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Abstract. Let n be any positive integer and p be any prime. Also, let X be any
spectrum and let K(n) denote the nth Morava K-theory spectrum. Then we construct
a descent spectral sequence with abutment π∗(LK(n)(X)) and E2-term equal to the
continuous cohomology of Gn, the extended Morava stabilizer group, with coefficients
in a certain discrete Gn-module that is built from various homotopy fixed point spectra
of the Morava module of X . This spectral sequence can be contrasted with the K(n)-
local En-Adams spectral sequence for π∗(LK(n)(X)), whose E2-term is not known to
always be equal to a continuous cohomology group.

2010 Mathematics Subject Classification. Primary 55P42, 55T15, 55Q51.

1. Introduction. Given an integer n ≥ 1 and any prime p, let K(n) be the nth
Morava K-theory spectrum and let En be the nth Lubin–Tate spectrum, with

π∗(En) = W (�pn )�u1, . . . , un−1�[u±1],

where W (�pn ) denotes the Witt vectors of the field �pn , each ui has degree zero, and the
degree of u is −2. Also, let

Gn = Sn � Gal(�pn/�p)

be the nth extended Morava stabilizer group.
Given a spectrum X , there is the Morava module LK(n)(En ∧ X) of X . Since Gn

acts on En (by [11]), we can give X the trivial action and En ∧ X the diagonal action,
and hence, there is an induced Gn-action on the Morava module. In fact, for any closed
subgroup K of the profinite group Gn, by [3, Section 9], LK(n)(En ∧ X) is a continuous
K-spectrum and there is the homotopy fixed point spectrum

(LK(n)(En ∧ X))hK

formed with respect to the continuous K-action. Then, in this paper, we obtain the
following result.
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THEOREM 1.1. Let X be any spectrum. There is a conditionally convergent descent
spectral sequence E∗,∗

r that has the form

Es,t
2 = Hs

c

(
Gn; πt

(
colim
N�oGn

(LK(n)(En ∧ X))hN
))

=⇒ πt−s(LK(n)(X)),

where the E2-term is the continuous cohomology of Gn with coefficients in a discrete
Gn-module.

The spectral sequence E∗,∗
r is the descent spectral sequence for the homotopy fixed

point spectrum

(
colim
N�oGn

(LK(n)(En ∧ X))hN
)hGn � LK(n)(X) (1.2)

of the discrete Gn-spectrum colimN�oGn (LK(n)(En ∧ X))hN (see Theorem 3.4 for
equivalence (1.2)).

The spectral sequence of Theorem 1.1 is in general different from the strongly
convergent K(n)-local En-Adams spectral sequence Ẽr

∗,∗ for π∗(LK(n)(X)) (for the
construction of this Adams spectral sequence, see, for example, [10, Appendix A];
for any X , this Adams spectral sequence is isomorphic to the descent spectral sequence
for (LK(n)(En ∧ X))hGn , by [8, Theorem 1.2]).

For any spectrum X , the E2-term of spectral sequence E∗,∗
r is given by an explicit

continuous cohomology group. By contrast, for arbitrary X it is not known if, in
general, the E2-term of spectral sequence Ẽr

∗,∗ can be expressed in some way as a
continuous cohomology group. This is known for Ẽr

∗,∗ in certain cases, which include
the following:

(a) By [10, Theorem 2,(ii)], if X is a finite spectrum, then

Ẽs,t
2

= Hs
c(Gn; πt(En ∧ X)),

where πt(En ∧ X) is a profinite continuous �p�Gn�-module;
(b) by [15, Theorem 5.1], if En∗(X) is a flat π∗(En)-module then

Ẽs,t
2

= Hs
c(Gn; πt(LK(n)(En ∧ X))),

where again, in general, the coefficients of the continuous cohomology group need not
be a discrete Gn-module;

(c) another well-known case is explained in [13, Proposition 7.4] (the details of
which would take us too far afield in this introduction) and

(d) in the subtle case described in [10, Proposition 6.7], in which the continuous
cohomology group has coefficients in a discrete Gn-module, we show in our next result
that the two spectral sequences E∗,∗

r and Ẽr
∗,∗ are the same.

