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Abstract. We describe a family of integrable lattice maps related to the known
quad maps Q4. The integrability criterion we use is the vanishing of the algebraic
entropy. The family has the advantage of being parametrized rationally: all its
parameters are unconstrained.
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1. Contents. We give a rational form of a generic two-dimensional ‘quad’ map,
containing the so-called Q4 case [1–4, 9, 13], but whose coefficients are free. Its
integrability is proved using the calculation of algebraic entropy.

We first explain the setting, i.e. what are two-dimensional lattice maps on a square
lattice (quad maps), and describe two characteristics of integrability of such systems,
respectively Lax pair and consistency [6, 13], with the important (generic) example Q4,
and vanishing of algebraic entropy [5, 10, 15, 17], which, as we will show, provides a
natural generalisation of Q4, baptised QV . We explain the factorization process of the
iterates at the origin of the vanishing of the entropy, and present some directions for
further investigations.

2. The setting. Consider a field x defined on a two-dimensional square lattice:
at each vertex of the lattice, the value of x is related to the value at neighbouring
vertices. The simplest possible relation links the values of x at the four corners of each
elementary square plaquette by a multilinear relation

Q = p1 · x x1 x2 x12 + p2 · x x1 x2 + p3 · x x1x12 + p4 · x1 x2 x12 + p5 · x x2 x12

+ p6 · x x2 + p7 · x1 x2 + p8 · x2 x12 + p9 · x x1 + p10 · x x12 + p11 · x1 x12

+ p12 · x2 + p13 · x + p14 · x1 + p15 · x12 + p16 = 0, (1)

so that any of the four corner values can be rationally expressed in terms of the other
three.

We will be interested in global properties of the evolutions defined by this relation.
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3. Integrability: Lax pair and consistency around the cube (CAC). Consider the
archetypal case of discrete mKdV:

p1 (x x1 − x2 x12) + p2 (x x2 − x1 x12) = 0

It is possible to embed the two-dimensional cell into a three-dimensional one:

where one imposes a similar relation to all faces (the same for opposite faces).

pi (x xi − xj xij) + pj (x xj − xi xij) = 0, i, j = 1, 2, 3.

The higher-dimensional system is compatible, i.e. the value of x123 is independent
of the way it is calculated. This is called consistency around the cube (CAC).

The major output of CAC is that it ensures the existence of a Lax pair, which is
accepted as a proof of integrability [6, 13].

4. Consistency around the cube: Q4. While the defining plaquette relation is
written on one cell, the CAC relation is written on a loop of cells, and is a local
relation.

It is a very constraining equation, and is not easy to manipulate: if one takes the
most general form of the defining relation Q, the expressions of x123 get quite difficult
to handle, they are big.

We will be interested in the generic solution of CAC, i.e. the Adler solution [1].
Its form has been improved by Nijhoff [13] and Hietarinta [9]. It was shown to be the
generic solution of CAC by Adler–Bobenko–Suris [2–4]. The solution was called Q4.
Its different avatars are respectively:

Adler’s form:

k0 x x1 x2 x12 − k1(x x1 x2 + x1 x2 x12 + x x2 x12 + x x1 x12) + k2(x x12 + x1 x2)

− k3(x x1 + x2 x12) − k4(x x2 + x1 x12) + k5(x + x1 + x2 + x12) + k6 = 0

with k0 = α + β, k1 = αν + βμ, k2 = αν2 + βμ2, k5 = g3

2
k0 + g2

4
k1,

k6 = g2
2

16
k0 + g3k1,
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k3 = αβ(α + β)
2(ν − μ)

− αν2 + β

(
2μ2 − g2

4

)
,

k4 = αβ(α + β)
2(μ − ν)

− βμ2 + α

(
2ν2 − g2

4

)

and α2 = r(μ), β2 = r(ν), r(z) = 4 z3 − g2 z − g3 .

Nijhoff’s form:

A((x − b)(x2 − b) − d)((x1 − b)(x12 − b) − d)

+ B((x − a)(x1 − a) − e)((x2 − a)(x12 − a) − e) = f

where (a, A), (b, B), (c, C) = (b, B) − (a, A) on the curve Z2 = r(z),

and d = (a − b) (c − b), e = (b − a) (c − a), f = A B C(a − b).

Hietarinta’s form:

sn(α) sn(β) sn(α + β)(k2 x x1 x2 x12 + 1) + sn(α + β)(x x12 + x1 x2)

− sn(α)(x x1 + x2 x12) − sn(β)(x x2 + x1 x12) = 0.

All three forms are parametrized through elliptic functions. What we will see is
that there is another form, where the parameters are free of any constraint. To see that,
we will use the notion of algebraic entropy.

5. Algebraic entropy. The space of initial data of the evolutions defined by
relation (1) is infinite dimensional: indeed initial data ought to be given on a line
which allows the calculation of the values at all points of the lattice. The simplest
possible choice is to take a regular diagonal staircase going diagonally (for more
details see [17]). We then have a notion of iteration of the evolution map, by calculating
the values on diagonals moving away from the initial staircase. This defines a sequence
of degrees dn in terms of the initial data, and leads to the entropy

ε = lim
n→∞

1
n

log(dn).

The outcome of our numerous experiments, as well as what we know for maps [8,
11] leads to the claim that integrability of the lattice map is equivalent to the vanishing
of its entropy.

