L))

Check for
updates

J. Plasma Phys. (2024), vol. 90, 965900101 = © The Author(s), 2024. 1
Published by Cambridge University Press

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

doi:10.1017/S0022377824000060

A two-dimensional numerical study of
ion-acoustic turbulence

Zhuo Liu “14, Ryan White 2 Manaure Francisquez 3 Lucio M. Milanese*
and Nuno F. Loureiro “!

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 AFLCMC Directorate, Department of Defense, Boston, MA 02108, USA
3Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

4Proxima Fusion GmbH, Munich, Germany

(Received 3 October 2023; revised 31 December 2023; accepted 5 January 2024)

We investigate the linear and nonlinear evolution of the current-driven ion-acoustic
instability in a collisionless plasma via two-dimensional (2-D) Vlasov—Poisson numerical
simulations. We initialise the system in a stable state and gradually drive it towards
instability with an imposed, weak external electric field, thus avoiding physically
unrealisable super-critical initial conditions. A comprehensive analysis of the nonlinear
evolution of ion-acoustic turbulence (IAT) is presented, including the detailed
characteristics of the evolution of the particles’ distribution functions, (2-D) wave
spectrum and the resulting anomalous resistivity. Our findings reveal the dominance
of 2-D quasi-linear effects around saturation, with nonlinear effects, such as particle
trapping and nonlinear frequency shifts, becoming pronounced during the later stages of
the system’s nonlinear evolution. Remarkably, the Kadomtsev—Petviashvili (KP) spectrum
is observed immediately after the saturation of the instability. Another crucial and
noteworthy result is that no steady saturated nonlinear state is ever reached: strong ion
heating suppresses the instability, which implies that the anomalous resistivity associated
with IAT is transient and short-lived, challenging earlier theoretical results. Towards the
conclusion of the simulation, electron-acoustic waves are triggered by the formation of a
double layer and strong modifications to the particle distribution induced by IAT.

Key words: plasma instabilities, plasma waves, plasma simulation

1. Introduction

A defining property of weakly collisional plasmas is their ability to support resonant
energy transfer between waves and particles. The best-known manifestation of this
phenomenon is the famous Landau damping, whereby waves are resonantly damped via
energy transfer to the plasma particles (Landau 1946). A contrasting possibility is the case
where energy flows in the opposite direction, from the particles to the waves, thereby
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growing these to nonlinear amplitudes and triggering a wide variety of complex, and often
poorly understood, nonlinear plasma behaviour. Such kinetic instabilities are fundamental
and ubiquitous plasma processes, thought to regulate, or at least significantly contribute
to, particle behaviour in weakly collisional plasmas, thereby determining their large-scale
properties. For example, it is conjectured that the whistler instability can greatly reduce
the heat flux in weakly magnetised collisionless plasmas (Roberg-Clark et al. 2018); and
mirror and firehose instabilities are thought to regulate the ion distribution and, thus, limit
the temperature anisotropy in the Earth’s magnetotail (Zhang et al. 2018) and in solar wind
(Alexandrova et al. 2013).

Kinetic instabilities may also be crucial in magnetic reconnection events in collisionless
plasmas, because the intense wave—particle interactions that they trigger may create an
anomalous resistivity (e.g. Sagdeev 1967; Galeev & Sagdeev 1984b; LaBelle & Treumann
1988) that breaks the frozen flux condition and potentially sets the reconnection rate
(e.g. Ji et al. 1998; Kulsrud 1998, 2001; Treumann 2001; Uzdensky 2003). Indeed, there
is observational (e.g. Deng & Matsumoto 2001; Farrell et al. 2002; Matsumoto et al.
2003) and numerical (e.g. Drake et al. 2003; Zhang et al. 2023) evidence that verifies
the existence of turbulent phenomena and wave emissions around diffusion regions of
reconnection sites. In addition, kinetic instabilities may influence the reconnection onset
(i.e. the sudden transition from a relatively quiescent state to the reconnection stage proper)
by disturbing the current sheet formation process and ultimately setting the properties of
the reconnecting current sheet (e.g. Alt & Kunz 2019; Winarto & Kunz 2022).

As one of the most prominent examples of streaming-type kinetic instabilities,
ion-acoustic instability (IAI), which arises when the drift velocity between electrons
and (relatively cold) ions exceeds a threshold of the order of the ion sound speed, is
a strong candidate for explaining many observations in various plasma environments.
Dating from as far back as the 1970s, observations by the Helios I and II spacecraft
revealed the presence of ion-acoustic waves (IAWs) at heliocentric distances between 0.3
and 1 AU (Gurnett & Anderson 1977; Gurnett & Frank 1978). Recently, IAWs have been
receiving progressively more attention thanks to ongoing space missions, namely NASA’s
Magnetospheric Multiscale Mission (MMS) (Burch et al. 2016) and Parker Solar Probe
(PSP) (Fox et al. 2016), and the European Space Agency’s Solar Orbiter (Miiller et al.
2013). For example, recent data from the Time Domain Sampler receiver on Solar Orbiter
identifies the IAW as a dominant wave mode in the near-Sun solar wind below the local
electron plasma frequency (Graham et al. 2021; PiSa et al. 2021). Nonlinear structures in
the particles’ distribution functions associated with nonlinear IAWs, such as ion holes and
electron holes, were also recently reported (Mozer et al. 2020, 2021a). In addition, IAWs
have also been identified in the separatrix and outflow region on the magnetospheric side
of the reconnecting magnetopause (Uchino et al. 2017; Steinvall et al. 2021), which further
suggests that IAI may indeed be one essential component of magnetic reconnection in
collisionless environments. Understanding the nonlinear evolution of IAI, or ion-acoustic
turbulence (IAT), is thus central to the interpretation of these observations.

Attempts to understand IAT began as early as the 1950s. Early analytical works
either considered electron scattering by turbulence pulsations or induced scattering
of waves by ions as the mechanisms underlying the saturation of the instability, and
driving anomalous resistivity. The former is commonly described using a quasi-linear
approach that assumes a weak turbulence level and unperturbed ions (Kovrizhnykh 1966;
Rudakov & Korablev 1966; Zavoiski & Rudakov 1967); whereas the latter is mainly
studied semi-quantitatively based on the Kadomtsev—Petviashvili (KP) model considering
wave—ion nonlinear interactions (Kadomtsev & Petviashvili 1962; Petviashvili 1963). In
1969, Sagdeev derived an expression for IAT-induced anomalous resistivity by calculating
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the nonlinear wavenumber spectrum resulting (exclusively) from the nonlinear scattering
of waves by ions (Sagdeev 1967; Sagdeev & Galeev 1969). Although Sagdeev’s resistivity
formula has been widely adopted (e.g. Uzdensky 2003), it is important to note that it is
a partially qualitative result, because it fails to consider the angular distribution of IAT.
In addition, its general validity is unclear because the scattering of waves by ions is not
the only mechanism determining the nonlinear evolution of IAl: changes in the particles’
velocity distribution as the waves grow and saturate can, in principle, be just as important
and are not considered in Sagdeev’s derivation. A comprehensive quantitative nonlinear
theory of IAT was not developed until the 1980s when Bychenkov and colleagues
solved the kinetic equations analytically. Their work simultaneously accounted for the
quasi-linear interaction of electrons with waves and the induced scattering of waves by
ions, enabling the quantitative analysis of anomalous turbulent transport (Bychenkov &
Silin 1981, 1982; Bychenkov, Gradov & Silin 1982; Bychenkov, Gradov & Silin 1984). By
establishing the spectral and angular distribution of ion-acoustic turbulent pulsations, they
verified the correctness of Sagdeev’s resistivity formula in cases where the scattering of
waves by ions dominates the saturation mechanisms.

Despite these achievements, significant uncertainties remain. First, many assumptions
or approximations are made in the above-mentioned theories, often excluding possibilities
that may be crucial in determining the dynamics of the system. For example, nearly
all analytical models assume that a nonlinear steady state will be reached, which is
not necessarily true in a realistic situation (and indeed is not the case in this study).
Second, no theory properly considers how the modification of the ion velocity distribution
due to the heating of resonant ions changes the IAT. Thus, numerical simulations are
needed to identify the key nonlinear mechanisms and either validate the current theoretical
understanding or, instead, guide the development of a new, improved understanding.

Numerical studies of IAT started in the 1970s, with most simulations performed
using the particle-in-cell (PIC) method (e.g. Boris et al. 1970; Biskamp & Chodura
1971; Biskamp, Von Hagenow & Welter 1972; DeGroot et al. 1977; Dum & Chodura
1979; Ishihara & Hirose 1981, 1983). Most of these studies focused on identifying
the saturation mechanism of IAT and quantifying the resulting turbulent heating.
However, rather than gradually driving the system toward an unstable state, which is
the scenario that better conforms to the theoretical approaches to this problem, these
simulations start with super-critical initial conditions (their initial condition is such
that the electron—ion drift velocity significantly exceeds the threshold for IAI); in some
cases, the electron drift velocity is even kept constant throughout the simulation. As
a result, they are inadequate to directly verify the analytical theories. Moreover, the
relatively small numbers of macro-particles employed in those PIC simulations (due
to computational constraints) produced unresolved results. Indeed, even with today’s
computational resources, simulating resonant kinetic instabilities with the PIC method can
be challenging (see, e.g., Tavassoli et al. (2021) for an example concerning the Buneman
instability).

The availability of efficient continuum Vlasov—Poisson solvers which arose at the turn
of the century (e.g. Fijalkow 1999; Horne & Freeman 2001) enabled a resurgence of
numerical studies of IAT. These new continuum Vlasov-based simulations systematically
studied the relationship between anomalous resistivity and different simulation parameters
such as different types of initial distribution functions (Watt, Horne & Freeman 2002;
Petkaki ef al. 2003), the initial drift velocity of electrons (Petkaki & Freeman 2008)
and phase space structures (Biichner & Elkina 2006; Lesur, Diamond & Kosuga 2014).
Some of these simulations adopted realistic electron—ion temperature and mass ratios (e.g.
Hellinger, Travni¢ek & Menietti 2004; Petkaki et al. 2006). One conclusion from most of
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these numerical studies was that the anomalous resistivity created by IAT was at least an
order of magnitude larger and more strongly dependent on the drift velocity of electrons
than the theoretical estimation (Galeev & Sagdeev 1984a).

However, despite the valuable insights provided by these simulations, some potential
problems persist. One is related to the starting configurations used in the simulations,
which are often super-critical. It remains unclear whether such initial configurations
are achievable in realistic scenarios, as their realisation depends on the relative rates of
current development and instability growth. Another concern is that, due to computational
constraints, these simulations are restricted to one dimension in both real and velocity
space (1D1V), whereas the importance of two-dimensional (2-D) effects has been
identified in the early numerical work (Biskamp & Chodura 1971). Analytical studies
(e.g. Zavoiski & Rudakov 1967; Sagdeev & Galeev 1969) also considered the influence
of oblique modes on the instability dynamics. Perhaps as a result of this artificial
restriction, the nonlinear evolution observed in these simulations is mostly highly
stochastic. Consequently, none of these studies show a direct comparison against the
theoretical spectra of IAT pulsations and Sagdeev’s formula for anomalous resistivity.

