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Abstract
The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with
a conductive boundary condition vanish locally around a polyhedral or conic corner in R

n, n = 2, 3. Second, we
apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its
boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field
measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in
two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are
investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity
assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop
novel technical strategies to achieve these new results.

1. Introduction
1.1. Mathematical setup and summary of major findings

The purpose of the paper is twofold. We are concerned with the spectral geometry of transmission
eigenfunctions and the geometrical inverse scattering problem of recovering the shape of an anomalous
scatterer, independent of its medium content, by a single far-field measurement. We first introduce the
mathematical setup of our study.

Let � be a bounded Lipschitz domain in R
n, n = 2, 3, with a connected complement Rn\�. Let V ∈

L∞(�) and η ∈ L∞(∂�) be complex-valued functions. Consider the following conductive transmission
eigenvalue problem associated with k ∈R+ and (w, v) ∈ H1(�) × H1(�):⎧⎪⎪⎪⎨⎪⎪⎪⎩

�w + k2(1 + V)w = 0 in �,

�v + k2v = 0 in �,

w = v, ∂νw = ∂νv + ηv on ∂�,

(1.1)

where and also in what follows, ν ∈ S
n−1 signifies the exterior unit normal vector to ∂�. Clearly, (w, v) =

(0, 0) is a trivial solution to (1.1). If there exists a non-trivial pair of solutions to (1.1), k is referred to
as a conductive transmission eigenvalue and (u, v) is the corresponding pair of conductive transmission
eigenfunctions. η is called the boundary impedance or conductive parameter. If η≡ 0, then (1.1) is
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reduced to the standard transmission eigenvalue problem. Hence, the conductive transmission eigenvalue
problem (1.1) is a generalized formulation of the transmission eigenvalue problem. Nevertheless, it
has its own physical background when η≡\ 0 as shall be discussed in what follows. The existence and
discreteness of the conductive transmission eigenvalues can be found in [14].

One of the main purposes of this paper is to quantitatively characterize the geometric property of the
conductive transmission eigenfunctions (assuming their existence). The major findings can be briefly
summarized as follows. If there is a polyhedral or conic corner on ∂�, then under certain regularity
conditions the eigenfunctions must vanish at the corner. The regularity conditions are characterized by
the Hölder continuity of the parameters q := 1 + V and η locally around the corner as well as a certain
Herglotz extension property of the eigenfunction v, which is weaker than the Hölder continuity. The
results extend the relevant ones in [26] in two directions: first, we consider a more general geometric
setup where both polyhedral and conic corners are investigated, whereas in [26] only polygonal and
edge corners are concerned; second, we significantly relax the regularity assumptions in [26] which is
particularly useful for the geometrical inverse problem discussed in what follows. We develop novel
technical strategies to achieve those new results. More detailed discussion shall be given in the next
subsection.

The other focus of our study is the inverse scattering problem from a conductive medium scatterer.
Let V be extended by setting V = 0 inRn\�. Throughout, we set q = 1 + V . Let ui(x) be a time-harmonic
incident wave which is an entire solution to

�ui(x) + k2ui(x) = 0, x ∈R
n, (1.2)

where k ∈R+ signifies the wave number. Let (�, q, η) denote a conductive medium scatterer with �
signifying its shape and q, η being its medium parameters. The impingement of ui on (�, q, η) generates
wave scattering and it is described by the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u− + k2qu− = 0, in �,

�u+ + k2u+ = 0, in R
n \�,

u+ = u−, ∂νu+ + ηu+ = ∂νu−, on ∂�,

u+ = ui + us, in R
n\�,

limr→∞ r(n−1)/2(∂rus − ikus) = 0, r = |x|,

(1.3)

where i := √−1 and the last limit in (1.3) is known as the Sommerfeld radiation condition that char-
acterizes the outward radiating of the scattered wave field us. The well-posedness of the direct problem
(1.3) can be found in [13] for the unique existence of u := u−χ� + u+χRn\� ∈ H1

loc(R
n). Moreover, the

scattered field admits the following asymptotic expansion:

us(x) = eik|x|

|x|(n−1)/2

(
u∞(x̂) +O

(
1

|x|(n−1)/2

))
, |x| → ∞,

which holds uniformly in all directions x̂ := x/|x| ∈ S
n−1. The function u∞ defined on the unit sphere

S
n−1 is known as the far-field pattern of us. Associated with (1.3), we are concerned with the following

geometrical inverse problem:

u∞(x̂; ui), ui fixed −→� independent of q and η. (1.4)

That is, we intend to recover the geometrical shape of the conductive scatterer independent of its physical
content by the associated far-field pattern generated by a single incident wave (which is usually referred
to as a single far-field measurement in the literature).