6. QV . Apply this calculation to Q4. The most general form of (1) having the
same symmetries as Q4 is

a1 xx1x2x12 + a2 (xx2x12 + x1x2x12 + xx1x12 + xx1x2) + a3 (xx1 + x2x12)

+ a4 (xx12 + x1x2) + a5 (x1x12 + xx2) + a6 (x + x1 + x2 + x12) + a7 = 0. (2)

Since we use computer algebra to evaluate the sequence of degrees, it is much
more efficient to work with integer coefficients. It is easy to find integer coefficients
verifying the conditions fulfilled by {a1, . . . , a7}. For example, choosing r(z) = 4 z3 −
32 z + 4 and the points (a, A) = (0, 2), (c, C) = (3, 4), (b, B) = (a, A) ⊕ (c, C) =

https://doi.org/10.1017/S0017089508004874 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004874


160 CLAUDE M. VIALLET

(−26/9,−2/27), we get the sequence {dn} = {1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, . . .},
that is to say the quadratic growth

dn = 1 + n (n − 1).

But we may also take this form without any constraint on the coefficients
{a1, . . . , a7}. With arbitrary values of the parameters, we get the same quadratic growth
as with constrained values:

{dn} = {1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, . . .}

fitted with the generating function

g(s) =
∞∑

n=0

dn sn = 1 + s2

(1 − s)3 and dn = 1 + n (n − 1),

as we have checked with a number of randomly chosen parameters. This indicates
integrability of the unconstrained form, with seven free homogeneous parameters
(intersection of hyperplanes in the space of multilinear relations). This is what we
call QV .

REMARK 1. The sequence of degrees verifies a finite recursion relation dn =
3 dn−1 − 3 dn−2 + dn−3 This means that the global behaviour of the sequence degrees
is dictated by a local condition.

REMARK 2. One may wonder about the nature of the additional parameters of
QV compared to Q4. Three or these parameters come from the Moebius symmetry of
the problem. Since there are seven homogeneous parameters in QV , we are left with
exactly the three ‘true’ parameters of Q4.

7. Factorization. To analyse the origin of the entropy vanishing, one has to
examine the factorization process, which explains the degree drop. Consider the
following corner:
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Suppose initial data (s, v, x, y, z, w, t, . . .) are given on the two axes. One can
calculate the degree dij at site ij and get, for QV

dij = 1 + 2 i j.

The diagonal degree growth is quadratic (dn = 1 + 2 n2) = integrability.
If we now evaluate X , Y , Z, T for generic Q, with 16 independent coefficients, as

in (1), we find

deg(Y ) = 1 + 1 + 1 = 3, deg(X) = deg(Z) = deg(Y ) + 1 + 1 = 5

deg(T) = deg(X) + deg(Y ) + deg(Z) = 13.

What happens with QV is that there is a factorization

T = H(x, z) · P(x, y, z, u, v)
H(x, z) · Q(x, y, z, u, v)

� P
Q

deg(T) = deg(X) + deg(Y ) + deg(Z)−deg(H) = 13 − 4 = 9.

The factor H(x, z) defines a bi-quadratic (elliptic) curve. It appears naturally in
the singularity analysis: suppose we look at the elementary plaquette

The relation Q gives a projective linear map ϕxz : y −→ Y , whose inverse ϕ−1

is projective linear. The composed map ϕ · ϕ−1 is proportional to the bi-quadratic
H(x, z), found in [3].

H(x, z) = (p16p10 − p15p13) + (−p8p6 + p12p5) x2 + (p7p3 − p2p11 − p9p4 + p14p1) z2x

+ (−p6p4 − p2p8 + p7p5 + p12p1) x2z + (−p4p2 + p7p1) x2z2

+ (−p11p9 + p14p3)z2 + (−p2p15 − p6p11 + p7p10 − p9p8 + p12p3

+ p16p1 − p13p4 + p14p5)xz + (p16p3 − p13p11 + p14p10 − p9p15) z

+ (p16p5 + p12p10 − p13p8 − p6p15) x

In the case of QV the drop at d22 is 13 − 9 = 4. What factorizes from the iterate is
precisely equation of the bi-quadratic H(x, z). The elliptic curve of the known forms
of Q4 is lurking there.

REMARK 3. This does not account for the whole process, and higher-degree curves
appear at later steps (total degree 16, degree 4 in x, y, z, and bi-quadratic in v, w). What
may however happen is that, due to the specific form of the relation (2), it is sufficient
to ensure that the first factorization happens to have them all.
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This is the spirit of a systematic analysis we have performed, for quadratic relations
and with the additional hypothesis that factors are made out of linear pieces (we know
we will not find Q4 this way). This produced 80 a priori different models. We have run
an algebraic entropy test over those, and finally came out with a short list of integrable
cases, and a list of models with non-vanishing entropy [12].

Again some local structure, extending over a finite range of elementary cells,
ensures a global property (integrability), as may be seen form the existence of a finite
recurrence relation on the degrees.

8. Conclusion and perspectives. In the setting we used, which is strongly
constrained (multilinearity of the elementary relation, birationality of the evolution),
a local property is good enough to ensure integrability.

About the rationality versus elliptic nature of the parametrization, the
phenomenon is apparently the same as the one we saw [10] for the celebrated Baxter’s
solution of the Yang–Baxter equations. There exists a rational form of Baxter’s R-
matrix. It is gauge equivalent to the usual elliptic form, which reappears when one
request a symmetric form of the solution.

This phenomenon invites us to examine again the ‘Yang–Baxter maps’ constructed
from lattice maps [7, 14, 16].

Finally, QV will be useful if one wants to look at the possible “de-autonomisations”
of Q4.
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