SUR UNE QUESTION DE LOCALISATION

par M. P. MALLIAVIN-BRAMERET

(Received 7 October, 1979)

Il est connu [4] que si A = U(g) est l'algèbre enveloppante d'une algèbre de Lie nilpotente g de dimension finie sur un corps F de caractéristique 0, tout idéal (complètement) premier P a pour localisé $R = A_p$ un anneau régulier au sens de [5]; c'està-dire que le radical de Jacobson $\mathfrak M$ de R est engendré par une suite centralisante régulière de longueur n = K-dim R, soit (z_1, \ldots, z_n) . Dans le cas très particulier où P est l'idéal d'augmentation de U(g) il suffit de prendre pour (z_1, \ldots, z_n) l'image dans $U(g)_p$ d'une base de g sur F adaptée à la suite centrale ascendante de g.

Un problème qu'il est alors naturel de se poser est de savoir si étant donné A, P, R, $\mathfrak{M} = (z_1, \ldots, z_n)$ comme précédemment et étant donné $1 \le t \le n$, l'anneau $R/(z_1, \ldots, z_n)$ localisé en un idéal premier quelconque est régulier au sens précédent.

En adoptant le raisonnement de [4], T. Levasseur a donné pour t=1 une réponse positive.

Nous nous proposons de donner une réponse positive au problème précédent, pour tout t dans le cas où P est un idéal maximal et où le corps F est algébriquement clos.

Dans toute la suite les anneaux considérés sont unitaires, noethériens à droite et à gauche, leurs idéaux premiers sont complètement premiers et localisables au sens classique.

DÉFINITION. Soit R (resp. U(g)) un anneau local régulier au sens de Walker (respectivement une algèbre enveloppante d'une algèbre de Lie nilpotente g de dimension finie sur un corps F) $\mathfrak M$ le radical de R (respectivement P un idéal maximal de U(g)). Un système régulier de générateurs de $\mathfrak M$ (respectivement P) soit z_1, \ldots, z_n , est dit privilégié si pour tout $t, 1 \le t \le n$ l'anneau quotient $R/(z_1, \ldots, z_t)$ (respectivement $U(g)/(z_1, \ldots, z_t)$) localisé en un idéal premier quelconque est régulier.

Evidemment si l'idéal maximal P de U(g) possède un système privilégié de générateurs, alors le radical de l'anneau $R = U(g)_P$ en possède un aussi.

On va démontrer que l'idéal maximal P de U(g) possède un système privilégié de générateurs, lorsque le corps de base F est algébriquement clos.

Il est connu [3] que P possède un système centralisant de générateurs. On utilisera ici une démontration calquée sur celle de [3]. On commencera par rappeler la proposition suivante [2].

PROPOSITION 1 (T. Levasseur). Soit g une algèbre de Lie nilpotente sur un corps F de caractéristique 0 (non nécessairement algébriquement clos). Soit Q un idéal premier de l'algèbre enveloppante U(g), soit (z_1, \ldots, z_t) un système centralisant et régulier de générateurs du radical de $U(g)_Q = R$. Alors pour tout idéal premier P de $R/z_1R = A$ l'anneau local A_P est régulier.

Glasgow Math. J. 22 (1981) 137-139.

LEMME. Soit g une algèbre de Lie nilpotente de dimension finie sur un corps F algébriquement clos de caractéristique 0. Soit z un élément non nul du centre de g et soit P un idéal maximal de U(g) contenant z-1. Alors P possède un système privilégié de générateurs $(z-1, x_2, \ldots, x_n)$.

Preuve. On procède par récurrence sur la dimension de g sur F, le cas où dim $_F$ g=1 étant évident. On peut aussi supposer que g n'est pas abélienne. On considère deux cas; supposons d'abord que P contienne un élément non nul, soit z_1 , du centre de g. Puisque $P \neq U(g)$ on a $1 \notin P$ et donc $z_1 \neq z$. Notons \bar{P} l'image de P dans $U(g)/(z_1) = U(g/Fz_1)$: c'est un idéal maximal de $U(g/Fz_1)$ qui contient $\bar{z}-1$ où \bar{z} designe la classe de z modulo l'idéal Fz_1 . D'après l'hypothèse de récurrence, \bar{P} possède un système de générateurs privilégiés soit $(\bar{z}-1, \bar{x}_2, \ldots, \bar{x}_i, \bar{x}_{i+1}, \ldots, \bar{x}_s)$. Alors la suite $z_1, z-1, x_2, \ldots, x_s$ est un système régulier centralisant de générateurs de P et est privilégié.

Montrons que $(z-1, z_1, x_2, \ldots, x_s)$ est privilégié. Il est certain que si Ω est un idéal premier de $A = U(g)/(z-1, z_1, \ldots)$ alors A_{Ω} est régulier d'après l'hypothèse de récurrence. Si Ω est un idéal premier de A = U(g)/(z-1) alors A_{Ω} est régulier d'après la proposition 1 et [3].

En second cas supposons que P ne rencontre pas le centre Z de g. Puisque P est un idéal maximal de U(g), $P \cap Z(g)$ est un idéal maximal de Z(g), où Z(g) est le centre de U(g), [1, 4.1.7]. Alors, puisque F est algébriquement clos, le centre Z est de dimension 1 sur F et on peut supposer que Z = Fz.