To state this result, we need some notation. Let E(n) be the Johnson–Wilson
spectrum with E(n)∗ = �(p)[v1, . . . , vn−1][v±1

n ], where each vi has degree 2(pi − 1), and
let In be the ideal (p, v1, . . . , vn−1) in E(n)∗. As implied above, the useful hypothesis in
the following result comes from [10, Proposition 6.7].

THEOREM 1.3. Let X be a spectrum such that, for each E(n)-module spectrum M,
there exists an integer k with Ik

n M∗(X) = 0. Then spectral sequence E∗,∗
r is isomorphic

to the strongly convergent K(n)-local En-Adams spectral sequence Ẽr
∗,∗ that converges to

π∗(LK(n)(X)) from the E2-terms onward.
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As in [3, Definition 2.3], let

Fn = colim
N�oGn

EdhN
n , (1.4)

where EdhN
n is the spectrum constructed by Devinatz and Hopkins in [10] that behaves

like an N-homotopy fixed point spectrum of En with respect to a continuous action
of N. By construction, the spectrum Fn is a discrete Gn-spectrum. If X = S0, then
Theorem 1.1, together with Remark 3.6, yields the descent spectral sequence

Hs
c(Gn; πt(Fn)) =⇒ πt−s(LK(n)(S0)),

which is a new tool for computing π∗(LK(n)(S0)) (the existence of this spectral sequence
is also an immediate consequence of [6, last line of p. 254] and [3, Theorem 7.9]).

Given a spectrum X , the discrete Gn-spectrum colimN�oGn (LK(n)(En ∧ X))hN , which
appears in Theorem 1.1 and will be referred to here as C(X), is canonically associated
to the Morava module LK(n)(En ∧ X): by Remark 2.2 and (2.5), C(X) is the output of a
certain right adjoint from Gn-spectra to discrete Gn-spectra applied to LK(n)(En ∧ X).
Also, by Remark 2.4 and (3.3), C(X) can be viewed as the homotopy limit in the
category of discrete Gn-spectra of a diagram whose homotopy limit in the category of
spectra is LK(n)(En ∧ X).

We point out that for any spectrum X , in Theorem 1.1 there is an isomorphism

Es,t
2

∼= colim
N�oGn

Hs
(

Gn/N; πt

(
(LK(n)(En ∧ X))hN

))
,

with each Gn/N a finite group, by [18, Proposition 8].
The proof of Theorem 1.1 is obtained by combining the equivalence

LK(n)(X) � (LK(n)(En ∧ X))hGn ,

which is valid for any X (by [8, Theorem 1.1]), with (a version of) the fact that for any
profinite group G, the homotopy fixed points of a continuous G-spectrum Z can always
be obtained by taking the homotopy fixed points of a certain discrete G-spectrum that
is closely related to Z. The proof of this last fact is given in Corollary 2.6, Theorem 2.3
gives the version that is needed for Theorem 1.1 and the remaining details of the proof
of Theorem 1.1 are in Section 3. Section 4 contains the proof of Theorem 1.3.

We close this introduction with a comment about notation: We often use ‘ Es,t
2 ’ to

denote the E2-term of different spectral sequences, but ‘ E∗,∗
r ’ only refers to the spectral

sequence of Theorem 1.1.

2. Realizing the homotopy fixed points of a continuous G-spectrum by a discrete
G-spectrum. Let G be any profinite group. In this section (and in the following two
sections), we use the framework of continuous G-spectra that is developed in [3] and
we refer the reader to this source for additional details.

Let Spt be the simplicial model category of Bousfield–Friedlander spectra and let
SptG denote the simplicial model category of discrete G-spectra. We use holim and
holimG to denote the homotopy limit, as defined in [12, Definition 18.1.8], in Spt
and SptG respectively. Let G−Spt be the category of G-spectra (the G-action is not
required to be continuous in any sense) and G-equivariant maps of spectra: G−Spt
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is the category of functors {∗G} → Spt, where {∗G} is the groupoid associated to G
(regarded as an abstract group).

The following definition is a special case of a map that is defined in [4, p. 146].
DEFINITION 2.1. Given any

{Xi}i = { X0 ← X1 ← · · · ← Xi ← · · · }
in tow(SptG), the category of towers in SptG , there is the canonical inclusion map

�̃G : holimG

i
Xi

∼=−→ colim
N�oG

(holim
i

Xi)N �G−→ holim
i

Xi

in G−Spt, where the isomorphism is by [4, Theorem 2.3]. Note that the source of the
map �̃G is a discrete G-spectrum.