These limitations mean that considerable uncertainty remains about the nonlinear
properties of the IAI; in particular, fundamental questions such as its saturation
mechanism, the resulting particle heating, and the magnitude of the anomalous resistivity
that it drives remain unanswered. In this paper, we conduct a comprehensive numerical
study of the nonlinear evolution of the current-driven IAI aimed at providing detailed
answers to these questions. We numerically solve the Vlasov—Poisson equations in two
dimensions both in real and in velocity space. To ensure the physical realisability of our
system, our simulations start from a stable initial condition which is driven gradually
towards instability via an imposed external electric field. This set-up allows us to present
the most complete and detailed understanding of IAT to date.

This paper is organised as follows. Numerical details are provided in § 2. The results
from our main simulation are presented and discussed in §3. In §4, we analyse the
sensitivity of our results to the amplitude of the external electric field, the electron—ion
mass ratio, and the initial temperature ratio. Lastly, conclusions from our work and a
discussion of the implications of our results in broader contexts are presented in § 5.

2. Numerical set-up

We investigate Al in a uniform, spatially 2-D plasma with periodic boundary conditions
(thus, effectively mimicking an infinitely large 2-D plasma). All simulations start with
uniform Maxwellian electrons and ions, with zero drift velocity (i.e. no net current). We
focus on the classic IAI and, therefore, consider only the case when electrons are initially
much hotter than the ions (7.o/T; >> 1). An external electric field E.y is applied in the
7 (called parallel) direction throughout the simulation to drive the current and, thus, the
instability. The reference value against which E., must be compared is (Bychenkov, Silin
& Uryupin 1988)

MeCsoWpi TeO

Exy =
N 6T[€Ti()

, (2.1)
where ¢y = /T.o/mj is the ion sound speed, m, is the electron mass, wy; is the ion plasma
frequency, and Ap. and Ap; are the electron and ion Debye lengths. In this work, we
focus on the so-called weak field case, Ee; < Enp. This choice is guided by simplicity
considerations: in this regime, wave—wave interactions are predicted to be sub-dominant,
and quasi-linear theory is expected to apply (Bychenkov er al. 1988). This is, therefore, a
necessary first step in the development of a complete understanding of IAT.

https://doi.org/10.1017/50022377824000060 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000060

lon-acoustic turbulence 5

Run Eext ENL/(4]T€”0/1DC) mi/me TeO/TiO
Main 2.5%x 1073 2.7 x 1072 100 50
M25E10 2.5 x 1073 1.1x 107! 25 50
M50E10  2.5x 1073 5.3 x 1072 50 50
M200E10 2.5 x 1073 1.3 x 1072 200 50
M25E1 25%x 1074 1.1 x 1071 25 50
M25E2 5.0x 10~ 1.1 x 1071 25 50
M25E4 1.0 x 1073 1.1 x 107! 25 50
M25E6 1.5%x 1073 1.1x 107! 25 50
M25ES8 2.0 x 1073 1.1 x 1071 25 50
T20 2.5% 1073 42 x 1072 25 20
T100 2.5%x 1073 2.1 x 1071 25 100

TaBLE 1. Summary of the key parameters of the simulations. In the run name, the number
following the letter M refers to the mass ratio. The number following the letter E refers to the
multiple of 2.5 x 107 for Eey.

We use Gkey11 (Shi et al. 2017, 2019; Juno et al. 2018; Hakim & Juno 2020; Mandell
et al. 2020), a recently developed state-of-the-art code featuring energy-conserving,
high-order discretisation methods to solve the 2-D Vlasov—Poisson equations:

fy o fe
i+v'vfa+ Eext_q_vgo .i:()’
ot My ov

Vip = —4ana/d30fa.

We perform a set of simulations varying the magnitude of the external electric
field (restricted to the weak electric field regime), the mass ratio and the initial
temperature ratio. For convenience, we introduce the normalised external electric field

I:Jext = Lo/ (4menydp), where Ape = vreo/wpe 18 the electron Debye length corresponding
to the initial electron temperature. Table 1 lists all simulations and the corresponding
values of Eext, Exp, mass ratio and Tey/Ty. Run Main is our fiducial simulation, with
a mass ratio m;/m. = 100, temperature ratio T.y/T;p = 50 and an external electric field of
Eext = 2.5 x 1073, Most other runs vary the mass ratio or electric field at fixed T,/ T =
50. In the run name, the number that follows the letter M refers to the mass ratio, whereas
the number following E refers to the multiple of 2.5 x 10~ for E.,. The last two runs
listed in table 1 are meant to investigate the effect of the initial temperature ratio.

For all simulations, the spatial domain size is 50.01p, in the z direction and 25.04p. in
the y direction, with grid resolution Az = Ay = 0.54p.. The resolution of electron and
ion velocity space grids are jointly determined by linear theory, linear benchmarking and
a series of nonlinear evolution tests and, therefore, vary among the different simulations.
We note, however, that simulation M200E10 is performed at numerical resolutions that
cannot resolve the linear stage of ion-acoustic modes with small wavelengths (but it can
resolve the most unstable linear mode), due to limited computational resources. However,
according to our nonlinear evolution tests, this shortcoming has only a very limited effect

2.2)
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FIGURE 1. Time trace of total wave energy (red curve, right axis) and parallel current (blue
curve, left axis) of run Main. We split the evolution of the system into five different stages; see
the text for details. The red dotted vertical line indicates the moment when the current growth
rate is comparable to that of the most unstable [AW predicted by linear theory. The black dashed
line is W(r) predicted by linear theory, see (3.1). The green dashed line indicates the current
growth rate during phase III (which is 30 % of the free acceleration rate), and the orange dashed
line indicates the current growth rate during phase IV (which is 85 % of the free acceleration
rate).

on the evolution of the current and heating in the nonlinear stage. A detailed description
of how we determine spatial and velocity space resolution is provided in Appendix F.

In § 3, we use our fiducial simulation, run Main, to demonstrate our main results. The
other simulations are employed in § 4 to discuss how the results depend on the parameters
listed in table 1 and to extrapolate our results to the realistic mass-ratio case.

3. IAT driven by a weak electric field

In this section, we report on run Main, for which we plot in figure 1 the time traces of
electron current in the z direction and total wave energy. Based on this figure, we identify
five distinct phases of evolution, which we analyse in detail in the following subsections.

3.1. Phase I: linear stage

At the start of the simulation, both electrons and ions are at rest. They are freely accelerated
by the external electric field, thus ramping up the current and driving the system toward
instability. During this stage, the current growth rate is the free acceleration rate, i.e.
dJ./dt = E..e’ny/m. (which neglects the small ion contribution to the current), where
J is the parallel current in the system.

In figure 1, the red dotted vertical line indicates the moment of time, #,, when the
current growth rate (1/J, dJ./dt) is comparable to that of the most unstable IAW predicted
by linear theory (Jackson 1960) (linear theory is briefly described in Appendix A). We
observe that this criterion predicts the onset of the instability very well. According to
linear theory, the growth rate of an ion-acoustic mode, y.(k), is roughly proportional to
the drift velocity of electrons (as long as the drift velocity of the electrons is much larger
than the ion sound speed). Because the electrons are freely accelerated by the external
electric field, the linear growth rate of an ion-acoustic mode at time ¢ is then approximately
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FIGURE 2. 1-D electron (a) and ion (b) (in logarithmic scale) velocity distribution at different
times. The shadowed region is the approximate electron resonance region at the moments around
saturation (wpet ~ 750). The black dashed line represents the fitted bulk in the electron velocity
distribution after saturation, and the dashed blue and green curves represent the fitted tail at
different times. The fitting model is the double Maxwellian function (3.4). See the text for more
details.

Ve (t, k) = ye(to, k)(t/1y). Therefore, the wave amplitude should grow as

Zye (IO, k) 2‘2)

Io

W) = W(to) exp(2y.(t, k)t) =~ W(to) exp ( 3.1

We calculate y.(f, k) of the most unstable mode using linear theory, and the resulting
W(t) is plotted with the black dashed line in figure 1. The observed wave energy agrees
reasonably well with (3.1).

This linear phase ends when the wave energy becomes large enough that wave—particle
interaction becomes significant and the electron velocity distribution begins to be
modified, at around w,.t ~ 500.

3.2. Phase II: saturation

Phase II captures the saturation stage of IAI. We first investigate the saturation mechanism.
As mentioned in § 1, two processes are potentially responsible for saturation: quasi-linear
interactions between electrons and waves, and nonlinear interactions with ions (ion
trapping Sagdeev & Galeev 1969; Biskamp & Chodura 1971). The electron and ion
responses to the growth of the IAWs are represented in figure 2(a,b), respectively, by
plotting the one-dimensional (1-D) velocity distribution function at different moments
of time, obtained by averaging over the spatial domain (z, y) and v,; namely, F,(v,)
[ fu(vz, vy, 2, y) dzdydv,. As the dark blue curve in figure 2(a) shows, a quasi-linear
plateau starts forming in the resonance region in the electron velocity distribution at
around wy.t ~ 500, which weakens the growth of the IAI. This moment of time coincides
with the onset of strong electron heating, as evidenced by the electron temperature time
trace shown in the inset plot of figure 3. Importantly, we observe (in the same figure) that
strong ion heating (which is the signature of ion trapping) only begins later in time, at
around ¢ &~ 650a)p‘el, when the growth rate of wave energy is already reduced significantly
and the wave energy is about to arrive at its peak. This suggests that ion trapping is not
the main saturation mechanism. We further verify this conjecture by summarising the
maximum wave energy density we observe in simulations with different mass ratios and
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FIGURE 3. Time traces of electron and ion temperatures, normalised to their respective initial
temperature (red dashed and red dotted lines, left axis), and time trace of electron-to-ion
temperature ratio (blue line, right axis). The temperatures are defined as the second moment
of their own velocity distribution functions.

external electric fields Wy, in table 2 and comparing them with the quasi-linear estimate
(Zavoiski & Rudakov 1967; Bychenkov et al. 1988),

B m: 1/2
Wsal ~ nOTeOEexl ( : ) s (32)

2m,

where W, is the theoretical wave energy density at saturation. Our numerical results
indeed show an approximately linear dependence of the peak wave energy on the external
electric field E., and on the square root of mass ratio (m;/m.)'/?. In addition, the absolute
value of maximum wave energy density is only a little bit larger than (3.2). Therefore, we
conclude that, under the weak external electric field condition, quasi-linear relaxation of
the electron distribution, rather than ion trapping, is the main IAI saturation mechanism,
consistent with the theoretical prediction (Bychenkov e al. 1988). This conclusion is
seemingly at odds with the numerical study by Biskamp & Chodura (1971), which argues
instead that ion trapping is the mechanism responsible for saturation. We think that this
discrepancy is due to the fact that their simulations start with a super-critical electron
distribution. This causes the waves to grow rapidly to large amplitudes. Thus, nonlinear
effects, rather than quasi-linear relaxation of electron distribution, dominate the saturation
of the IAI in their simulations.

