqs. (24)
and (28), have both been introduced in the ice-sheet model
SICOPOLIS v25 (SICOPOLIS Authors, 2025), revision 3e7e6c939
of 17 June 2025. Details of the implementation can be found
in Sect. 6 (“Modelling choices”) of the ReadTheDocs manual at
https://sicopolis.readthedocs.io/ (last access: 26 June 2025).

We briefly demonstrate the benefit of the new formulation by
considering experiment H of the EISMINT Phase 2 Simplified
Geometry Experiments (Payne and others, 2000). The original set-
up of this experiment uses the Weertman sliding law with (p, q) =
(1, 0) andCb = 10−3 ma−1 Pa−1, only applied for a temperate base,
while no-slip conditions are assumed for a cold base. The value of
the sliding coefficient corresponds to ̃Cb = 1 (Table 1).The applied
flow law is Nye–Glen with n = 3.

We define three versions of the experiment. For all cases, to
avoid the singularity associated with the binary switch between
fully developed sliding and no-slip conditions, we allow for some
exponentially decaying sub-melt sliding (e.g., Hindmarsh and Le
Meur, 2001; Greve, 2005; Dunse and others, 2011) by setting ̃Cb →

̃Cb exp(T′
b/𝛾sms), where T′

b is the basal temperature relative to
the pressure melting point (in ∘C, hence T′

b is non-positive), and
𝛾sms = 3∘C is the sub-melt-sliding parameter. Further, for all cases,
we apply the dimensionless rate factor shown in Figure 1, which
differs slightly from the original set-up. Experiment H1 employs
linear Weertman sliding and the Nye–Glen flow law with n = 3 as
in the original set-up. For experimentH2, sliding has been changed
to aWeertman–Budd lawwith (p, q) = (3, 2) [no basal water pres-
sure considered, pb,w = 0, cf. Eq. (2)], and for experiment H3, the
stress exponent has been changed to n = 4 (Table 2).

All experiments are carried out with SICOPOLIS v25. Ice
dynamics is modelled by the depth-integrated viscosity approx-
imation (DIVA) (Goldberg, 2011; Lipscomb and others, 2019;
Grandadam, 2024), and for ice thermodynamics we employ the
melting-CTS enthalpy method (CTS: cold-temperate transition
surface) (Greve and Blatter, 2016). For the horizontal resolution,
we use 10 km (rather than the 25 km from the original set-up), and
we integrate over a model time of 100 ka starting from ice-free ini-
tial conditions, which is sufficient to reach a steady state for all three
experiments.

Selected results (ice thickness, surface velocity, slip ratio = ratio
of basal to surface velocity) are shown in Figure 2. Our main mes-
sage is that all three experiments produce reasonable, consistent
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Figure 2. Simulated ice thickness, surface velocity and slip ratio (ratio of basal to surface velocity) for the three experiments (H1, H2, H3) described in the main text (Sect. 4)
after 100 ka model time.

results for the same dimensionless sliding coefficient and rate fac-
tor, even though the exponents in the sliding law and the flow law
have been varied. As explained above, in a dimensional formu-
lation, this would require changes in the numerical values of the
sliding coefficient and the rate factor by several orders of magni-
tude. The results of experiments H1 and H3 (flow-law exponent n
changed) are very similar to each other and show a fingering insta-
bility that results from the thermomechanical coupling, which was
already discussed in the original EISMINT publication by Payne
and others 2000. By contrast, this instability does not occur in
experimentH2 (sliding-law exponents p and q changed), where the
solution maintains an almost perfect circular symmetry. While an
interesting topic, we refrain fromadeeper discussion of these insta-
bilities here, yet point the interested reader to the EISMINT paper
and further studies by, e.g., Fowler and Johnson (1996); Payne and
Dongelmans (1997); Sayag and Tziperman (2008) and Hindmarsh
2009.

5. Summary

We presented non-dimensionalized forms of basal sliding laws
and flow laws for use in dimensional ice-sheet and glacier mod-
els. Compared to their dimensional counterparts, these forms have
the advantage that the coefficients (sliding coefficient, rate fac-
tor) become independent of the respective exponents. All of these
parameters are to some extent uncertain and therefore candidates
for systematic variation in ensemble simulations of ice sheets and
glaciers, which becomes much easier with the dimensionless for-
mulations as the parameters can be varied independently. This is
particularly relevant for efforts to reproduce observations of the
recent history of ice sheets and glaciers as a starting point for pre-
dictions of their future changes. As claimed, implementation in
an existing dimensional ice-sheet model (SICOPOLIS v25) could
be done with minimal adaptations. We demonstrated the prac-
ticability of the method by three test simulations for a simple,
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idealized geometry, in which we varied the sliding-law exponents
and the flow-law exponent while keeping the dimensionless sliding
coefficient and rate factor constant.

Data availability statement. SICOPOLIS (SICOPOLIS Authors, 2025) is
free and open-source software, published on a persistent Git repository hosted
by GitHub (https://github.com/sicopolis/sicopolis/). The run-specs headers
and output data produced for this study are available at Zenodo, https://doi.
org/10.5281/zenodo.17373818.