Not surprisingly, the map �̃G need not be a weak equivalence in Spt: an example of
this is given in Remark 3.6. Below we show that when a certain condition is satisfied,
the map �̃G , after taking fixed points, induces a weak equivalence between the homotopy
fixed points of the source and target of �̃G .

REMARK 2.2. If Y ∈ SptG , then Y ∼= colimN�oG Y N and this isomorphism makes
it easy to see that the forgetful functor �G : SptG → G−Spt has a right adjoint

RG : G−Spt → SptG , Z �→ RG(Z) = colim
N�oG

ZN .

Thus, for the G-spectrum holimi Xi of Definition 2.1, there is the isomorphism

holimG

i
Xi ∼= RG(holim

i
Xi)

in SptG .

Let (−)f G : SptG → SptG be a fibrant replacement functor so that given any

Y in SptG there is a natural map Y
�−→ Yf G that is a trivial cofibration with fibrant

target in SptG. Then we recall from [3] that (a) the homotopy fixed points of Y are
defined by

Y hG = (Yf G)G;

(b) the object holimi Xi, where {Xi}i ∈ tow(SptG) with each Xi fibrant as a spectrum, is
a continuous G-spectrum; and (c) given a continuous G-spectrum holimi Xi,

(holim
i

Xi)hG = holim
i

(Xi)hG.

The proof of the result below follows a script that was used in [7, p. 2807] in the
context of delta-discrete G-spectra.

THEOREM 2.3. Given {Xi}i ∈ tow(SptG), with each Xi fibrant in SptG, the map ( �̃G )G

induces a weak equivalence

(holimG

i
Xi)hG �−→ (holim

i
Xi)hG.

Proof. In SptG , since each Xi is fibrant, holimG
i Xi is fibrant, and hence there exists

(in SptG ) a weak equivalence (holimG
i Xi)f G

�−→ holimG
i Xi. Thus, there is the weak
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equivalence

(holimG

i
Xi)hG �−→ (holimG

i
Xi)G ∼=−→

(
colim
N�oG

(holim
i

Xi)N
)G (�G )G

−−→∼= (holim
i

Xi)G.

Also, there is the weak equivalence

(holim
i

Xi)G ∼=−→ holim
i

(Xi)G �−→ holim
i

((Xi)f G)G = (holim
i

Xi)hG.

Composition of the above weak equivalences gives the desired conclusion. �
REMARK 2.4. Let {Xi}i be as in Theorem 2.3 and note that

holimG

i
Xi ∼= colim

N�oG
holim

i
(Xi)N .

Since N is open in G, each Xi is fibrant in SptN (by [5, Lemma 3.1]), and hence there
is a weak equivalence

holim
i

(Xi)N �−→ holim
i

((Xi)f N)N = (holim
i

Xi)hN

between fibrant objects in Spt, from the G/N-spectrum holimi (Xi)N to the spectrum
(holimi Xi)hN . Therefore, it is natural to make the identification

holimG

i
Xi = colim

N�oG
(holim

i
Xi)hN (2.5)

between the ‘spectrum’ on the right-hand side and the discrete G-spectrum on the
left-hand side. To be more precise, the ‘spectrum’ on the right-hand side of (2.5) needs
to be defined (since, a priori, the spectrum ((Xi)f N)N has no G/N-action) and we have
shown above that the left-hand side of (2.5) can be taken as its definition (this situation
is discussed in more detail in [6, p. 260, top of p. 261]).

COROLLARY 2.6. Let {Xi}i be any object in tow(SptG). If holimi Xi is a continuous
G-spectrum, then there is a weak equivalence between its homotopy fixed points and those
of the discrete G-spectrum holimG

i (Xi)f G :

(holim
i

Xi)hG �←− (holimG

i
(Xi)f G)hG.

Proof. By the proof of Theorem 2.3, there is a weak equivalence

(holimG

i
(Xi)f G)hG �−→ (holim

i
(Xi)f G)G ∼=−→ holim

i
(Xi)hG.

�

3. The proof of Theorem 1.1. We continue to let G be any profinite group. The
following result is an immediate consequence of Corollary 2.6 and [3, Theorem 7.9].