Despite a good agreement between theory and simulations on wave energy at the
moment of saturation, the quasi-linear theory assumes that IAT will reach a steady
state (i.e. approximately constant wave energy) determined by the balance between wave
emission (. (k); weakened due to plateau formation) and wave damping (y;(k)), namely,

y (k) = ye(k) + yi(k) = 0. (3.3)

However, it can be seen from figure 1 that a steady state is not achieved: the wave energy
quickly starts to drop after saturation. We show later in this section that (3.3) is indeed
achieved at the moment of saturation, but does not remain valid afterward.
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Run Wsat/nTeo (%) Wiax/nTeo (%)
M25E2 0.18 0.19
M25E4 0.35 0.40
M25E10 0.88 1.06
Main 1.77 1.91
M200E10 2.50 2.62

TABLE 2. Saturation wave energy of simulations with different mass ratios and external electric
fields. Here Wpx is the maximum wave energy measured from the simulation and Wy is
the quasi-linear estimate of the saturated wave energy, i.e. (3.2). The wave energy exhibits
approximate linear dependence on the external electric field and on the square root of mass
ratio, consistent with the quasi-linear prediction.

To understand the nonlinear evolution after saturation, observe the blue (wy.t = 750)
and the cyan (wp.r = 1000) curves in figure 2(a). They display two noteworthy features:
(1) the (1-D) electron velocity distribution does not retain the quasi-linear plateau at
the end of the saturation process; (ii) the non-resonant part is mostly represented by a
tail (see the blue dashed curve in figure 2a), which appears due to significant electron
heating (see figure 3) and acceleration by the external electric field during saturation. The
disappearance of the plateau shape in the electron velocity distribution is, in fact, attributed
to the saturation of oblique modes, which is a notable 2-D feature. The much more efficient
scattering of electrons by the waves in the 2-D situation brings the majority of electrons
back to the resonance regime. More evidence of this can be found in Appendix B.

Based on these observations, we find that the 1-D electron velocity distribution at the
end of, and after, saturation can be well approximated by a double Maxwellian function,
with one Maxwellian representing the bulk of the electron population (denoted with
subscript ‘b’ in the following formula) and the other representing the tail (subscript ‘t’):

1 exp (_ (vz - ud,b)z)
V2T 2U%e,b

1 (vz — Ug t)z)
+o——exp| —————"| - (3.4)
A/ ZT[UTe’t P ( 2U%e,l

This bulk—tail model is predicated on the notion that, as the wave energy saturates, a
resonant and a non-resonant part should be manifest in the electron velocity distribution.
The acceleration of the resonant part by the external electric field should be countered
by the anomalous resistivity created by IAT, while the non-resonant part can still be freely
accelerated. The fitted distribution at the moment of saturation (wp. ~ 750) is plotted with
a black dashed curve (the bulk) and a dashed blue curve (the tail) in figure 2(a). The exact
fitting parameters can be found in Appendix C.

Using the empirical fit, we now demonstrate that (3.3) still holds at the end of the
saturation even though the electron distribution no longer conforms to the plateau shape
described by the standard quasi-linear theory (a similar method was previously employed
in studies of Buneman instability in reconnection layers Drake et al. 2003; Che et al.
2009, 2010; Jain, Umeda & Yoon 2011). Because ions do not deviate significantly from
a Maxwellian distribution around saturation (see figure 2b), the 1-D dielectric function

Fe(vz) ~ (1 - 0[)
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obtained from linear theory can be written as

1 + Clz(é‘l) 1 + é‘e bZ(ge b) 1 + ge.tz(é‘e t)
4+ ——5—+ 0~ : — +a : — =0, (3.5)
kzz/l%)z kgﬂzDe,b kz?/lzDe,t

where Apy = vro/wp, is the Debye length of species « (ions, bulk electrons or tail
electrons), ¢, = (w — kugy)/kvry, With w = @, + iy., uq, the drift velocity and Z(¢)
the plasma dispersion function. Using the fitting model provided by (3.4) evaluated at
wpet = 750, we obtain from this equation y (k., wy,.t = 750) ~ 0O for nearly all values of k,
that are originally unstable. While not strictly rigorous, because we only consider waves
in the parallel direction in (3.5), this result strongly suggests that the saturation process of
IAI indeed tends to bring the system to a marginally stable state as described by (3.3). We
note that, as mentioned earlier, (3.3) is not valid at later times, which voids the assumption
made by the quasi-linear theory; see § 3.3.

To summarise, during the saturation process in the 2-D case, electrons are efficiently
scattered back to lower velocities by both parallel and oblique wave modes within
the resonance region. Consequently, the electrons within the resonance region become
the dominant population, forming a new electron bulk. After saturation, a balance is
established between the effective friction provided by the waves and the acceleration from
the external electric field, leading to the stationary behaviour of the new bulk, while
electrons located on the right-hand side of the resonance region experience continuous
acceleration.

3.3. Phase IlI: shutdown of IAT

Phase III is a post-saturation stage characterised by a significantly lower current growth
rate (about a factor of three lower than the free acceleration rate); see figure 1. As explained
in § 3.2, the growth of the parallel current after saturation is primarily contributed by
this fitted tail. We can estimate the current growth rate in the early stages of phase III to
be approximately a(t = 1000)e?E.y, /m., where a(t = 1000) represents the fraction of the
fitted tail at r = 1000. This approximation yields a value close to 0.38¢*E,,/m., which
is only slightly higher than the current growth rate indicated by the green dashed line
in figure 1. During phase III, the wave energy gradually decreases and reaches a level
approximately one order of magnitude smaller than its peak value. Eventually, the intensity
of the IAT becomes insufficient to provide enough friction to the bulk electrons.

3.3.1. Landau damping induced by strong ion heating

It has long been conjectured that the IAI will be switched off due to the reduction
in the electron-to-ion temperature ratio. This reasoning is based on the observation, from
linear theory, that when J_/(en) >> ¢, the ion-acoustic mode becomes stable for 7. /T; < 10
(Papadopoulos 1977; Benz 2012). We confirm this prediction by plotting the temperature
ratio, in figure 3. Even though both electrons and ions are strongly heated after saturation,
we observe an abrupt decrease in the electron-to-ion temperature ratio, which happens
mostly in phase II and early phase III. This plummeting of the temperature ratio can be
directly responsible for a strong damping rate of IAWs for most wave modes.

However, linear theory assumes Maxwellian electron and ion velocity distributions,
which is not the case in the nonlinear evolution of TAI at this stage. To prove this conjecture
more rigorously, we return to the linear analysis of the modified distribution function to
show that IAWs will indeed be Landau damped after saturation. By plugging the fitting
parameters at wy.t = 1000 into (3.5) and assuming Maxwellian ions, we observe y (k. >
ke, wpet = 1000) < —3 x 10‘3a)pe, where k.Ap./27 ~ 0.15 is the smallest wavenumber
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FIGURE 4. Wavenumber (a) and angular (b) spectra of IAWs at different times during the
simulation. Angular spectra at different times are normalised to their value at & = 0°, where
0 is the angle between the parallel direction and wave propagating direction. A fourth-order
polynomial is used to fit the angular spectra to smooth the curves. The wavenumber spectrum
at wpet = 1000 agrees with the KP spectrum (the dashed curve). The wavenumber spectra
at wpet = 2000 and wpet = 3500 with relatively larger wavenumbers agree with the spectrum
observed in Chapman et al. (2014) (the dash-dotted curves).

to satisfy this condition (3 x 102w, is the inverse of about one-third time duration of
phase III). This result implies that we should see about an order of magnitude decrease
in wave energy in ~ 300%_; for modes with wavenumber satisfying k, > k. during phase
III. By comparing the wavenumber (k) spectrum between wy.t = 1000 (blue curve) and
wpet = 1600 (cyan curve) plotted in figure 4(a), we indeed see a significant decrease in
amplitude for the wave modes with larger wavenumbers (kAp./27 = 0.2). However, these
wave modes are only about an order of magnitude weaker than those in w,.t = 1000, which
are less damped than predicted. Using the fitting parameters at wy.t = 1600 in (3.5), we
obtain y (k., wyt = 1600) < O for nearly all values of k., while the damping rates of wave
modes with k,Ap./27 > 0.08 are strong (again, compared to —3 x 10> w,.). Even though
most wave modes are less damped than predicted, the fact that nearly all the wave modes
at wpet = 2000 (the green curve in figure 4a) show significantly lower energy confirms our
analysis. The exact fitting parameters of the bulk—tail double Maxwellian model and more
details on this linear analysis can be found in Appendix C.

3.3.2. Effects of particle trapping

An important mechanism affecting the wave energy spectrum not considered by linear or
weak-turbulence theory is particle trapping, which can strongly weaken Landau damping.
The formation of electron phase-space vortices (also referred to as ‘phase-space holes’ or
‘electrostatic solitary waves’ Hutchinson 2017), which is the signature of electron trapping,
can be identified right after saturation (a snapshot of electron phase space at wp.t = 2000
is shown in figure 6). This phenomenon is expected by nonlinear theories, and it is also
reported in many simulations of two-stream instability (e.g. Morse & Nielson 1969; Berk,
Nielsen & Roberts 1970), space observations where electrostatic streaming waves are
present (e.g. Pickett er al. 2008; Malaspina et al. 2013; Mozer et al. 2021a) and laboratory
experiments (e.g. Saeki et al. 1979).

One signature of electron trapping is that it can trigger positive frequency shifts of
nonlinear [AWs, which may allow the sub-harmonic decay of IAWs (Berger et al. 2013;
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FIGURE 5. Parallel wave energy spectrum |E, (w, k)| during the IAW burst phase (i.e. phase I)
(a), and the phase right after saturation (i.e. phases II and III) (») for run M25E1 0. The dispersion
relation of IAWs (A3) is plotted with the red dashed curve in (a,b). The blue dashed line in (b)
indicates a set of waves with positive frequency shifts in the nonlinear stage.