Determining the shape of a scatterer from a single far-field measurement constitutes a longstanding
problem in the inverse scattering theory [21, 22, 39]. In this paper, based on the spectral geometric
results discussed earlier, we derive several new unique identifiability results for the inverse problem
(1.4). In brief, we establish local unique recovery results by showing that if two conductive scatterers
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possess the same far-field pattern, then their difference cannot possess a polyhedral or conic corner. If
we further imposed a certain a priori global convexity on the scatterer, then one can establish the global
uniqueness result. Moreover, we can show that the boundary impedance parameter η can also be uniquely
recovered. It is emphasized that all of the results established in this paper hold equally for the case η≡ 0.
If η≡ 0, (1.3) describes the scattering from a regular medium scatterer (�, q). In the case η �= 0, (�, q, η)
(effectively) characterizes a regular medium scatterer (�, q) by a thin layer of highly loss medium [1,
13], and in two dimensions (1.3) describes the corresponding transverse electromagnetic scattering,
whereas in three dimensions (1.3) describes the corresponding acoustic scattering. In addition to its
physical significance, introducing a boundary parameter ηmakes our study more general which includes
η≡ 0 as a special case. Hence, in what follows, we also call (v, w) to (1.1) as generalized transmission
eigenfunctions.

1.2. Connection to existing studies and discussions

Before discussing the relevant existing studies, we note one intriguing connection between the scatter-
ing problem (1.3) and the spectral problem (1.1). If u∞ ≡ 0, which by Rellich’s theorem implies that
u+ = ui in R

n\�, one can show that (v, w) = (ui|�, u−|�) fulfils the spectral system (1.1). In the case
of u∞ ≡ 0, no scattering pattern can be observed outside �, and hence, the scatterer (�, q, η) is invisi-
ble/transparent with respect to the exterior observation under the wave interrogation by ui. On the other
hand, if (w, v) is a pair of transmission eigenfunctions to (1.1), then by the Herglotz extension v can
give rise to an incident wave whose impingement on (�, q, η) is (nearly) no scattering, i.e., (�, q, η) is
(nearly) invisible/transparent.

Recently, there has been considerable interest in quantitatively characterizing the singularities of scat-
tering waves induced by the geometric singularities on the shape of the underlying scatterer as well as its
implications to invisibility and geometrical inverse problems. There are two perspectives in the literature.
The first one is mainly concerned with occurrence or non-occurrence of non-scattering phenomenon,
namely whether invisibility can occur or not. The main rationale is that if the scatterer possesses a geo-
metric singularity (in a proper sense) on its shape, then it scatters a generic incident wave nontrivially,
namely invisibility cannot occur. Here, the generic condition is usually characterized by a non-vanishing
property of the incident wave at the geometrically singular place. It first started from the study in [12]
for acoustic scattering with many subsequent developments in different physical contexts [4–8, 10, 18,
19, 42, 45–47].

The other one is a spectral perspective which is mainly concerned with the spectral geometry of trans-
mission eigenfunctions. According to the connection mentioned above, the spectral geometric results
characterize the patterns of the wave propagation inside a (nearly) invisible/transparent scatterer. It was
first discovered in [9] that transmission eigenfunctions are generically vanishing around a corner point
and such a local geometric property was further extended to conductive transmission eigenfunctions in
[26], elastic transmission eigenfunctions in [5, 33] and electromagnetic transmission eigenfunctions in
[10]. Though the two perspectives share some similarities, especially about the vanishing of the wave
fields around the geometrically singular places, there are subtle and technical differences. In fact, it is
numerically observed in [11] that there exist transmission eigenfunctions which do not vanish, instead
localize, around geometrically singular places. An unobjectionable reason to account for such (locally)
localizing behaviour of the transmission eigenfunctions is the regularity of the eigenfunctions at the
geometrically singular places. In general, if the transmission eigenfunctions are Hölder continuous, they
locally vanish around the singular places. Nevertheless, it is shown in [41] that under a certain Herglotz
extension property, the locally vanishing property still holds. It is shown in [41] that the aforementioned
regularity criterion in terms of the Herglotz extension is weaker than the Hölder regularity. In addition
to the local geometric pattern, the spectral geometric perspective also leads to the discovery of certain
global geometric patterns of the transmission eigenfunctions. Indeed, it is discovered in [20, 24, 25] that
the transmission eigenfunctions tend to (globally) localize on ∂� with many subtle structures. Those
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spectral geometric results have been proposed to produce a variety of interesting applications, including
super-resolution imaging [20], wave field boundary localization [29], artificial mirage [25] and pseudo
plasmon resonance [2, 3]. We also refer to [39] for more related results in different physical contexts.