THEOREM 3.1. If G has finite virtual cohomological dimension and holimi Xi is a
continuous G-spectrum, then there is a conditionally convergent descent spectral sequence

Es,t
2 = Hs

c(G; πt(holimG

i
(Xi)f G)) =⇒ πt−s((holim

i
Xi)hG),
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where the E2-term is the continuous cohomology of G with coefficients in the discrete
G-module πt(holimG

i (Xi)f G).

REMARK 3.2. The descent spectral sequence of Theorem 3.1 is, in general, different
from the ‘usual’ descent spectral sequence (of [3, Theorem 8.8]) for (holimi Xi)hG. For
example, if {πt(Xi)}i satisfies the Mittag–Leffler condition for every integer t, then the
latter descent spectral sequence has

Es,t
2 = Hs

cts(G; lim
i

πt(Xi)),

the cohomology of continuous cochains with coefficients in the topological G-module
limi πt(Xi), by [3, Definition 2.15, Theorem 8.8]. It is not known if, in general, the
E2-term of this latter spectral sequence can be expressed as continuous cohomology
(this issue is discussed in [2]), whereas in the spectral sequence of Theorem 3.1 the
E2-term is always given by a continuous cohomology group.

Now let X be any spectrum. We consider Theorem 3.1 in the case of the continuous
Gn-spectrum LK(n)(En ∧ X). As in [14, Proposition 4.22], let

M0 ← M1 ← · · · ← Mi ← · · ·

be a tower of generalized Moore spectra (each of which is a finite spectrum) such that

LK(n)(X) � holim
i

(Ln(X) ∧ Mi)f ,

where (−)f : Spt → Spt is a fibrant replacement functor. Then, as in [3, Lemma 9.1],
the Morava module LK(n)(En ∧ X) is a continuous Gn-spectrum by the identification

LK(n)(En ∧ X) = holim
i

(Fn ∧ Mi ∧ X)f Gn , (3.3)

where Fn is the discrete Gn-spectrum defined in (1.4) and each Mi has the trivial
Gn-action.

We have

LK(n)(X) � (LK(n)(En ∧ X))hGn

= (holim
i

(Fn ∧ Mi ∧ X)f Gn )hGn

�
(

colim
N�oGn

(holim
i

(Fn ∧ Mi ∧ X)f Gn )hN
)hGn

=
(

colim
N�oGn

(LK(n)(En ∧ X))hN
)hGn

,

where the first equivalence is by [8, Theorem 1.1], the two equalities just apply (3.3), and
the second equivalence follows from Theorem 2.3 and (2.5). Thus, we have obtained
the following result.

THEOREM 3.4. For any spectrum X, there is an equivalence

LK(n)(X) �
(

colim
N�oGn

(LK(n)(En ∧ X))hN
)hGn

.
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REMARK 3.5. Suppose X is a finite spectrum. Then En ∧ X is K(n)-local, and hence,
there is the chain

colim
N�oGn

(LK(n)(En ∧ X))hN = colim
N�oGn

(En ∧ X)hN � colim
N�oGn

(EhN
n ∧ X)

� (
colim
N�oGn

EdhN
n

) ∧ X = Fn ∧ X

of equivalent discrete Gn-spectra, where the second step applies [3, Theorem 9.9] and
the third step uses EhN

n � EdhN
n from [1, Theorem 8.2.1]. Therefore, Theorem 3.4 shows

that whenever X is a finite spectrum,

(Fn ∧ X)hGn � LK(n)(X);

this special case of Theorem 3.4 was previously obtained in [6, p. 255].

REMARK 3.6. In Theorem 3.4, when X = S0, Remark 3.5 implies that

colim
N�oGn

(LK(n)(En ∧ X))hN � Fn.

Thus, Remark 2.4 shows that the map �̃Gn
can be identified with the canonical Gn-

equivariant map Fn → En, which is not a weak equivalence, by [3, Lemma 6.7] (when
n = 1, this can be seen explicitly from the fact that π−1(F1) = �p). Since �̃Gn

can be
viewed as an inclusion, Fn can be regarded as a discrete Gn-spectrum that is a ‘sub-Gn-
spectrum’ of the continuous Gn-spectrum En.