Chapman et al. 2013, 2014). Modes with positive frequency shifts can spread across the
region in w—k space approximately bounded by w/k = ¢,y + Av;, where Av; corresponds
to a region where ion Landau damping is reduced by ion trapping. To obtain evidence of
this, we examine the wave energy spectrum by performing 2-D Fourier transforms (in the
parallel direction (z) and in time) of the parallel electric field E, between different time
ranges. Note that due to limited storage and computational power, we are not able to save
the files often enough to have high resolution in frequency for run Main. Instead, the wave
energy spectra |E, (k, )|* are calculated using run M25E1 0 at the corresponding evolution
phases. In the linear phase, the w—k diagram is consistent with the TAI linear dispersion
relation, as shown in figure 5(a). In phases II and III, as shown in figure 5(b), we indeed
see the positive frequency shift of [AWSs in a wide range of wavenumbers. The maximum
shift of the phase speed, Av;, can be estimated using Av,, which is the half-width of the
plateau of the electron velocity distribution before saturation (the plateau for run Main
can be seen in figure 2a), i.e. Av; & /m./m;Av. =~ 0.2vr. This estimate roughly agrees
with the observed spectrum in figure 5(b).

As mentioned above, this frequency shift is expected to induce sub-harmonic decay of
IAWs and, consequently, modulate the energy spectrum. In Chapman et al. (2014), the
onset of IAT leads to ¢ oc k=* at relatively large wavenumbers. The corresponding wave
energy spectrum is then N(k) o« |Ei|* o< k*¢7 o< k. This spectrum is observed in our
simulation at the late stage of phase III and in phase IV, as evidenced by the dash-dotted
curves in figure 4(a).

3.3.3. KP spectrum

Another noteworthy nonlinear feature observed in the wavenumber spectrum, as shown
by the dashed curve in figure 4(a), is its agreement with the KP spectrum, characterised
by N(k) ~ 1/k*In(1/kAp.), immediately after the saturation stage (wpf = 1000). While
this spectrum has been observed in certain turbulent heating experiments (Hamberger &
Jancarik 1972; Perepelkin et al. 1973; de Kluiver, Perepelkin & Hirose 1991), we believe
this to be its first direct numerical validation.
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The agreement between our simulation results and the KP spectrum may initially seem
puzzling, as the original derivation of the KP spectrum necessitates strong ion nonlinear
effects and negligible ion Landau damping (Kadomtsev & Petviashvili 1962; Petviashvili
1963). Although we confirmed earlier in § 3.3.1 that Landau damping is indeed negligible
right after saturation, the requirement for strong ion nonlinear effects still seems to
contradict the quasi-linear saturation mechanism that we confirmed previously. In fact,
even though quasi-linear effects of electron distribution dominate around saturation, ion
nonlinear effects (induced scattering by ions) can still become noticeable afterwards, as
evidenced by the emerging plateau in the ion distribution function around wy.t = 1000
(see figure 2b). Bychenkov & Silin (1982) also demonstrated that the KP spectrum can
be obtained by simultaneously considering the quasi-linear relaxation of the electron
distribution, leading to a weakening of y., and the induced scattering process, leading
to a damping rate of .. Specifically, they showed that the condition y (k) = y.(k) +
y;(k) + ynp (k) = O can lead to the emergence of the KP spectrum, even when |yn (k)| <
min{|y,(k)|, |y;(k)|} (Bychenkov & Silin 1982; Bychenkov et al. 1988). Our observation
confirms the validity of their theory during the times around saturation and emphasises
the significance of nonlinear effects in the subsequent order of weak turbulence theory
in shaping the behaviour of IAT, even if they are of relatively minor importance in the
saturation itself.

3.4. Phase IV: post-shutdown phase

At the end of phase III, the current growth rate returns to a value that is close to the free
acceleration rate, as shown by the orange dashed line in figure 1. The ion heating rate
also relaxes to a relatively low level (only about 25 % ion heating happens after phase III,
see figure 3). After IAT is shut down, the system still undergoes a long evolution process
before entering a new regime. We refer to this nonlinear evolution stage as phase I'V.

To gain a better understanding of this stage, we plot the 2-D features of the system
in figure 6. Snapshots of the 2-D electron velocity distribution are shown in the second
column. At wyt = 2000, the bulk of the electron distribution is centred around the
resonance region. The subsequent shutdown of the IAI decreases the effective friction
on the electrons, and allows the bulk to migrate to the tail region by w,.t = 3500. By
the end of phase 1V, the electron velocity distribution is greatly broadened in the parallel
direction with respect to what it was at the end of phase IIl. Furthermore, we observe
that the tail of the electron distribution exhibits a triangular shape, consistent with early
analytical conjectures (Sagdeev & Galeev 1969). This is because oblique unstable modes
have a maximum propagation angle with respect to the parallel direction. The electron
distribution population that lies outside of the resonance region created by the wave modes
is more easily accelerated by the external electric field.

3.4.1. Formation of high-energy ion tail and dominance of oblique modes

Another interesting feature is that a much more obvious high energy ion-tail forms,
which becomes visible in the third column of figure 6 at wy.t = 2000 and can be clearly
seen at wp.! = 3500 (note that the colourmap of the ion velocity distribution plots is in
logarithmic scale to better emphasise its features). By comparing the cyan, green and
yellow curves in figure 2(b), we can observe that the cold bulk ions experience some
heating during phase II and the early stages of phase III. However, the formation of the
high-temperature tail primarily occurs during phase III and phase IV. This phenomenon
is consistent with a previous 2-D simulation (Dum, Chodura & Biskamp 1974) and can
be explained by the quasi-linear theory for ions (Ishihara & Hirose 1981). Initially, as the
ions are extremely cold, only a very small fraction of waves with low phase velocities

https://doi.org/10.1017/50022377824000060 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000060

14 Z. Liu, R. White, M. Francisquez, L.M. Milanese and N.F. Loureiro

(@ <fe(yvy)>@v) () < fel@y)>Wavy) () <fizy)>(vuvy) (d)
25

0.75
0.60

6
10 a4
S 0.45
030
t?l g 2 i 015 %
55 S o s -3
I = = 0.00 s
> > 5 -0.15
2 0 -0.30
3 -4 —0.45
-6 -0.60
20 40 ] 10 10 20 30 40 50
zfA
() Z[Ape . Ape
64
10 4 8
S 10.48
n g g 2 032
flT 3‘: 5 é:- o 0.16 L_:‘
= o 000 T
‘.& -2
2 s -0.16
3 -4 -0.32
-6 -0.48
10 20 30 40 10 20 30 40 50
. 2/A : Valv 4
0) Thoe 0, i ox
o W0 4 450
2 < o 2 375
+ 2. 2 300 g
3 20 225 &
] ES ?
A = 5 1.50
2 o 0.75
3 -4 0.00
-0.75
10 20 30 40 = 0 5 10 0 % 10 20 30 40 50
z{Ape ValVren VzlCso ZiApe

FIGURE 6. Snapshots of electron phase-space (a,e,i), electron velocity distribution (b.fj), ion
velocity distribution (c,g,k) and electric potential (d,h,/) at the end of phase III, the end of phase
IV and the middle of phase V, respectively. The colour bar for the ion velocity distribution is in
logarithmic scale. The 2-D distributions are obtained by averaging the four-dimensional (2D2V)
distribution over the other two dimensions.

(vph < ¢) can directly heat the cold bulk ions through weak ion trapping. However, as
time progresses, the quasi-linear effect gradually diffuses the non-resonant portion of the
ion distribution towards the phase-velocity range of the IAWs, allowing for stronger direct
resonant interactions with the waves. This quasi-linear diffusion of non-resonant ions is
the primary mechanism contributing to the formation of the high-energy ion tail (Ishihara
& Hirose 1981, 1983). It is interesting to note that similar ion distribution is also observed
in a recent 2D2V Vlasov simulation of current-driven instabilities (Chan et al. 2022).
The ion tail formation can also help explain the fact that the most intense wave modes
propagate with a non-zero angle with respect to the parallel direction during phase 1V, as
evidenced by the yellow curve in figure 4(b). According to linear theory, parallel modes
are expected to dominate over oblique modes because of their higher linear growth rates
and saturation levels (because parallel modes have higher effective drift velocity). This is
confirmed by our simulations in the linear stage (phase I, the dark blue curve in figure 4b)
and early times during the nonlinear evolution (phase III, the blue curve). However, as
the quasi-linear diffusion takes place, more ions are diffused in the parallel direction
from the bulk (non-resonant portion) to the resonant region, which is confirmed by the
third column of figure 6 at wp.r = 2000 and w,.t = 3500. As a result, modes with small
propagation angles are more heavily damped because there are more ions participating
in the resonant interactions with the waves. Indeed, as shown by the yellow curve in
figure 4(b), we see oblique modes dominating over parallel modes at w.t = 3500. This
observation also clearly demonstrates the relevance of oblique modes in the nonlinear
evolution of TAI, even in the weak electric field regime that we consider here. At the later
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FIGURE 7. Parallel wave energy spectrum |E.(w, k.)|? after effective shutdown of IAT (i.e.
phase IV) (a), and the EAW burst phase (i.e. phase V) (b) for run M25E10. The dispersion
relations of IAWs and EAWSs are plotted with the red dashed curve in (a,b), respectively. The
blue dash-dotted line in (a) indicates a set of waves with negative frequency shifts. The blue
dashed line in (b) indicates a set of waves with a phase velocity of 1.2vrep.

time of phase IV, the damping of the waves is gradually reduced by the formation of the
plateau in the high-energy ion tail visible in figure 2(b), which is confirmed by the red
curve in figure 1.

3.4.2. Formation of double layer

Finally, we look at the electron phase space structures in the first column of figure 6
and the corresponding electric potential in the last column. In § 3.3, we mentioned the
emergence of electron holes right after saturation in § 3.3.1. During the later course of the
nonlinear evolution, these phase-space vortices gradually merge and finally become one
single large electron hole at the end of phase IV (which can be seen from the electron
phase space plot at w,.t = 3500). In the meantime, the potential wells created by the
waves become asymmetric (which means there is a non-vanishing electric potential change
across a single potential well), with a steeper edge. The steep asymmetric potential wells
favour the triggering of new instabilities because they asymmetrically reflect low-energy
electrons and accelerate high-energy electrons, which enhances the two-stream structure in
the electron distribution and depletes the particles in the middle of the well. In the electric
potential depicted in the second row of figure 6 at w,.r = 3500, we see clearly larger and
more asymmetric potential structures compared with the electric potential at wp.t = 2000.
The effects on the electron velocity distribution function can be seen in figure 2(a),
where the depletion of the electrons at around vry is already visible at wyt = 3500.
Another possible consequence of particle trapping is modulational instability. In Rose
(2005), it was demonstrated that negative nonlinear frequency shift and wave diffraction of
Langmuir waves can trigger a self-focusing effect. It is possible that a similar effect could
extend to the IAWSs. In figure 7(a), we indeed observe a stronger negative frequency shift
during phase IV, which emphasises the effects of nonlinear ion trapping at the late stage
of the nonlinear evolution (Berger et al. 2013). The modulated wavefronts (the localised
maxima in electric potential) observed in the last column of figure 6 at w,.t = 3500, may
result from this self-focusing effect.
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Extending from phase IV to phase V, the potential wells coalesce and steepen further
and, finally, a double layer forms, as is clearly visible in the rightmost column of figure 6
at wyet = 4300. The formation of double layers associated with IAI has been shown via
experiments (e.g. Okuda & Ashour-Abdalla 1982; Chanteur et al. 1983), simulations (e.g.
Sato & Okuda 1980; Chanteur 1985) and spatial measurements (e.g. Ergun et al. 2001,
2009). We here confirm the production of the double layer by IAT with a 2D2V simulation
with a more self-consistent set-up.