In this paper, we adopt the second perspective to study the (local) geometric properties of the conduc-
tive transmission eigenfunctions as well as consider the application to address the unique identifiability
issue for the geometrical inverse scattering problem. As discussed in the previous subsection, our results
derived in this paper extend the relevant ones in [26] in terms of the geometric setup as well as the regu-
larity requirements. To achieve these new results, we develop novel technical strategies. In principle, we
adopt microlocal tools to quantitatively characterize the singularities of the eigenfunctions induced by
the corner or conic singularities. Nevertheless, we utilize CGO (Complex Geometric Optics) solutions
of the PDO (partial differential operator) �+ (1 + V) in our quantitative analysis, whereas in [26], the
analysis made use of certain CGO solutions to�. This induces various subtle and technical quantitative
estimates and asymptotic analysis. Finally, as also discussed in the previous subsection, we apply the
newly derived spectral geometric results to establish several novel unique identifiability results for the
geometric inverse problem (1.4). We would also like to mention in passing some recent results on deter-
mining the shape of a scattering object by a single or at most a few far-field measurements in different
physical contexts [4, 6, 7, 10, 30–32, 40, 43]. Recent developments of uniqueness and stability analysis
for inverse scattering using spectral geometry can be found in [28].

The rest of the paper is organized as follows. In Section 2, we collect some preliminary results which
are needed in the subsequent analysis. In Section 3, we show that the conductive transmission eigen-
functions to (1.1) near a convex sectorial corner in R

2 must vanish. In Section 4, we study the vanishing
of conductive transmission eigenfunctions to (1.1) near a convex conic or polyhedral corner in R

3. In
Section 5, we discuss the visibility of a scatterer associated with (1.3). Furthermore, the unique recovery
for the shape determination� associated with the corresponding conductive scattering problem (1.3) is
investigated.

2. Preliminaries

In this section, we present some preliminary results which shall be frequently used in our subsequent
analysis.

Given s ∈R and p ≥ 1, the Bessel potential space is defined by

Hs,p := {f ∈ Lp(Rn); F−1[(1 + |ξ |2)
s
2 Ff ] ∈ Lp(Rn)}, (2.1)

where F and F−1 denote the Fourier transform and its inverse, respectively.
We introduce a complex geometrical optics (CGO) solution u0 defined by (2.2) in Lemma 2.1.

Lemma 2.1. [19] Given the space dimensions n = 2, 3, let q ∈ H1,1+ε0 , ε0 ∈ (0, 1) and

u0(x) = (1 +ψ(x))eρ·x, x ∈R
n (2.2)

where

ρ = −τ (d + id⊥), (2.3)

with d, d⊥ ∈ S
n−1 satisfying d ⊥ d⊥ and τ ∈R+. For sufficient large τ , we have

�u0 + k2qu0 = 0 in R
n, (2.4)

and ψ(x) fulfils that

||ψ(x)||H1,p =O
(
τ

n( 1
p̃ − 1

p )−2
)

, (2.5)

where (̃p, p, ε0) = (24/19, 8, 1/2) for n = 2 and (̃p, p, ε0) = (120/79, 8, 7/8) for n = 3.
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By Laplace transform and the exponential function of negative order analysis, we can readily have
the following proposition.

Proposition 2.1. For any given α > 0 and 0< ε < e, we have the following estimates∣∣∣∣∫ ∞

ε

rαe−μrdr

∣∣∣∣≤ 2

�μe
ε
2 �μ, (2.6a)∫ ε

0

rαe−μrdr = �(α + 1)

μα+1
+O

(
2

�μe− ε
2 �μ
)

, (2.6b)

as �(μ) → ∞, where �(s) stands for the Gamma function.

Lemma 2.2. [23] Let�⊂R
n be a bounded Lipschitz domain. For any f , g ∈ H1,� := {f ∈ H1(�) |�f ∈

L2(�)}, then the following Green formula holds∫
�

(g�f − f�g)dx =
∫
∂�

(g∂ν f − f ∂νg)dσ , (2.7)

where ∂ν f is the exterior normal derivative of f to ∂�.