REMARK 3.7. Let X be any spectrum. The equivalence

LK(n)(X) � (LK(n) (En ∧ X))hGn ,

which was used above, shows that LK(n)(X) is the homotopy fixed points of a continuous
Gn-spectrum that is K(n)-local and formed from a tower of discrete Gn-spectra. By
contrast, Theorem 3.4 says that LK(n)(X) can be realized as the homotopy fixed points
of a single discrete Gn-spectrum that need not be K(n)-local (for example, Fn is not
K(n)-local). By [3, Lemma 9.6], for each N �o Gn, (LK(n)(En ∧ X))hN is K(n)-local, and
hence colimN�oGn (LK(n)(En ∧ X))hN is E(n)-local. Thus, Theorem 3.4 shows that an
arbitrary K(n)-local spectrum is the homotopy fixed points of a discrete Gn-spectrum
that is always E(n)-local, but not necessarily K(n)-local.

Since Gn has finite virtual cohomological dimension, Theorems 3.1 and
3.4 immediately imply that there is a conditionally convergent descent spectral
sequence

Es,t
2 = Hs

c

(
Gn; πt

(
colim
N�oGn

(LK(n)(En ∧ X))hN
))

=⇒ πt−s(LK(n)(X)),

completing the proof of Theorem 1.1.

4. The proof of Theorem 1.3. Throughout this section, we let X be as in
Theorem 1.3. By [10, Proposition 6.7], spectral sequence Ẽr

∗,∗ has the form

Ẽs,t
2

∼= Hs
c(Gn; πt(En ∧ X)) =⇒ πt−s(LK(n)(X)),
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where

. En ∧ X is K(n)-local (by [10, Lemma 6.11, (i)]);. each πt(En ∧ X) is a discrete Gn-module (see [10, Remark 6.8]); and. the abutment has the stated form since

LK(n)(X ∧ EdhGn
n ) � LK(n)(X ∧ LK(n)(S0)) � LK(n)(X),

which is obtained by applying [10, Theorem 1, (iii)] (for the first equivalence).

Since En ∧ X is K(n)-local,

En ∧ X � holim
i

(Fn ∧ Mi ∧ X)f Gn (4.1)

is a continuous Gn-spectrum and

(En ∧ X)hK = (LK(n)(En ∧ X))hK

for every closed subgroup K of Gn (as in the situation considered in [3, Remark 9.3]). By
[8, Theorem 1.2] and [1, proof of Theorem 3.2.1], spectral sequence Ẽr

∗,∗ is isomorphic
to the descent spectral sequence

Es,t
2 = Hs

c(Gn; πt(En ∧ X)) =⇒ πt−s((En ∧ X)hGn ), (4.2)

from the E2-terms onward, where this descent spectral sequence is a special case
of the homotopy spectral sequence of [3, Theorem 8.8]. (The identification of Es,t

2
in (4.2) as continuous cohomology is due to the just-mentioned isomorphism of
spectral sequences and the fact that [10, Proposition 6.7] identifies Ẽ2

s,t as continuous
cohomology.) Also, recall that descent spectral sequence E∗,∗

r of Theorem 1.1, which is
a special case of the homotopy spectral sequence of [3, Theorem 7.9], has the form

Es,t
2 = Hs

c

(
Gn; πt

(
colim
N�oGn

(En ∧ X)hN
))

=⇒ πt−s((En ∧ X)hGn ). (4.3)

REMARK 4.4. For each i ≥ 0, the generalized Moore spectrum Mi has the property
that there exists an ideal Ii ⊂ BP∗, such that BP∗(Mi) ∼= BP∗/Ii and Ii has the form
(pj(i)0 , v

j(i)1
1 , . . . , v

j(i)n−1
n−1 ), for some n-tuple (j(i)0, j(i)1, . . . , j(i)n−1) (see [9, p. 762] and [16,

Proposition 3.7]). Then there are equivalences

En ∧ X � colim
i

(En ∧ �−(n+�n−1
r=0 2j(i)r(p−1))Mi ∧ X)

� colim
i

(Fn ∧ �−(n+�n−1
r=0 2j(i)r(p−1))Mi ∧ X)

of spectra, each of which is Gn-equivariant, where the first equivalence applies [10,
Lemma 6.11,(ii)]; the second equivalence follows from the fact that the Gn-equivariant
map