3.5. Phase V: onset of electron-acoustic waves

As evidenced by the wave energy time trace in figure 1, another instability is triggered
at this moment. We interpret these new wave modes as electron-acoustic waves (EAWs)
(Holloway & Dorning 1991; Valentini, O’Neil & Dubin 2006; Anderegg et al. 2009;
Valentini et al. 2012) for the reasons given in the following.

First, we examine the wave energy spectrum with run M25E10 again, which is shown
in figure 7(b). We can see that the new wave modes in phase V exhibit much higher
frequencies extending from 0.lwy. to around 0.6w,. and a much faster phase velocity
(~1.2v1y), which excludes the possibility of (slow) ion modes. Instead, the intermediate
frequency range between ion and electron plasma frequencies is standard for EAWs
(Holloway & Dorning 1991). Second, as seen from the electron phase structure at wp.t =
4300 in the first column of figure 6, the electron distribution has a trapped population
around v with a trapping width extending to ~ 4vr. These trapped electrons around
Ve effectively create a plateau shape around the phase velocity of the waves (i.e. ~vr) in
the electron velocity distribution (which can be seen from the second column in figure 6
at wpe! = 4300) and allow the EAWs to stay immune to Landau damping (Holloway &
Dorning 1991). Third, we plot the theoretically obtained dispersion relation of EAWs
by approximating the electron velocity distribution with two Maxwellian functions and a
plateau in figure 7(b), which agrees reasonably well with the wavenumbers and frequencies
we observe in the simulation. These EAW's have lower wavenumbers compared to IAWs,
which is consistent with the domain-size electron-hole observed in the last row in figure 6.
In Appendix D, we describe in detail how we obtain the dispersion relation of EAWSs. The
formation of double layers and bursts of EAWs after bursts of IAWSs are also reported in
recent experimental (Zhang et al. 2023) and numerical (Hara & Treece 2019; Vazsonyi,
Hara & Boyd 2020; Chen et al. 2022; Zhang et al. 2023) studies.

4. Dependence of results on simulation parameters

In this section, we investigate the dependence of the results discussed previously on
mass ratio, external electric field and initial temperature ratio.

4.1. Anomalous resistivity intensity

We define the effective collision frequency, v, from the equation dJ./dt = e’ng/meEq —
verrJ. A reference value is the quasi-linear result (Bychenkov er al. 1988):

N
v~ 0.4TwpeEey (-) : 4.1)
ne

Time traces of vg for runs with the same external electric field but different mass ratios
are shown in figure 8(a). It can be seen that the observed vg in phase III is only about
10% ~ 20 % of the value predicted by (4.1) for run Main. The maximum veg, which
is observed during saturation (in phase II), is also smaller than the quasi-linear value
(about 38 % of (4.1)). In terms of the mass ratio dependence, although the peak values
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FIGURE 8. (a) Time traces of effective collision frequency for simulations with different mass
ratios and the same external electric field (Eext =25x 10_3). For run Main we also plot, as a
reference, the curve corresponding to 0.5W /nyT., where W is the wave energy density (dotted
curve), and 10 % of the quasi-linear value (4.1) (dashed horizontal line). (b) Time traces of
effective collision frequency normalised to the quasi-linear prediction (4.1), for simulations with
different external electric fields and the same mass ratio (m;j/me = 25).

depend weakly on the mass ratio, v.g after saturation shows a roughly linear dependence on
/m;i/me.. For example, run Main (green curve) exhibits approximately twice the amplitude
of run M25E10 (blue curve) after saturation.

The main disagreement between the simulation results and the quasi-linear theory is
that the latter assumes the electron—ion drift velocity will be fixed at around the ion
sound speed after IAI saturates (Rudakov & Korablev 1966; Bychenkov ef al. 1988). This
assumption is only valid for the resonant part of the electrons. However, both resonant and
non-resonant parts of electrons are accounted for in the current. Due to the fact that most
of the tail, with a significantly higher drift velocity, does not resonate with the waves and
is freely accelerated by the external electric field, the v, we obtain in our simulations is
much smaller than the theoretical one and continues to decrease as the current grows, even
if the friction force on the bulk electrons provided by the scattering of waves is unchanged.

Figure 8(b) shows the time traces of v/ vSffL for simulations with the same mass
ratio (m;/m. = 25) but different external electric fields. As long as the electric field is
relatively strong (but still in the weak field regime, i.e. Eox; << EnL), the linear dependence
of ver on the external electric field holds. For example, veg in runs M25E10, M25E8
and M25E6 have nearly the same normalised amplitudes. As the electric field becomes
weaker, the effective collision frequency starts to approach the quasi-linear value during
saturation gradually. For run M25E1, the effective collision frequency roughly agrees with
the quasi-linear prediction around saturation.

Weak enough external electric fields such that (4.1) approximately holds will be referred
to as extremely weak. In this extremely weak field regime, electrons have a drift velocity
very close to the ion sound speed (i.e. the phase velocity of the IAW) at the moment of
saturation and, therefore, most of the electron population, including the tail, can be trapped
in the resonance region after saturation, which validates the assumptions underlying
quasi-linear theory. Because the tail portion cannot effectively run away in this case,
the electron distribution barely changes during phase III. The wave energy also remains
approximately steady, pinned at the saturation level. Otherwise, most physics discussed
in § 3 still holds, including the saturation and shutdown mechanisms, and transition into
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bursts of EAWs. An estimate of the threshold electric field and more details on the
extremely weak field regime can be found in Appendix E.

Another well-known formula for anomalous resistivity, due to Sagdeev (Sagdeev 1967;
Zavoiski & Rudakov 1967),

T 1/2 T . 1/4
Sagdeev e el
v A 0.2wp, <?> (2—TEE§M) , 4.2)

predicts an effective collision frequency of ~ 0.06w,. for run Main, which is over an
order of magnitude larger than observed. Such discrepancy is unsurprising because the
simulations are performed in the weak electric field regime, whereas Sagdeev’s formula is
only expected to apply when Ee > EnL.

Finally, to compare our simulations with previous numerical studies (LaBelle &
Treumann 1988; Watt et al. 2002; Hellinger et al. 2004), it is convenient to calculate a
more qualitative estimate, namely,

w

- 43
e (4.3)

Veff ™~ CUpe

with W being the wave energy density. This estimate is obtained by balancing the electron
momentum loss due to the emission of waves and momentum gain from the external
electric field. In fact, Sagdeev’s formula also originates from this estimate, but it severely
overestimates the wave energy by assuming that the nonlinear scattering of ions is the only
saturation mechanism. Equation (4.3) for run Main is plotted as the black dotted curve in
figure 8(a), and turns out to be a reasonable match, especially after saturation (phases I11
and IV). This conclusion is at odds with values of anomalous resistivity exceeding this
estimate by at least one order of magnitude reported in many previous numerical studies
(e.g. Watt et al. 2002; Petkaki et al. 2003, 2006; Hellinger et al. 2004). Again, the fact that
most previous simulations start with a super-critical configuration can lead to artificially
high wave energy, which might be responsible for the large discrepancy between previous
numerical experiments and (4.3).

To summarise, no nonlinear theory that we are aware of gives a reliable estimate of the
anomalous resistivity created by IAT in the weak electric field regime. When the electric
field is extremely weak, the quasi-linear value (4.1), is a good approximation. Otherwise,
the anomalous resistivity after saturation is about 10-20 % of (4.1) in our simulations. We
also find that (4.3) provides a reasonable fit. However, even though we have validated (3.2)
for the wave energy at saturation, the fact that W does not remain at that level, but rather
immediately starts to decay, precludes a priori usage of this estimate.

4.2. Particle heating and anomalous resistivity duration

As explained in § 3.3, anomalous resistivity will eventually become negligible as a result
of the effective shutdown of the IAT. Therefore, in addition to characterising the intensity
of the anomalous resistivity, it is of interest to understand how long it is sustained at
appreciable levels as a function of mass ratio, external electric field and initial temperature
ratio. Because the shutdown of IAT is mainly associated with temperatures, we investigate
how electron and ion heating depends on these parameters.

Before we proceed with our analysis, we stress again that we define temperature as the
second moment of the distribution function. This deviates from temperature in the normal
sense, because neither the electron’s nor the ion’s distribution functions are Maxwellian
when the system enters the nonlinear stage. This makes it challenging to derive an
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FIGURE 9. Time traces of temperature ratios for simulations with different mass ratios,
electric fields and initial temperature ratios. The black dashed line marks 7, /7; = 10.

analytical expression that precisely describes the temporal evolution of electron and ion
heating and the shutdown criterion of IAT.

4.2.1. Ion and electron heating

The time traces of electron-to-ion temperature ratio for simulations with different mass
ratios, external electric fields, and initial temperature ratios are shown in figure 9. It can be
seen that all our simulations reach a final temperature ratio of ~10. Moreover, as shown by
T20 (pink curve) and T100 (silver curve) in figure 9, the fact that the final temperature ratio
(compared with the blue curve) is independent of the initial temperature ratio confirms the
conjecture that IAT is indeed shut down by reaching a specific temperature ratio.

For use in what follows, let us define the final temperature ratio as

Te,f
Ti¢

=0, (4.4)

where T and T, ¢ denote the final ion and electron temperature, i.e. the temperature when
the ion heating is effectively shut down. The effective shutdown is defined as the moment
when the ion heating rate reduces to 10 % of its peak value. Note that Ti; is a little bit
larger than the ion temperature at the end of phase III because there is still some ion
heating happening during phase I'V. Figure 10 plots 7; s for simulations with different mass
ratios and external electric fields, showing a linear dependence on +/m;/m. and E.. This
is the same as the dependence of W, on Ee and y/m;/m. in (3.2) and confirmed in table 2.
We thus fit the ion temperatures in most of our simulations as

nOTi,f ~ 28-6W9at- (45)
According to (4.4) and (3.2), the electron temperature at the end of phase III can then be
fitted by
noTe s ~ 28.60 Wy
12
ni ~
~ 20.20 (—) EexioTe. (4.6)
ne
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FIGURE 10. Final ion temperature (normalised to its initial value) as a function of the square
root of mass ratio at fixed Eex; = 2.5 x 1073 (top horizontal axis, red) and as a function of the
external electric field at fixed m;/me = 25 (bottom horizontal axis, blue).