3. Vanishing of transmission eigenfunctions near a convex planar corner

In this section, we consider the vanishing property of conductive transmission eigenfunctions to (1.1)
near corners in R

2. Firstly, let us introduce some notations for the subsequent use. Let (r, θ ) be the polar
coordinates in R

2; that is x = (x1, x2) = (r cos θ , r sin θ ) ∈R
2. For x ∈R

2, Bh(x) denotes an open ball of
radius h ∈R+ and centred at x. For simplicity, we denote Bh := Bh(0). Consider an open sector in R

2

with the boundary �± as follows,

K= {x ∈R
2 | θm < arg (x1 + ix2)< θM}, (3.1)

where −π < θm < θM <π , i := √−1 and the two boundaries �± of K correspond to (r, θm) and (r, θM)
with r> 0, respectively . Set

Sh =K∩ Bh, �±
h = �± ∩ Bh, �h =K∩ ∂Bh. (3.2)

Let the Herglotz wave function be defined by

u(x) =
∫
S1

eikξ ·xg(ξ )dξ , ξ ∈ S
n−1, x ∈R

n, g ∈ L2(Sn−1), n = 2 or 3, (3.3)

which is an entire solution of

(�+ k2)u(x) = 0 in R
n, n = 2 or 3.

By [48, Theorem 2 and Remark 2], we know that the set of the Herglotz wave function is dense with
respect to H1 norm in the set of the solution to

(�+ k2)v(x) = 0 in D, D ⊂R
n, n = 2 or 3,

where D is a bounded Lipschitz domain with a connected complement.
Consider the transmission eigenvalue problem (1.1) defined in a bounded Lipschitz domain� with a

connected complement. Since � is invariant under rigid motions, without loss of generality, we always
assume that 0 ∈ ∂� throughoutthe rest of this paper. In Theorem 3.1, we establish the vanishing property
of the transmission eigenfunctions near a convex planar corner under H1 regularity with certain Herglotz
wave approximation assumptions in the underlying corner. We postpone the proof of Theorem 3.1 in the
subsection 3.1. Compared with the assumptions in [26, Theorem 2.1], we remove the technical condition
qw ∈ Cα(Sh), which is critical for the analysis in [26].

Theorem 3.1. Consider a pair of transmission eigenfunctions v ∈ H1(�) and w ∈ H1(�) to (1.1) asso-
ciated with k ∈R+, where � is a bounded Lipschitz domain with a connected complement. Suppose
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that 0 ∈ � ⊂ ∂� such that �∩ Bh =K∩ Bh = Sh, where the sector K is defined by (3.1) and h ∈R+ is
sufficiently small such that q ∈ H2(Sh) and η ∈ Cα(�±

h ), where α ∈ (0, 1). If the following conditions are
fulfilled:

(a) for any given positive constants β and γ satisfying

γ < αβ, (3.4)

the transmission eigenfunction v can be approximated in H1(Sh) by the Herglotz wave functions

vj =
∫
S1

eikξ ·xgj(ξ )dξ , j = 1, 2, · · · ,

with the kernels gj satisfying the approximation property

‖v − vj‖H1 ≤ j−β , ‖gj‖L2(S1) ≤ jγ ; (3.5)

(b) η does not vanish at 0, where 0 is the vertex of Sh;
(c) the open angle of Sh satisfies

−π < θm < θM <π and 0< θM − θm <π ;

then one has

lim
λ→+0

1

m(B(0, λ) ∩�)

∫
B(0,λ)∩�

|v(x)|dx = 0, (3.6)

where m(B(0, λ) ∩�) is the area of B(0, λ) ∩�.

It is remarked that the Herglotz approximation property in (3.5) characterizes a regularity lower than
Hölder continuity (cf. [41]). In the following theorem, if the stronger Hölder regularity imposed on the
transmission eigenfunction v near the corner is satisfied, we can prove that v vanishes near the corner
point. The proof of Theorem 3.2 is a slight modification of the corresponding proof of Theorem 3.1. We
only give a sketched proof of Theorem 3.2 at the end of Subsection 3.1.