En ∧ Mi
�←− Fn ∧ Mi

is a weak equivalence of spectra, for each i (this is due to [10]; for an explicit proof, see
[3, Corollary 6.5]); and the third spectrum in the above ‘short chain’ of equivalences is
a discrete Gn-spectrum (since colimits in SptG are formed in Spt). Thus, the continuous
Gn-spectrum En ∧ X can also be regarded as a discrete Gn-spectrum. However, our
argument below does not use this conclusion.

https://doi.org/10.1017/S001708951300030X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951300030X


A SPECTRAL SEQUENCE FOR K(n)-LOCAL SPECTRA 377

From the above observations (preceding Remark 4.4), it is not hard to see that
to prove Theorem 1.3, it suffices to show that between the coefficient groups in the
E2-terms of the second and third spectral sequences referred to above (in (4.2) and
(4.3) respectively), for each integer t, there is an isomorphism

πt( �̃Gn
) : πt

(
colim
N�oGn

(En ∧ X)hN
) ∼=−→ πt(En ∧ X)

of discrete Gn-modules, where En ∧ X is the continuous Gn-spectrum of (4.1).
Since Gn has finite virtual cohomological dimension, there is a cofinal collection

{U} of open normal subgroups of Gn such that the family {cd(U)}U of cohomological
dimensions are finite and uniformly bounded (for example, see [3, proof of
Theorem 7.4]): thus, there is an integer r such that Hs

c(V ; P) = 0, whenever V ∈ {U},
for all s > r and any discrete V -module P.

For each N �o Gn, there are equivalences

(En ∧ X)hN = (holim
i

(Fn ∧ Mi ∧ X)f Gn )hN

�
(

holim
i

(
colim
V∈{U}

(EdhV
n ∧ Mi ∧ X)

)
f Gn

)hN

�
(

holim
i

(
colim
V∈{U}

(LK(n)(EdhV
n ∧ X) ∧ Mi)

)
f Gn

)hN

� LK(n)

((
colim
V∈{U}

LK(n)(EdhV
n ∧ X)

)hN )
,

where the equality (in the first line above) is by [3, Definition 9.2], the equivalence
in the third line applies [14, Lemma 7.2] and the last equivalence is justified as in
[3, Theorem 9.7], aided by the fact that colimV∈{U} LK(n)(EdhV

n ∧ X), a discrete Gn-
spectrum, is E(n)-local (and hence the spectrum

(
colim
V∈{U}

LK(n)(EdhV
n ∧ X)

)hN

is E(n)-local by [1, Theorem 3.2.1 and its proof; proof of Lemma 6.1.5, first sentence]).
To simplify our notation, we make the following conventions.

DEFINITION 4.5. If V is a member of the collection {U}, we set

EV,X
n = LK(n)(EdhV

n ∧ X).

Also, ‘colimU EU,X
n ,’ for example, means exactly ‘colimV∈{U} EV,X

n ’.

By [10, Proposition 6.7], there is a filtered system of K(n)-local En-Adams spectral
sequences

{
Hs

c(U ; πt(En ∧ X)) =⇒ πt−s(EU,X
n )

}
U

.

By the uniform bound on {cd(U)}U and [17, Proposition 3.3], the colimit of this
diagram of spectral sequences is equal to the spectral sequence

Es,t
2 = colim

U
Hs

c(U ; πt(En ∧ X)) =⇒ πt−s
(
colim

U
EU,X

n

)
.
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Since πt(En ∧ X) is a discrete Gn-module and limU U = {e}, [18, Proposition 8] implies
that there is an isomorphism

colim
U

Hs
c(U ; πt(En ∧ X)) ∼= Hs({e}; πt(En ∧ X)).

Thus, the above colimit spectral sequence collapses, showing that there is an equivalence

colim
U

LK(n)(EdhU
n ∧ X) � En ∧ X. (4.6)

REMARK 4.7. It will be helpful to be explicit about the equivalence in (4.6).
Recall that for each closed subgroup K of Gn, there are equivalences EdhK

n � EhK
n �

LK(n)((Fn)hK ) by [1, Theorem 8.2.1] and [3, Theorem 9.7] respectively, and by [5, Lemma
3.1], a fibrant discrete Gn-spectrum is fibrant in SptN for each N �o Gn. Then the
equivalence in (4.6) is given by

colim
U

LK(n)(EdhU
n ∧ X) � colim

U
LK(n)(EhU

n ∧ X) � colim
U

LK(n)
(
(Fn)hU ∧ X

)
= colim

U
LK(n)