However, there are two simulations that do not conform to (4.5) in figure 10: runs M25E1
and M2 5E2 (the leftmost two blue rectangular data points). As discussed in § 4.1, these two
simulations are under the extremely weak field regime. In fact, the final ion temperature 7 ¢
given by (4.5) can potentially become insufficiently low to satisfy the shutdown criterion,
as described in (4.4). This scenario arises particularly when the external electric field is
extremely weak. This implies the existence of another threshold for the external electric
field below Eyp, which we call the extremely weak field regime. Under this regime, as
mentioned previously, wave energy will be sustained at a high level during phase III. As
the ion heating rate is proportional to the wave energy, being in this regime results in more
intense ion heating than the prediction given by (4.5) until the shutdown criterion (4.4) is
finally met.

4.2.2. Duration of significant anomalous resistivity

Finally, to estimate the duration of phase III, we plot time traces of electron heating
rates for simulations with different mass ratios and external electric fields in figure 11.
Both the time-dependent patterns and amplitudes of the electron heating rates are very
similar to the effective collision frequencies shown in figure 8(a), especially during phase
IT and the early stage of phase III, which is expected because electron heating is caused by
anomalous resistivity. However, unlike the anomalous resistivity, the electron heating rate
does not die away but remains flat at later times in phase III. This is due to the definition of
temperature that we have adopted: the increase in electron temperature is, in fact, mainly
caused by the acceleration of the electron tail during phase III (so the overall electron
distribution becomes broader). To provide a rough quantitative estimate of the duration
of significance anomalous resistivity, we may approximate the electron heating rate with
a constant value according to figure 11 as (1/T) d7./dt = 0.0SEext (m;/me)" za)pe, which
has the same dependence on external electric field and mass ratio as the (4.1). Then we
can use Tps ~ (Ter — Teo)/(dT./dt) and substitute 7, ¢ with (4.6). We arrive at

2020(mi/m) PEeq — 1

res ™ ~ w,. . (47)
0.08(m;/me) ?Eeq "
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FIGURE 11. Time traces of electron heating rate for some example simulations with different
mass ratios and electric fields.

While the exact value of 6 depends on parameters, our simulations suggest that 6 ~ 10
(it is slightly larger for cases with a larger mass ratio and a smaller external electric
field, see figure 9). This is consistent with linear theory (Papadopoulos 1977; Benz 2012),
and is justified by the fact that IAI becomes stable when 7./7T; < 10 (as long as the
drift velocity between electrons and ions is much smaller than electron thermal velocity).
However, it is important to note that the linear theory is based on Maxwellian distribution
functions, while in our simulations both the electron and ion distributions are rather better
approximated by double Maxwellians. Therefore, using temperature as the sole parameter
cannot capture the exact dynamics and the corresponding switch-off criterion accurately.
This may explain the deviations of 6 from the value 10. Note that (4.7) does not apply to
extremely weak field regime due to the underestimate of electron and ion heating.

With (4.7), we are able to estimate the extent of the time interval over which the
IAT-induced anomalous resistivity will last in a particular system. For our run Main,
(4.7) yields t,,5 ~ 2000a)p‘e1 if we adopt 8 = 10, which is in reasonable agreement with the
numerical data shown in figure 8(a).

5. Conclusion and discussion

In this study, we have presented a comprehensive first principle (i.e. continuum
Vlasov—Poisson) numerical investigation of the current-driven IAI in unmagnetised
plasmas. By starting from a stable plasma equilibrium and gradually driving it towards
instability using a (weak) external electric field, we have ensured the self-consistent
evolution of the system towards instability and the physical realisability of the unstable
states that are reached.

We have identified five distinct phases in the evolution of IAI and focus on the nonlinear
phases. After the linear stage (phase I), the onset of which occurs when the linear growth
rate of the instability approximately matches the current growth rate, we observe (phase
IT) that the saturation of IAI primarily occurs through the quasi-linear relaxation of the
electron velocity distribution. We also observe that the 2-D (in position space) system is
much more efficient than its 1-D counterpart in scattering electrons to the resonance region
with lower drift velocity, which helps to form a resonant bulk and a tail in the electron
velocity distribution. Moving into phase III, in contrast to the assumption made in many
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nonlinear or quasi-linear theories that a steady state is reached, we find that the current
continues to grow, albeit at a significantly reduced rate. This ongoing growth is attributed
to the non-resonant electrons, which can still be accelerated by the external electric field.
In addition, the wave energy decreases due to the intense ion heating, ultimately leading
to the suppression of IAT and related phenomena, including anomalous resistivity and
ion heating. We also observe the KP spectrum around saturation, which had not been
reproduced numerically ever before and emphasises the role of the nonlinear effect in
setting the wavenumber spectrum, even though the effect itself is not the main driver of
the saturation. The effect of electron trapping and sub-harmonic decay of IAWs is also
identified to modulate the wave spectrum. In phase IV, we observe that the current growth
rate approximately returns to the rate of free electron acceleration, due to the absence of
significant wave-induced friction. Furthermore, we note the emergence of a high-energy
ion tail and the prevalence of oblique modes during this phase. Finally, at the conclusion
of our simulation, we observe the formation of a double layer in the electric potential,
which triggers the generation of EAWs.

In the second part of our study, we have shifted our focus to the investigation of
anomalous resistivity resulting from IAT and its dependence on various simulation
parameters. We have studied the dependence of electron and ion heating on those
parameters and derive an estimate for the time duration of significant anomalous
resistivity. We have found that the quasi-linear approach yields the correct dependence on
the mass ratio and external electric field; however, it generally predicts a larger absolute
value of resistivity compared to our simulations. This discrepancy contradicts the findings
of many previous 1-D numerical studies, where stronger anomalous resistivity is typically
observed. We have also observed, and derived analytically, a new electric field threshold
below which the runaway electron population is small and the quasi-linear prediction of
anomalous resistivity holds.

Our study of the classical version of the IAT can be directly applicable to some
physical systems. For instance, IAI can exist in the separatrix region of reconnecting
current sheets, where the magnetic field may be negligible (in the no-guide-field case).
Situations where electrons are heated to high temperatures while ions remain cold, such
as stellar flares (Polito et al. 2018) and the low-speed solar wind near the Sun (Mozer
et al. 2022; Verscharen et al. 2022), have been observed. The findings in this paper are
therefore directly relevant to such environments. To be more specific, our simulations
reveal features that match with direct observations in various plasma environments. For
example, the plateau-shaped ion velocity distribution with a high-energy tail which we
find in our simulations is qualitatively similar to those measured in the solar wind (Mozer
et al. 2020) and interplanetary shocks (Wilson et al. 2020), where IAWs are believed to
be present. We also demonstrate the IAT’s capability to significantly heat the electron
core and potentially create the ‘strahl’ in the electron distribution commonly observed
in the solar wind (Verscharen, Klein & Maruca 2019). The development of anisotropy in
particle velocity distribution is qualitatively similar to the measured electron distribution
on the dayside of reconnecting magnetopause during IAW bursts (Uchino et al. 2017,
Steinvall et al. 2021). In addition, bursts of EAWs following IAT are experimentally
observed in laser-driven reconnection events (Zhang et al. 2023). We also observe that
oblique modes dominate over parallel modes in the later stages of nonlinear evolution.
When the driving field is strong, the dominance of oblique modes is expected to occur
even earlier (Bychenkov et al. 1988). These findings align with recent [AW observations in
the solar wind (Mozer, Vasko & Verniero 20215), where the most intense waves propagate
obliquely. The broadening of the spectrum during the nonlinear stage, as reported in other
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studies (Mozer et al. 2021a), is also consistent with the wavenumber spectrum observed
in our simulations (see figure 4a).

Our results can also be adapted to study magnetic reconnection influenced by
IAT. The electric field associated with reconnection is E,. ~ ¥y VaBy, where y is the
reconnection rate and V, is the Alfvén speed computed with the reconnecting field By.
Situations where this electric field is smaller than Eyp (2.1) can exist in space plasmas,
such as locations of the solar wind near the Sun (at distances around 20 solar radii)
where T./T; ~5 and T. ~ 50eV (Mozer et al. 2021b). For these parameters, we
find E../Eny ~ 1.27(1/Be)(vre/C)/mi/me(T;/T.) < 1. In this case, assuming a fast
reconnection rate of y ~ 0.1, the reconnecting electric field is about E,../(4menodp.) &
2y Ben/me/mi(vr. /) & 5 x 1075, which should be in the extremely weak field regime that
we have identified in this paper. We may estimate the upper limit of the duration of
significant resistivity by assuming that ion heating caused by IAT is an order of magnitude
larger than the value given by (4.5) (ion heating in run M25E2 is about twice as intense as
the prediction given by (4.5)). Then, according to (4.7), the corresponding T, is at most
of the order of 10%)&1. On the other hand, the typical reconnection time, T = 'L/ Va,
where L is the characteristic length scale of the reconnecting field, can also be estimated in
this context. There is a range of potential values of L that one may consider; a reasonable
lower bound appears to be the scale at which the turbulent inertial range starts: around
10° km at distances of this order (Coles & Harmon 1988; Huang et al. 2023; Lotz et al.
2023). At such a scale, the corresponding V, can be estimated using the Alfvén velocity
at the outer scale and the observed magnetic power spectrum; a value of V4 ~ 100 kms™!
seems reasonable (Huang et al. 2023). Assuming a fast reconnection rate of y =~ 0.1, T,
can easily extend beyond 105a)};1. Therefore, we conclude that there is ample time for AT
to induce particle heating and change the particle distribution during a reconnection event
in this system (and note that this conclusion should remain valid even if our estimates of
L and V, are somewhat off).

Finally, we discuss how our choice of simulation domain size and boundary conditions
may limit the validity of our results. The employment of periodic boundary conditions,
which effectively imitates an infinitely extended plasma, raises the question of whether
the simulated system size corresponds to realistic plasma scales. In run Main, we can
estimate the travel distance of an electron by integrating the area under the blue curve in
figure 1, which is approximately 10*Ap,. Hence, our conclusions should remain applicable
in a real plasma as long as the system size is larger than this estimate. In fact, this length
scale (10*Ap.) is small compared with the system size in various plasmas. Considering
the solar wind as an example, the Debye length at 1 AU is on the order of 10 m and, so,
10*Ap. corresponds to a distance ~100 km, which is still smaller than the ion skin depth
(~140km) (Verscharen et al. 2019). On the other hand, the limitation imposed by the
small size of the simulation box, especially in the parallel direction, excludes the effects
of long-wavelength wave modes that become prominent in phase V. The box-size double
layer that we observe can result from this artificial constraint. Despite this limitation, we
believe that the simulations conducted up to phase V and the mechanism elucidated for
triggering the second instability remain plausible. Expanding the simulation size in the
parallel direction for a 2D2V simulation, while desirable, was deemed impractical due to
the large computational resources it would require.