Theorem 3.2. Consider a pair of transmission eigenfunctions v ∈ H1(�) and w ∈ H1(�) to (1.1) asso-
ciated with k ∈R+, where� is a bounded Lipschitz domain with a connected complement. Suppose that
0 ∈ � ⊂ ∂� such that �∩ Bh =K∩ Bh = Sh, where the sector K is defined by (3.1) and h ∈R+. If the
following conditions are fulfilled:

(a) q ∈ H2(Sh), v ∈ Cα(Sh) and η ∈ Cα(�±
h ), where 0<α < 1;

(b) the function η does not vanish at the vertex 0, where 0 is the vertex of Sh, i.e.,

η(0) �= 0; (3.7)

(c) the open angels of Sh satisfies

−π < θm < θM <π , and 0< θM − θm <π ;

then one has

v(0) = 0. (3.8)

Recall that � is a bounded Lipschitz domain and � is an open subset of ∂�. Consider the classical
transmission eigenvalue problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

�w + k2qw = 0 in �,

�v + k2v = 0 in �,

w = v, ∂νw = ∂νv on ∂�,

(3.9)
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which can be formulated from (1.1) by setting η≡ 0. (3.9) is referred to as interior transmission eigen-
value problem, which has a colourful history in inverse scattering theory (cf. [16, 17, 39] and references
therein). It was revealed that in [4, Theorem 1.2], the transmission eigenfunction v and w to (3.9) must
vanish near a planar corner of ∂� if v or w is H2-smooth near the underlying corner and q is Hölder
continuous at the corner point. In the following Corollary 3.3, we shall establish the vanishing character-
ization of transmission eigenfunctions to (3.9) near a convex planar corner under two regularity criteria
on the underlying transmission eigenfunctions near the corner. We should emphasize that we remove
the H2-smooth near the corner assumption on v and w as stated in [4, Theorem 1.2], where we only
require that v is Hölder continuous at the corner point or holds a certain regularity condition in terms of
Herglotz wave approximations (which is weaker than Hölder continuity as remarked earlier). The proof
of Corollary 3.3 is postponed to Subsection 3.2.

Corollary 3.3. Consider a pair of transmission eigenfunctions v ∈ H1(�) and w ∈ H1(�) to (3.9) asso-
ciated with k ∈R+, where� is a bounded Lipschitz domain with a connected complement. Suppose that
0 ∈ ∂� such that �∩ Bh =K∩ Bh = Sh, where the sector K is defined by (3.1) and h ∈R+ is sufficient
small such that q ∈ H2(Sh) and q(0) �= 1. The following two statements are valid.

(a) For any given positive constants β and γ satisfying γ < β, if the transmission eigenfunction v and
Herglotz wave functions vj with the kernel gj satisfying the approximation property (3.5), then we
have the vanishing property of v near Sh in the sense of (3.6).

(b) If v ∈ Cα(Sh) with α ∈ (0, 1), then it holds that v(0) = 0.

3.1. Proof of Theorem 3.1

Given a convex sector K defined by (3.1) and a positive constant ζ , we define Kζ as the open set of S1

which is composed of all directions d ∈ S
1 satisfying that

d · x̂> ζ > 0, for all x̂ ∈K∩ S
1. (3.10)

Throughout the present section, we always assume that the unit vector d in the form of the CGO solution
u0 given by (2.2) fulfils (3.10).

Proposition 3.1. Let Sh and ρ be defined in (3.2) and (2.3), respectively, where d satisfies (3.10). Then,
we have ∣∣∣∣∣

∫
�±

h

eρ·xdx

∣∣∣∣∣≥ CSh

τ
−O

(
1

τ
e− 1

2 ζhτ

)
, (3.11)

for sufficiently large τ , where CSh is a positive number only depending on the opening angle θM − θm of
K and ζ .

Proof. Using polar coordinates transformation and Proposition 2.1, we have∫
�±

h

eρ·xdσ = �(1)

τ

1

(d + id⊥) · x̂1
− IR1 + �(1)

τ

1

(d + id⊥) · x̂2
− IR2 ,

where x̂1 and x̂2 are unit vector of x on �− and �+, and

IR1 =
∫
�−\�−

h

e−τ (d+id⊥)dσ , IR2 =
∫
�+\�+

h

e−τ (d+id⊥)dσ .
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Hence, with the help of Proposition 2.1, for sufficiently large τ , we have the following integral inequality

∣∣∣∣∣
∫
�±

h

eρ·xdσ

∣∣∣∣∣≥ 1

τ

∣∣∣∣ 1

(d + id⊥) · x̂1
+ 1

(d + id⊥) · x̂2

∣∣∣∣− |IR1 | − |IR2 |

≥ Ch

τ
− O

(
1

τ
e− 1

2 ζhτ

) (3.12)

by using (3.10).

The following proposition can be directly derived by using (3.10) and Proposition 2.1.