Acknowledgements. The author thanks Ryszard Staroszczyk (Institute of
Hydro-Engineering, Polish Academy of Sciences) and Shreyas Sunil Gaikwad
(University of Texas at Austin, USA) for helpful discussions about flow laws
and sliding laws, and Félix Grandadam (Claude Bernard University Lyon 1,
France) for the implementation of DIVA in the SICOPOLIS model. The author
further thanks the Associate Chief Editor Argha Banerjee, the Scientific Editor
Ian Hewitt and two anonymous reviewers for their constructive remarks and
suggestions.

Competing interests. The author serves as an Associate Chief Editor of the
Journal of Glaciology.

References
Bons PD and 6 others (2018) Greenland ice sheet: Higher nonlinearity of

ice flow significantly reduces estimated basal motion. Geophysical Research
Letters 45(13), 6542–6548. doi: 10.1029/2018GL078356

Budd WF, Jenssen D and Smith IN (1984) A three-dimensional time-
dependent model of the West Antarctic ice sheet. Annals of Glaciology 5,
29–36. doi: 10.3189/1984AoG5-1-29-36

Budd WF and Jenssen D (1987) Numerical modelling of the large-scale basal
water flux under the West Antarctic ice sheet. In Dynamics of the West
Antarctic Ice Sheet, CJ van der Veen and J Oerlemans (Eds.) D. Reidel
Publishing Company, Dordrecht, The Netherlands pp. 293–320. doi: 10.
1007/978-94-009-3745-1

Budd WF, Keage PL and Blundy NA (1979) Empirical studies of ice slid-
ing. Journal of Glaciology 23(89), 157–170. doi: 10.3189/S002214300002
9804

Cornford SL and 21 others (2020) Results of the third Marine Ice Sheet Model
Intercomparison Project (MISMIP+). The Cryosphere 14(7), 2283–2301.
doi: 10.5194/tc-14-2283-2020

Cuffey KM and PatersonWSB (2010)The Physics of Glaciers, Amsterdam, The
Netherlands etc: Elsevier. ISBN 978-0-12-369461-4

Dunse T, Greve R, Schuler TV and Hagen JO (2011) Permanent fast flow
versus cyclic surge behaviour: numerical simulations of the Austfonna
ice cap, Svalbard. Journal of Glaciology 57(202), 247–259. doi: 10.3189/
002214311796405979

Fowler AC and Johnson C (1996) Ice-sheet surging and ice-stream formation.
Annals of Glaciology 23, 68–73. doi: 10.3189/S0260305500013276

Getraer B andMorlighemM (2025) Increasing the Glen-Nye power-law expo-
nent accelerates ice-loss projections for the Amundsen Sea Embayment,
West Antarctica. Geophysical Research Letters 52(7), e2024GL112516. doi:
10.1029/2024GL112516

Glen JW (1955)The creep of polycrystalline ice. Proceedings of the Royal Society
A 228(1175), 519–538. doi: 10.1098/rspa.1955.0066

Goldberg DN (2011) A variationally derived, depth-integrated approximation
to a higher-order glaciological flow model. Journal of Glaciology 57(201),
157–170. doi: 10.3189/002214311795306763

Grandadam F (2024) Implementation of the Depth Integrated Viscosity
Approximation in SICOPOLIS. Internship Report, Claude Bernard

University Lyon 1, France, and Hokkaido University, Sapporo, Japan.
doi: 10.5281/zenodo.14732938

Greve R and Blatter H (2009) Dynamics of Ice Sheets and Glaciers, Berlin,
Germany etc: Springer. ISBN 978-3-642-03414-5. doi: 10.1007/978-3-642-
03415-2

Greve R and Blatter H (2016) Comparison of thermodynamics solvers in the
polythermal ice sheetmodel SICOPOLIS. Polar Science 10(1), 11–23. doi: 10.
1016/j.polar.2015.12.004

Greve R (2005) Relation of measured basal temperatures and the spatial dis-
tribution of the geothermal heat flux for the Greenland ice sheet. Annals of
Glaciology 42, 424–432. doi: 10.3189/172756405781812510

Hindmarsh RCA (2009) Consistent generation of ice-streams via thermo-
viscous instabilities modulated by membrane stresses. Geophysical Research
Letters 36(6), L06502. doi: 10.1029/2008GL036877

Hindmarsh RCA and Le Meur E (2001) Dynamical processes involved in the
retreat of marine ice sheets. Journal of Glaciology 47(157), 271–282. doi: 10.
3189/172756501781832269

Hooke RL (2005) Principles of Glacier Mechanics (2nd edition). Cambridge, UK
andNewYork, NY,USA: CambridgeUniversity Press. ISBN 9780511614231.
doi: 10.1017/CBO9780511614231

HutterK and JöhnkK (2004)ContinuumMethods of PhysicalModeling , Berlin,
Germany: Springer. doi: 10.1007/978-3-662-06402-3

Lipscomb WH and 14 others (2019) Description and evaluation of the
Community Ice Sheet Model (CISM) v2.1. Geoscientific Model Development
12(1), 387–424. doi: 10.5194/gmd-12-387-2019