In summary, our numerical investigation represents a significant stride toward a
self-consistent understanding of the nonlinear dynamics of IAT. While we concentrate on
the weak field regime in this step, which contains simpler (though nonetheless complex)
nonlinear physics than the strong field case, our study yields substantial insights applicable
to various physical scenarios where IAWs are present. Our study lays a robust foundation
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for future investigations into more complex IAT situations. These encompass strong
external fields, the presence of magnetic fields, and less extreme initial temperature
ratios. It is also important to acknowledge that our simulations do not encompass the
hypothesised ultimate state of the system, wherein the current finally ceases to increase.
The mechanism responsible for stopping particle acceleration when a collisionless plasma
is exposed to an external electric field thus remains unknown. To better understand this
problem, longer and more computationally demanding simulations would be required,
which are currently beyond our available resources.

Acknowledgements

The authors thank I. Hutchinson, and N. Mandell for insightful discussions. The authors
thank the Gkeyll team for their help with the simulations.

Editor Alex Schekochihin thanks the referees for their advice in evaluating this article.

Funding

This work was supported by the NSF-DOE Partnership in Basic Plasma Science
and Engineering Award No. PHY-2010136 (ZL and NFL) and the Partnership for
Multiscale Gyrokinetic Turbulence (MGK), part of the US Department of Energy (DOE)
Scientific Discovery Through Advanced Computing (SciDAC) program, via DOE contract
DE-AC02-09CH11466 for the Princeton Plasma Physics Laboratory and subaward No.
UTA18-000276 to MIT under US DOE Contract DE-SC0018429 (MF). This research used
resources of the National Energy Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of the US Department of Energy
under Contract No. DE-AC02-05CH11231 using NERSC award FES-ERCAP0026577.
This research also used resources of the MIT-PSFC partition of the Engaging cluster at
the MGHPCC facility, funded by DOE award No. DE-FG02-91-ER54109 and the National
Energy Research Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the US Department of Energy under Contract No.
DE-AC02-05CH11231 using NERSC award FES-ERCAP0020063.

Declaration of interests

The authors report no conflict of interest.

Data availability statement

Readers may reproduce our results and also use Gkeyll for their applications. The code
used in this study is available online. Full installation instructions for Gkeyll are provided
on the Gkeyll website (https://gkeyll.readthedocs.io). The input files used in the study
are under version control and can be obtained from the repository at https://github.com/
ammarhakim/gkyl-paper-inp/tree/master/2023_JPP_iat.

Appendix A. Linear theory of IAI

Starting from the linearised Vlasov—Poisson equations (2.2), the plasma dielectric
function can be written as (Schekochihin 2022)

B pa i 9o
e(p, k) = 1—2 f p+1k ke (A1)
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FIGURE 12. Growth rates (a), growth rates divided by wavenumbers (b) and phase velocities
(c) of IAWs for different mass ratio cases obtained from solving (A3).

where p = —iw + y and « refers to different species. Given a wavevector k, one can
always choose the z-axis to be along k. Therefore, the dielectric function can be

rewritten as
o i
e(p.l) =1 —Z O /

where F,(v;) is the 1-D velocity distribution function, and prime denotes differentiation
with respect to v,. The analytical dispersion relation can be obtained by solving

)

‘v, —1i /k (A2)

e(p, k) =0. (A3)

Figure 12 shows plots of the growth rates (y), growth rates divided by wavenumbers
(y/k) and phase space velocities (w/k) as functions of the wavenumber, obtained by
solving (A3) for cases with different mass ratios. Both electrons and ions have a
Maxwellian velocity distribution. The electron distribution has a drift velocity of 0.5vt
with respect to ions. The electron-to-ion temperature ratio is 50, as in most of our runs.
Figures 12(b) and 12(c) are useful for determining the numerical resolution necessary; see
Appendix F.

Appendix B. Comparison with 1-D simulation

We run a 1D1V simulation with the same physical parameters as run Main. Figure 13
shows the differences between the 1-D and 2-D simulations. The simulation with the label
of 2D’ is run Main. The evolution of the 1-D system is close to the scenario described
by the quasi-linear theory in that it exhibits relatively steady wave energy after saturation,
as shown by the top left panel in the figure. As a result, ions can constantly gain energy
from the waves at an approximately constant rate via nonlinear trapping. We indeed see
ion temperature growing linearly on the top right panel. Moreover, as shown by the bottom
left panel, although a sharp drop in the current happens during saturation, its growth rate
quickly returns to the free-acceleration level. The corresponding anomalous resistivity,
plotted in the bottom right panel, shows only a sharp peak around saturation. No shutdown
of TIAT nor transition into EAWSs is observed in the 1-D case, which can be due to the
different retained plateau shapes of the electron velocity distribution as explained in the
following.

We plot 1-D electron velocity distribution functions in figure 14 right after saturation
(wpet = 1000) and at the end of phase III for the 2-D case (wyt = 1900). In the 1-D
case, after saturation, the electron distribution remains flat at the phase velocities of
the waves. This plateau greatly reduces the wave emissions by electrons and keeps the
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FIGURE 13. Time traces of wave energy (a), ion temperature (), current in the parallel direction
(c) and effective collision frequency (d) from 1-D and 2-D simulations with the same physical
parameters.

wave energy approximately constant afterward (see the red and blue dashed curves in
figure 14). On the other hand, the bulk of the electrons is still located on the right-hand
side of the plateau and are still freely accelerated by the external electric field. Therefore,
after the quick drop in current due to plateau formation, the current growth rate quickly
returns to a value that is close to the free acceleration rate. In contrast, in the 2-D case,
plateau formation in the parallel direction cannot shut down the growth of IAWs due
to the presence of oblique modes. The saturation of these oblique modes makes the
scattering much more efficient than the 1-D case, and scatters most of the electrons
back to the resonance region (the region with lower v,). Consequently, the 1-D electron
distribution exhibits in the 2-D case a bulk—tail shape, where both bulk and tail can be
reasonably well approximated with Maxwellian functions (see the red and blue solid
curves in figure 14). As the bulk remains stationary after saturation, the current growth
rate is significantly reduced. In sum, the qualitative and quantitative differences between
the electron distribution functions obtained in the 1-D and 2-D runs result in very different
nonlinear dynamics and demonstrate that the physics of IAT is not well captured by 1-D
models.

Appendix C. Electron velocity distribution fitting parameters

We summarise the fitting parameters at different moments for run Main in table 3.

The growth rates of different wave modes at different times, obtained by solving the
linear dispersion relation, are plotted in figure 15. It can be seen that all the wave modes
have growth rates close to zero at the moment of saturation (wp.t = 750). However, as
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Wpet =1000 1D
Wpet = 1000 2D
Wpet =1900 1D
Wpet =1900 2D

Fe(vz)

10 12

Vz/VTeo

FIGURE 14. 1-D electron velocity distribution function, Fe(v;), obtained from 1-D (dashed
curves) and 2-D (solid curves) simulations with the same physical parameters. The first time
moment plotted (red curves) is right after saturation and the second time moment (blue curves)
is at the end of phase III for the 2-D simulation.

twpe o UTe,b/UTeO ud,b/UTeO UTe,t/UTeO ud,t/vTeO
750 0.38 1.48 0.06 1.28 2.40
1000 0.38 1.55 0.01 1.75 2.44
1600 0.45 1.63 0.02 2.39 3.07
1900 0.56 1.63 0.05 2.83 3.23

TaBLE 3. Fitting parameters of the double Maxwellian model (3.4), for run Main at different
times.

the electron-to-ion temperature decreases, wave modes begin to be more strongly damped,
especially those with larger wavenumbers. The blue dashed curve is obtained by using the
fitted electron distribution at wp.t = 1000 but artificially increasing the ion temperature
to its value at w,.t = 1900; this yields a similar curve to that obtained at w,.t = 1900.
Therefore, we conclude that the strong damping of IAWs is indeed mainly caused by ion
heating.

Appendix D. EAW dispersion relation

To identify the wave modes in phase V, we calculate the theoretical dispersion relation of
EAWSs and compare it with the observed wavenumbers and frequencies in our simulation.
For electron waves, the Landau dispersion relation takes the form (Landau 1946)

o L[ gy 0f/dv (D1)
EEE— v— =0,
). v—ow/k

where w = w, + iy is the complex frequency, k the wavenumber and F, the electron
velocity distribution in the direction of wave propagation. The EAW dispersion relation
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FIGURE 15. Growth rates of different wave modes obtained by solving (3.5) at different times.
The electron distribution function is represented by the double Maxwellian model, (3.4), with the
fitted parameters summarised in table 3. Ion distribution is a single Maxwellian function with
the ion temperature and the drift velocity at the corresponding time. The blue dashed curve is
obtained by artificially increasing the ion temperature to that at wpet = 1900. The black dashed
marks y = 0. The black dotted line marks the relatively strong damping rate during phase III
(y = —0.003wpe).

is obtained by retaining only the principal part of the velocity integral in (D1), i.e.

= Lp [Ta 2 D2
k2 /oo Uv—a)/k_ ) 02)
This is because EAW theory assumes that there is a narrow plateau in the electron velocity
distribution around the phase velocities of the EAWSs, thereby rendering the waves immune
to Landau damping (Holloway & Dorning 1991). The assumption can be valid because the
trapped particle distribution can flatten the velocity distribution at the wave phase velocity.

To solve (D2) analytically, we consider parallel wave modes and use the double
Maxwellian model to approximate the 1-D electron distribution during phase V of run
M25E10. The fitted result is shown in figure 16(a), and the dispersion relation obtained
by solving (D2) is plotted in figure 16(b). These theoretically predicted wavenumbers,
frequencies and phase velocities agree well with the observed properties of waves during
phase V (see the w—k diagram in figure 7).