Proposition 3.2. For any given t> 0, we let Sh and �±
h be defined by (3.2). Then, one has

||eρ·x||Lt(Sh) ≤ C

(
1

τ 2
+ 1

τ
e− t

2 ζhτ

) 1
t

, (3.13)

||eρ·x||Lt(�±
h ) ≤ C

(
1

τ
+ 1

τ
e− t

2 ζhτ

) 1
t

. (3.14)

as τ → ∞, where ||eρ·x||Lt(Sh) =
(∫

Sh
|eρ·x|tdx

)1/t

, ρ is defined in (2.3) and C is a positive constant only
depending on t, ζ .

Lemma 3.1. Under the same setup of Theorem 3.1, let the CGO solution u0 be defined by (2.2). Denote
u = w − v, where (v, w) is a pair of transmission eigenfunctions of (1.1) associated with k. Then, it holds
that ⎧⎪⎨⎪⎩

�u0 + k2qu0 = 0 in Sh,

�u + k2qu = k2(1 − q)v in Sh,

u = 0, ∂νu = ηv on �±
h ,

(3.15)

and

||ψ(x)||H1,8 =O(τ− 2
3 ), (3.16)

where ψ and τ are defined in (2.2).

Proof. Since q ∈ H2(Sh), let q̃ be the Sobolev extension of q such that q̃ ∈ H2, then by this we have
q̃ ∈ H1,1+ε0 , ε0 ∈ (0, 1). Then by Lemma 2.1, one readily has (3.16).

Lemma 3.2. [34, 35, 44] Let � be a Lipschitz bounded and connected subset of Rn, n = 2, 3 whose
bounded and orientable boundary is denote by �. Let the restriction γ0(u) = u|�, then the operator γ0 is
linear and continuous from H1,p(�) onto H1− 1

p ,p(�) for 1 ≤ p<∞.

Lemma 3.3. Let �±
h be defined in (3.2), eρ·x and ψ be given by (2.2) and (2.3). For sufficiently large τ ,

it holds that ∣∣∣∣∣
∫
�±

h

eρ·xψ(x)dσ

∣∣∣∣∣� τ− 17
12 . (3.17)

Throughout the rest of this paper, � means that we only give the leading asymptotic analysis by
neglecting a generic positive constant C with respect to τ → ∞, where C is not a function of τ .
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Proof. Taking y = τx, then using Hölder inequality and Lemma 3.2, one has∫
�±

h

|eρ·x||ψ(x)|dσ � 1

τ
‖e−d·y‖

L
8
7 (�±

τh)

∥∥∥ψ (y
τ

)∥∥∥
L8(�±

τh)
(3.18)

� 1

τ
‖e−d·y‖

L
8
7 (�±)

∥∥∥ψ (y
τ

)∥∥∥
H1,8(Sτh)

� 1

τ
‖e−d·y‖

L
8
7 (�±)

∥∥∥ψ (y
τ

)∥∥∥
H1,8(K)

,

for sufficiently large τ . We have 1
τ
< 1, and it holds that∥∥∥ψ (y

τ

)∥∥∥
H1,8(K)

≤ τ 1
4 ‖ψ(x)‖H1,8(K) =O(τ− 5

12 ), as τ → ∞. (3.19)

Furthermore,

‖e−d·y‖
L

8
7 (�±)

≤
(∫

�±
e− 8

7 ζ |y|dσ

) 7
8

= 2

(
7

8

1

ζ

) 7
8

, (3.20)

where ζ is defined in (3.10). Hence, ‖e−d·y‖
L

8
7 (�±)

is a positive constant which only depends on ζ .
Combining (3.19) and (3.20) with (3.18), we can prove Lemma 3.3.

Lemma 3.4. Let�h, Sh be defined in (3.2) and u0(x) be given by (2.2). Then, u0(x) ∈ H1(Sh) and it holds
that

‖u0(x)‖L2(�h) �
(

1 + τ− 2
3

)
e−ζhτ , (3.21a)

‖∇u0(x)‖L2(�h) � (1 + τ )
(

1 + τ− 2
3

)
e−ζhτ , (3.21b)∫

Sh

|x|α|u0(x)|dx � τ−(α+ 29
12 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
(3.21c)

as τ → ∞, where ζ is defined in (3.10) and α ∈ (0, 1).