(
((Fn)f Gn )U ∧ X

) → colim
U

LK(n)

(((
(Fn)f Gn ∧ X

)
f Gn

)U
)

← colim
U

LK(n)

((
(Fn ∧ X)f Gn

)U
)

= colim
U

LK(n)
(
(Fn ∧ X)hU)

� colim
U

(LK(n)(En ∧ X))hU ∼= colim
N�oGn

(En ∧ X)hN
�̃Gn−−→ En ∧ X,

where the first expression in the last row comes from applying [3, Theorem 9.7]. The
above zigzag is useful because it shows that (4.6) is induced by the map �̃Gn

.

To continue, we need to recall some constructions that are useful in the theory of
discrete G-spectra (where G is any profinite group).

DEFINITION 4.8. Given an abelian group A, let Mapc(G, A) denote the abelian
group of continuous functions G → A, where A is equipped with the discrete topology.
Given any spectrum Y , let Mapc(G, Y ) be the spectrum with l-simplices of the kth
pointed simplicial set Mapc(G, Y )k equal to Mapc(G, Yk,l), the set of continuous
functions from G to the set Yk,l regarded as a discrete space, for each k, l ≥ 0. Also,
if m is any non-negative integer, then the spectrum Mapc(G

m+1, Y ) has the G-action
determined by

(g · f )(g1, . . . , gm+1) = f (g1g, g2, g3, . . . , gm+1), f ∈ Mapc(G
m+1, Yk,l),

for k, l ≥ 0 and g, g1, . . . , gm+1 ∈ G.

Note that for each m ≥ 0 and every N �o Gn, there are isomorphisms

π∗
(

Mapc(G
m+1
n , colim

U
LK(n)(EdhU

n ∧ X))N
)

∼= ∏
Gn/N Mapc

(
Gm

n , π∗
(

colim
U

LK(n)(EdhU
n ∧ X)

))
∼= ∏

Gn/N Mapc(G
m
n , π∗(En ∧ X))

∼= π∗(
∏

Gn/N(En ∧ En ∧ · · · ∧ En︸ ︷︷ ︸
(m+1) times

∧ X)),

https://doi.org/10.1017/S001708951300030X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951300030X


A SPECTRAL SEQUENCE FOR K(n)-LOCAL SPECTRA 379

where the first isomorphism is justified as in [3, proof of Theorem 7.4], the second
isomorphism applies (4.6) and the last isomorphism follows as in [10, proof of
Proposition 6.7]. Since the spectrum

∏
Gn/N(En ∧ En ∧ · · · ∧ En ∧ X) in the last line

above is K(n)-local (by [10, Lemma 6.11, (i)]), so is the spectrum

Mapc(G
m+1
n , colim

U
LK(n)(EdhU

n ∧ X))N,

and hence it follows from [3, Remark 7.13] and the fact that the homotopy limit of
a diagram of K(n)-local spectra is K(n)-local that the spectrum (colimU EU,X

n )hN is
K(n)-local. Thus, there is an equivalence

(En ∧ X)hN �
(

colim
U

EU,X
n

)hN
. (4.9)

For each N �o Gn, there is a weak equivalence
(

colim
U

EU,X
n

)
f Gn

�−→
(

colim
U

EU,X
n

)
f N

between fibrant objects in SptN (the source is fibrant in SptN by [5, Lemma 3.1]), and
hence (4.9) implies that

(En ∧ X)hN �
((

colim
U

EU,X
n

)
f N

)N �←−
((

colim
U

EU,X
n

)
f Gn

)N
.

Therefore, we have

colim
N�oGn

(En ∧ X)hN ∼= colim
V∈{U}

(En ∧ X)hV � colim
V∈{U}

((
colim

U
EU,X

n

)
f Gn

)V

∼=
(

colim
U

EU,X
n

)
f Gn

�←− colim
U

EU,X
n � En ∧ X,

where the last step uses (4.6). Recall that Remark 4.7 showed that the equivalence in
(4.6) is induced by the map �̃Gn

. Thus, applying π∗(−) to the above chain of equivalences
completes the proof of Theorem 1.3.
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