Millstein JD,MinchewBMandPegler SS (2022) Ice viscosity is more sensitive
to stress than commonly assumed.Communications Earth & Environment 3.
doi: 10.1038/s43247-022-00385-x

Morlighem M, Seroussi H, Larour E and Rignot E (2013) Inversion of basal
friction in Antarctica using exact and incomplete adjoints of a higher-order
model. Journal of Geophysical Research: Earth Surface 118(3), 1746–1753.
doi: 10.1002/jgrf.20125

Nye JF (1957) The distribution of stress and velocity in glaciers and ice sheets.
Proceedings of the Royal Society A 239(1216), 113–133. doi: 10.1098/rspa.
1957.0026

Payne AJ and Dongelmans PW (1997) Self-organization in the thermome-
chanical flow of ice sheets. Journal of Geophysical Research: Solid Earth
102(B6), 12219–12233. doi: 10.1029/97JB00513

PayneAJ and 10others (2000) Results from the EISMINTmodel intercompari-
son: the effects of thermomechanical coupling. Journal of Glaciology 46(153),
227–238. doi: 10.3189/172756500781832891

RückampM, Greve R and Humbert A (2019) Comparative simulations of the
evolution of the Greenland ice sheet under simplified Paris Agreement sce-
narios with the models SICOPOLIS and ISSM. Polar Science 21, 14–25. doi:
10.1016/j.polar.2018.12.003

Saito F, Abe-Ouchi A, Takahashi K and Blatter H (2016) SeaRISE experi-
ments revisited: potential sources of spread in multi-model projections of
the Greenland ice sheet. The Cryosphere 10(1), 43–63. doi: 10.5194/tc-10-
43-2016

Sayag R and Tziperman E (2008) Spontaneous generation of pure ice streams
via flow instability: Role of longitudinal shear stresses and subglacial till.
Journal of Geophysical Research: Solid Earth 113(B5), B05411. doi: 10.1029/
2007JB005228

Schohn CM, Iverson NR, Zoet LK, Fowler JR and Morgan-Witts N (2025)
Linear-viscous flow of temperate ice. Science 387(6730), 182–185. doi: 10.
1126/science.adp7708

SICOPOLIS Authors (2025) SICOPOLIS v25. GitHub repository, GitHub.
Available at https://github.com/sicopolis/sicopolis (accessed 30 June 2025).

Weertman J (1957) On the sliding of glaciers. Journal of Glaciology 3(21),
33–38. doi: 10.3189/S0022143000024709

Downloaded from https://www.cambridge.org/core. 21 Nov 2025 at 03:13:22, subject to the Cambridge Core terms of use.

https://github.com/sicopolis/sicopolis/
https://doi.org/10.5281/zenodo.17373818
https://doi.org/10.5281/zenodo.17373818
https://doi.org/10.1029/2018GL078356
https://doi.org/10.3189/1984AoG5-1-29-36
https://doi.org/10.1007/978-94-009-3745-1
https://doi.org/10.1007/978-94-009-3745-1
https://doi.org/10.3189/S0022143000029804
https://doi.org/10.3189/S0022143000029804
https://doi.org/10.5194/tc-14-2283-2020
https://doi.org/10.3189/002214311796405979
https://doi.org/10.3189/002214311796405979
https://doi.org/10.3189/S0260305500013276
https://doi.org/10.1029/2024GL112516
https://doi.org/10.1098/rspa.1955.0066
https://doi.org/10.3189/002214311795306763
https://doi.org/10.5281/zenodo.14732938
https://doi.org/10.1007/978-3-642-03415-2
https://doi.org/10.1007/978-3-642-03415-2
https://doi.org/10.1016/j.polar.2015.12.004
https://doi.org/10.1016/j.polar.2015.12.004
https://doi.org/10.3189/172756405781812510
https://doi.org/10.1029/2008GL036877
https://doi.org/10.3189/172756501781832269
https://doi.org/10.3189/172756501781832269
https://doi.org/10.1017/CBO9780511614231
https://doi.org/10.1007/978-3-662-06402-3
https://doi.org/10.5194/gmd-12-387-2019
https://doi.org/10.1038/s43247-022-00385-x
https://doi.org/10.1002/jgrf.20125
https://doi.org/10.1098/rspa.1957.0026
https://doi.org/10.1098/rspa.1957.0026
https://doi.org/10.1029/97JB00513
https://doi.org/10.3189/172756500781832891
https://doi.org/10.1016/j.polar.2018.12.003
https://doi.org/10.5194/tc-10-43-2016
https://doi.org/10.5194/tc-10-43-2016
https://doi.org/10.1029/2007JB005228
https://doi.org/10.1029/2007JB005228
https://doi.org/10.1126/science.adp7708
https://doi.org/10.1126/science.adp7708
https://github.com/sicopolis/sicopolis
https://doi.org/10.3189/S0022143000024709
https://www.cambridge.org/core

	On non-dimensional forms of basal sliding laws and flow laws for ice-sheet and glacier modelling
	1. Introduction
	2. Basal sliding laws
	3. Flow laws
	4. Tests with the ice-sheet model SICOPOLIS
	5. Summary
	Acknowledgements
	References