Proof. Using polar coordinates transformation, (2.6a) and (3.10), we can obtain that

‖eρ·x‖Lt(�h) � e−ζhτ . (3.22)

where ρ is defined in (2.3) and t is a positive constant.
According to (3.16) and Lemma 3.2, for sufficient large τ , one can show that

‖ψ(x)‖L4(�h) ≤ C‖ψ(x)‖H1,8(Sh) = O(τ− 2
3 ), (3.23)

where C is a positive constant, which is not a function of τ .
By virtue of (3.23) and Hölder inequality, it can be directly verified that

‖u0‖L2(�h) ≤ ‖eρ·x‖L2(�h) + ‖eρ·x‖L4(�h)‖ψ(x)‖L4(�h)

�
(

1 + τ− 2
3

)
e−ζhτ , as τ → ∞.

(3.24)

Similarly, using Cauchy-Schwarz inequality, (3.21a) and Proposition 2.1, we have

‖∇u0(x)‖L2(�h) ≤
√

2τ‖u0‖L2(�h) + ‖eρ·x‖L4(�h)‖∇ψ(x)‖L4(�h)

� (1 + τ )(1 + τ− 2
3 )e−ζhτ , as τ → ∞.

(3.25)

Moreover, by using Cauchy-Schwarz inequality, we know that∫
Sh

|x|α|u0|dx ≤
∫

Sh

|x|α|eρ·x|dx +
∫

Sh

|x|α|eρ·x||ψ(x)|dx. (3.26)

Using polar coordinates transformation and Proposition 2.1, we can deduce that∫
Sh

|x|α|eρ·x|dx �
(

1

τ α+2
+ 1

τ

)
e− 1

2 ζhτ , as τ → ∞. (3.27)
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Next, by letting y = τx and Hölder inequality, it can be calculated that∫
Sh

|x|α|eρ·x||ψ(x)|dx ≤ 1

τ α+2

∫
K

|y|α|e−d·y|
∣∣∣ψ (y

τ

)∣∣∣ dx

≤ 1

τ α+2
‖|y|α|e−d·y|‖

L
8
7 (K)

∥∥∥ψ (y
τ

)∥∥∥
L8(K)

.

(3.28)

With the help of variable substitution and (3.16), we can calculate that∥∥∥ψ (y
τ

)∥∥∥
L8(K)

= τ
1
4 ‖ψ(x) ‖L8(K) =O(τ− 5

12 ), as τ → ∞. (3.29)

Similar to (3.20), by using polar coordinates transformation, we have ‖|y|α|e−d·y|‖
L

8
7 (K)

is a positive
constant and not a function of τ . Therefore, combining (3.29), (3.28) and (3.27) with (3.26), we have
(3.21c).

The proof is complete.

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. By Green’s formula (2.7) and (3.15), the following integral equality holds∫
�h

(w − v)∂νu0 − u0∂ν(w − v)dσ −
∫
�±

h

ηu0vdσ = k2

∫
Sh

(q − 1)vu0dx. (3.30)

Denote

fj = (q − 1)vj.

Since q ∈ H2(Sh), by Sobolev embedding property, one has q ∈ Cα(Sh) where α ∈ (0, 1]. Clearly, vj ∈
Cα(Sh), hence fj ∈ Cα(Sh). According vj ∈ Cα, η ∈ Cα, we have the expansion

fj = fj(0) + δfj, |δfj| ≤ ‖fj‖Cα (Sh)|x|α,
vj = vj(0) + δvj, |δvj| ≤ ‖vj‖Cα (Sh)|x|α,
η= η(0) + δη, |δη| ≤ ‖η‖Cα (�±

h )|x|α.
(3.31)

By virtue of (3.31) and (2.2), it yields that

k2

∫
Sh

(q − 1)vu0dx = −
3∑

m=1

Im,
∫
�±

h

ηu0vdσ = I −
9∑

m=4

Im, (3.32)

where

I1 = −k2

∫
Sh

(q − 1)(v − vj)u0dx, I2 = −
∫

Sh

δfju0dx,

I3 = −fj(0)
∫

Sh

u0dx, I4 = −η(0)
∫
�±

h

(v − vj)u0dσ ,

I5 = −
∫
�±

h

δη(v − vj)u0dσ , I6 = −η(0)vj(0)
∫
�±

h

eρ·xψ(x)dσ ,

I7 = −η(0)
∫
�±

h

δvju0dσ , I8 = −vj(0)
∫
�±

h

δηu0dσ ,

I9 = −
∫
�±

h

δηδvju0dσ , I = η(0)vj(0)
∫
�±

h

eρ·xdσ .
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Substituting (3.32) into (3.30), we have the following integral identity

I =
9∑

m=1

Im + J1 + J2,

where

J1 =
∫
�h

(w − v)∂νu0dσ , J2 = −
∫
�h

u0∂ν(w − v)dσ . (3.33)