Appendix E. Extremely weak field regime

The threshold external electric field of the extreme weak field regime can be estimated
as follows. The growth rate of IAI predicted by the linear theory is approximately

T,

y(k, 1) = ku (1), (EL)

m

where u(f) = eE.t/m. is the bulk electron drift velocity (Schekochihin 2022). The wave
energy density, W, as a function of time is then

i eEey ,
W) = Woexp | 2k, | ———1 |, (E2)
8m; m,
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FIGURE 16. (@) 1-D electron velocity distribution and its fitting result using a double
Maxwellian model. The electron distribution snapshot is taken during the burst of EAWs in
phase V from run M25E10. (b) Dispersion relation obtained by solving (D2) with the double
Maxwellian fit shown in (a).

where W, is the initial wave energy density (noise). The wave energy density at the
moment of saturation, W,, can be estimated by quasi-linear theorys; it is

E2, m\"
Wsat ~ n()TeO = . (E3)
ST[l’loTe() nme

The time at which saturation occurs, i.e. t,, can thus be estimated by solving
W(ta) = W (E4)
We can estimate the drift velocity of electrons in the tail at the moment of saturation

eEex
Usat = Cy + —lsat- (ES)
m,

(5
To be in the extremely weak field regime, the difference between the ion sound speed
(phase velocity of the waves) and the drift velocity of the electron tail at the moment

of saturation should be smaller than the resonance width so that most of the tail can be
effectively trapped by the waves, i.e.

eE 1
— tsat 5 _Avtrap’ (E6)
m, 2

Usar — Cs ~

where Avy,, is the velocity width (in the parallel direction) of an electron hole in phase
space (i.e. trapping width). Here Avy,, can be estimated using
ep ~ m AV, (E7)
where ¢ is the typical electric potential at the moment of saturation in the system. We can
estimate ¢ using the saturation wave energy density, i.e.
(k¢)* E

P Wsa 5 E8
87 87 ' E)
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where we take k to be the wavenumber of the mode with the largest linear growth rate
(k ~ 21 x 0.1215)). Therefore,

o~ V8T (i mi)" (E9)
k 8mtngT.o Me '
The corresponding trapping width is then
8 T. 2\ 1/4 E2 : 1/8
Avlrap ~ @ ~ STthol o€ _Fea M . (E10)
e m2k? 8tngTeo M.

Substituting z,,, and (E10) into (E6), we obtain the inequality

2 A\ 12 12 1/4
In noTeo B mi < 1 (E) 12 (8mngTeo me ' E1D)
W() STU’loTe() ne 4 \8 E? ny

ext

We now can find a critical Eey, i.e. E', that makes the approximate sign in inequality

(E11) hold. Numerically, we find the E*' under our simulation set-up for the mass ratio of
25 is (assuming Wy /noTey ~ 1078)

rocrit E;)?tt ~ —4
Ey = ———~56x107", (E12)
dntngeldp.

which is consistent with our simulation results. Runs M25E2 and M25E1 should indeed
be in the extremely weak field regime.

In the extremely weak field regime, the dynamics in phase III exhibit some distinct
features. For example, in run M25E2, as shown in figure 17(a,c), both the wave energy
and current remain approximately constant after saturation. The key difference between
this regime and run Main is that a large fraction of electrons, including those in the tails,
become resonant with TAWSs. As the tail portion cannot efficiently run away, the shape of
electron velocity distribution barely changes during phase III. Consequently, wave energy
will not decrease until a critical temperature ratio in reached. In this simulation, after
the critical temperature ratio (7./T; ~ 10) is reached at around w,.t = 3000, the IAWs
are quickly damped, leading to a rapid decrease in wave energy. The corresponding ion
heating and anomalous resistivity, plotted in figure 17(b,d), are also quickly turned off.

Appendix F. Determining the numerical resolution
F.1. Ideal resolution
The numerical resolution in real space is exclusively determined by the unstable

wavenumbers of IAI. Assuming n grid points are required to resolve a single wavelength,
the corresponding grid size is approximately

2
Ax~ 21 (F1)

kmaxn

where ky.x 1S the largest unstable wavenumber of IAWs, which can be predicted from
linear theory. Conveniently, we find that k., depends weakly on the drift velocity between
electrons and ions according to linear theory, which implies that the ideal resolution in real
space is unchanged throughout the course of the simulations. According to the numerical
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FIGURE 17. Time traces of wave energy (a), ion temperature (b), current in the parallel direction
(c) and effective collision frequency (d) from run M25E2. A clear shutdown moment is visible
from these time traces.

scheme we are using, n is around 10. We can see in figure 12(a) that kpAp. ~ 27 X 0.36
for all mass-ratio cases. Plugging this k., into (F1), we obtain

—— x~023. (F2)

De

With regard to velocity space, we use two methods to guide the choice of numerical
resolution. The first method considers the phase velocities of linearly unstable IAWs. We
assume that at least three velocity grid points are required to be located in the interval of
phase velocities of unstable IAWS [ph min, Uph,max]» 1.€-

vph,max - Uph,min

Avl ~ ’
3

(F3)

This method was adopted in Petkaki et al. (2006).

The second method estimates the width of the electron resonance region due to the
IAWs when the system enters the nonlinear regime. We may assume that a mode will
enter the nonlinear regime when the bouncing frequency of an electron in the potential
well caused by this wave is comparable to the wave’s linear growth rate y; (Sagdeev
1967). If the maximum electric potential of the wave mode is ¢, the bouncing frequency
is wp = \/ek*p/2m.. Letting wp ~ i, we obtain ¢ ~ m.y?/ek*. The resonance width in
electron velocity space, Av, caused by this wave is Av ~ \/ep/m., and the corresponding
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No. {Az, Ay}//lDe {Ave,zs Ave,y}/UTeO

1 {1.0, 1.0} {0.042, 0.042}
2 {0.5,0.5} {0.083, 0.083}
3 {0.5,0.5) {0.042, 0.042}
3-1 {0.5,0.5} {0.042, 0.083)
4 {0.5,0.5) {0.021, 0.042}

TABLE 4. Resolution combinations for linear benchmarks and nonlinear tests.

resolution is

Av, ~ (%)m (F4)

To resolve most of the unstable waves, estimates given by (F3) and (F4) produce similar
results according to figure 12(b,c) (we truncate the wavenumber at kdp. = 0.3 when
estimating with (F4)). From figure 12(b,c), we also see that the ideal numerical resolution
in velocity space depends linearly on the inverse of the square root of mass ratio. We
summarise them here:

A
( ”) ~ 0.03, (F5)
UTe0 m; /me=25
A
( ”) ~ 0.015. (F6)
UTe0 /' s /ime=100
A
( ”) ~ 0.007. (F7)
UTe0 /' 1, /me=400

F.2. Linear benchmarks

We perform a set of benchmarks against linear theory to check both the simulation set-up
and the numerical resolution. In these simulations, no external electric field is applied.
Electrons have an initial drift velocity (#. = 0.5vr, Which is a typical drift velocity
during phase I of most of our simulations in the paper) such that the initial condition
is ion-acoustic unstable. An ion-to-electron mass ratio of 25 and an electron-to-ion initial
temperature of 50 are used. We only perturb one wave mode in each simulation. All the
simulations are run to the end of the linear stage.

The numerical resolution we use in our simulations differs from (F2) and (F5). This
is because adopting (F2) demands unaffordable computational power. However, due to
the fact that modes with very small or large wavenumbers are weak in amplitude and,
thus, unimportant to the nonlinear evolution of the system, we only need to resolve modes
within a certain range of wavenumbers that have relatively strong growth rates. Several
different resolution combinations are proposed in table 4 based on the estimates given by
(F2) and (F5). We refer to grid sizes in real space as (Az, Ay) and grid sizes in electron
and ion velocity spaces as (Ave,, Avey, Avi., Av;,). The combination #3-1 has the
same resolution in the z (parallel) direction with #3, and it is only used for the nonlinear
test described in § F.3. The ion velocity domain is small and thus demands much fewer
computational resources. We set Av; ; = Av;,, = vg0/3 for all simulations.

The benchmark results are concluded in figure 18. Combination #1 can correctly resolve
the growth rates with wavenumbers smaller than about 27t x 0.141., while combinations
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FIGURE 18. Linear benchmark results. The black dashed curve is the solution to the
ion-acoustic analytical dispersion relation (A3) for m;/me = 25 and T;/T. = 50 with electron
drift velocity of ue = 0.5vTe0. Symbols are obtained from numerical simulations performed with
the numerical resolution combinations indicated in table 4.

#3 and #4 can resolve higher wavenumber modes up to 27 x 0.221;.. Different from
combination #1, combination #2 cannot resolve wave modes with higher wavenumbers
because of insufficient numerical resolution in electron velocity space. The fact that
combinations #3 and #4 can resolve a similar range of wave modes implies that Av, , =
0.042v71 is enough to resolve most of the linearly unstable wave modes.

F.3. Nonlinear tests

To understand how these numerical resolutions influence the nonlinear evolution of
our system, we perform turbulence simulations with different numerical resolution
combinations in table 4.

The set-up for these turbulent tests is the same as for the results presented in the main
paper. Both electrons and ions have zero drift velocity at the start, and an external electric
field is applied to drive IAI The external electric field is chosen to be Eexl =25x%x 1073,
which corresponds to E10 in run names. All simulations are long enough to identify the
bursts of EAWs.

The time traces for perturbed electric field energy, ion temperature, current in the
parallel direction and anomalous resistivity are plotted in figure 19. It can be seen that all
of these resolution combinations exhibit similar linear and nonlinear evolution behaviour.

The simulation that deviates most from the others is combination #1: it exhibits higher
ion heating than the others and somewhat shorter phases III and IV. On the other hand,
combination #2 behaves much better than resolution combination #1, even though it is only
able to resolve a similar wavenumber range as combination #1 in the linear benchmarks.
As expected, not being able to resolve the linear growth rates of some modes correctly
does not imply that the nonlinear behaviour will also be substantially influenced because
wave amplitude is small during the linear phase and thus requires finer grids to resolve
it. This observation implies that lower resolution in velocity space has less of an effect in
the nonlinear stage. In addition, the highly overlapped time traces between combination
#3 and #3-1 imply that lower resolution in the y direction of electron velocity space is
harmless. Based on these observations, we finally conclude that resolution combination
#3—1 can capture nonlinear physics accurately enough for the mass ratio of 25 cases.
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FIGURE 19. Time traces of wave energy (a), ion temperature (), current in the parallel direction
(c) and effective collision frequency (d) from nonlinear evolution tests with different numerical
resolution combinations (indicated in table 4).

To summarise, as the real space numerical resolution does not depend on mass ratio, the
grid size for all the simulations can be chosen as

{Az, Ay} = {0.5, 0.5} Ape. (F8)

The required velocity space numerical resolution linearly depends on the inverse square
root of mass ratio (see figure 12 and (F5)—(F7)), so the resolution of electron velocity
space for the other cases can be calculated based on combination #3—1. For example, the
numerical resolution of electron velocity space of run Main should be

[Ave.., Ave,} = {0.021, 0.042}vrp. (F9)

For run M200E10, we are forced by computational resource constraints to keep this
numerical resolution (F9). While insufficient to adequately capture the linearly unstable
spectrum, these nonlinear tests demonstrate that phases III and I'V of the evolution should
still be reasonably resolved.
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