Il existe dans g un quadruplet réduisant, [1, 4.7.7], z, x, y, h où [x, y] = z où h est le centralisateur de y dans g et où $g = Fx \oplus h$. Si I désigne l'idéal bilatère engendré par z-1 dans U(g) alors l'anneau U(g)/I est isomorphe à $A_1 \otimes_F U(\bar{h})/(\bar{z}-1)U(\bar{h})$ où $\bar{h} = h/Fy$, \bar{z} est la classe de z modulo Fy et A_1 désigne l'algèbre de Weyl sur F d'ordre [1, lemme 4.7.8]. Dans l'isomorphisme précédent, l'idéal P a pour image $A_1 \otimes_F \bar{P}'$ où $\bar{P}' = P'/(\bar{z}-1)U(\bar{h})$, P' étant un idéal maximal de $U(\bar{h})$ contenant $\bar{z}-1$.

D'après l'hypothèse de récurrence, l'idéal P' possède un système générateur privilégié commençant par $\bar{z}-1$, soit $\bar{z}-1$, x_2' , ..., x_i' , x_{i+1}' , ..., $x_i' \in U(\bar{\mathfrak{h}})$. Soit $y_i \in U(\mathfrak{g})$ $i=2,\ldots,t$, des éléments tels que $y_i=1 \otimes x_i'$ modulo (z-1).

On vérifie comme en [3] que $(z-1, y_2, \ldots, y_t)$ est une suite centralisante. Montrons que cette suite est privilégiée. Si $\mathfrak Q$ est un idéal premier de $U(\mathfrak g)$ contenant $(z-1, y_2, \ldots, y_t)$ alors:

 $\bar{\mathbb{Q}} = \frac{\mathbb{Q}}{(z-1)} \cong A_1 \otimes \bar{\mathbb{Q}}'$

où $\bar{\mathbb{Q}}'$ est un idéal premier de $U(\bar{\mathfrak{h}})/\bar{z}-1$). On a aussi

$$\frac{U(\mathfrak{g})}{(z-1, y_2, \ldots, y_i)} \cong A_1 \otimes \frac{U(\bar{\mathfrak{h}})}{(\bar{z}-1, x_2', \ldots, x_i')}.$$

Posons

$$A = U(g)/(z-1, y_2, ..., y_i)$$
 et $B = U(\bar{h})/(\bar{z}-1, x_2', ..., x_i')$.

Notons $\bar{\mathbb{Q}}''$ l'idéal premier de B image de $\bar{\mathbb{Q}}'$.

Par hypothèse de récurrence $B_{\bar{\Omega}'}$ est régulier. Soit v_1, \ldots, v_h un système de paramètres de $B_{\bar{\Omega}'}$ et soit $S = B - \bar{\bar{\Omega}}''$; alors S^{-1} $A \cong A_1 \otimes B_{\bar{\Omega}'}$. Soit w_1, \ldots, w_h , $w_i = 1 \otimes v_i$. Alors il est évident que w_1, \ldots, w_h est un système centralisant régulier de $S^{-1}A$, et donc de $A_{\bar{\Omega}}$, $S^{-1}A$ est un anneau possédant un unique idéal bilatère maximal á savoir $A_1 \otimes \bar{\bar{\Omega}}''$. $B_{\bar{\Omega}''}$ et cet idéal est engendré par w_1, \ldots, w_h . Donc puisque $A_{\bar{\Omega}}$ s'obtient en localisant $S^{-1}A$ en son radical, $\bar{\bar{\Omega}}A_{\bar{\Omega}}$ est engendré par les w_1, \ldots, w_h .

PROPOSITION 2. Soit g une algèbre de Lie nilpotente sur un corps F algébriquement clos. Tout idéal maximal P de U(g) possède un système privilégié de générateurs.

Preuve. On raisonne par récurrence sur dim_F g, la proposition étant évidente si dim_F g = 1. On suppose g non abélienne. Si P rencontre le centre Z de g en un élément non nul z alors P/(z) est un idéal maximal de U(g/Fz) = U(g)/(z). D'où l'existence d'un système privilégié de générateurs pour P/(z) soit $(\bar{z}_2, \ldots, \bar{z}_t)$. Alors (z, z_2, \ldots, z_t) est un système privilégié de générateurs pour P.

Si $P \cap Z = (0)$, alors la dimension de Z sur F est égal à l. Soit Z = Fz. On peut supposer que $z - 1 \in P$, ceci parce que P est maximal, le centre de U(g)/P est F [1, Theorème 4.5.7]. Posons I = (z - 1); c'est un idéal premier [3] et on applique le lemme.

BIBLIOGRAPHIE

- 1. J. Dixmier, Algèbres enveloppantes, (Gauthier-Villars, 1974).
- 2. T. Levasseur, Séminaire Dubreil 78/79 (Springer-Verlag), à paraître
- 3. M. P. Malliavin, Régularité locale d'algèbres universelles. C. R. Acad. Sc. Paris t. 283 (1976), 923-925.
 - 4. P. F. Smith, On non commutative regular rings, Glasgow Math. J. 17 (1976), 98-102.
- 5. R. Walker, Local rings and normalizing sets of elements, *Proc. London Math. Soc.* (3) 24 (1972), 27-45.

10, RUE SAINT LOUIS EN L'ÎLE 75004 PARIS