Therefore, it yields that

|I| ≤
9∑

m=1

|Im| + |J1| + |J2|. (3.34)

In the following, we give detailed asymptotic estimates of Im, m = 1, · · · , 9 and Jj, j = 1, 2 as τ → ∞,
separately. With the help of Proposition 3.2, Hölder inequality and (3.16), it arrives at

|I1|� ‖v − vj‖L2(Sh)

(‖eρ·x‖L2(Sh) + ‖eρ·xψ(x)‖L2(Sh)

)
� ‖v − vj‖L2(Sh)

(‖eρ·x‖L2(Sh) + ‖eρ·x‖L4(Sh)‖ψ(x)‖L4(Sh)

)
� j−β

[(
1

τ 2
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 2
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

] (3.35)

as τ → ∞.
By virtue of (3.31), it yields that

|I2| ≤ ‖fj‖Cα (Sh)

∫
Sh

|x|α|u0|dx, (3.36)

where

‖fj‖Cα (Sh) ≤ k2

(
‖q‖Cα (Sh) sup

Sh

|vj| + ‖vj‖Cα (Sh) sup
Sh

|q − 1|
)

. (3.37)

Using the property of compact embedding of Hölder spaces, we can derive that

‖vj‖Cα ≤ diam (Sh)
1−α ‖vj‖C1(Sh), (3.38)

where diam(Sh) is the diameter of Sh. By direct computations, we obtain

‖vj‖C1 ≤ √
2π (1 + k)‖g‖L2(S1). (3.39)

Furthermore, by Cauchy-Schwarz inequality, we also can deduce that

|vj| ≤
√

2π‖g‖L2(S1). (3.40)

Due to (3.5), by using the fact that q ∈ Cα(Sh), substituting (3.38), (3.39) and (3.40) into (3.37), we have

‖fj‖Cα (Sh) � jγ , ‖vj‖Cα (Sh) � jγ , (3.41)

where γ is a given positive constant defined in (3.5). Substituting (3.21c) and (3.41) into (3.36), we can
deduce that

|I2|� jγ
[
τ−(α+ 29

12 ) +
(

1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)]
(3.42)

as τ → ∞.
Using Cauchy-Schwarz inequality, it can be easily calculated that

|I3|�
∫

Sh

|eρ·x|dx +
∫

Sh

|eρ·xψ(x)|dx �
∫

Sh

|eρ·x|dx +
∫
K

|eρ·xψ(x)|dx. (3.43)
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By integral substitution and using (3.29), we obtain that∫
K

|eρ·xψ(x)|dx = 1

τ 2

∫
K

e−d·y
∣∣∣ψ (y

τ

)∣∣∣ dy ≤ 1

τ 2
‖e−d·y‖

L
8
7 (K)

‖ψ
(y
τ

)
‖L8(K)

� τ− 29
12 , as τ → ∞.

(3.44)

With the help of Proposition 3.1, substituting (3.44) into (3.43), we can derive that

|I3|� τ− 29
12 +

(
1

τ 2
+ 1

τ
e− 1

2 ζhτ

)
, as τ → ∞. (3.45)

Using Cauchy-Schwarz inequality, the trace theorem and Hölder inequality, we have

|I4|� ‖v − vj‖L2(�±
h )(‖eρ·x‖L2(�±

h ) + ‖eρ·x‖L4(�±
h )‖ψ(x)‖L4(�±

h ))

� j−β
[(

1

τ
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

]
,

(3.46)

as τ → ∞. Similarly, by virtue of Cauchy-Schwarz inequality, the trace theorem and Hölder inequality,
it can be calculated that

|I5|� ‖v − vj‖H1(Sh)

(
‖eρ·x|x|α‖L2(�±

h ) + ‖eρ·x|x|α‖L4(�±
h )‖ψ(x)‖L4(�±

h )

)
� j−β

[(
1

τ (2α+1)
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ (4α+1)
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

]
,

as τ → ∞. By using Lemma 3.3, one can show that

I6 �
∫
�±

h

|eρ·xψ(x)|dx � τ− 17
12 , as τ → ∞. (3.47)

Using (3.31), (3.41) and Proposition 2.1, we have the following inequality

|I7|� jγ
[∫

�±
h

|x|α|eρ·x|dσ + ‖|x‖α|eρ·x|‖L2(�±
h )‖ψ(x)‖L2(�±

h )

]

� jγ
[(

1

τ α+1
+ 1

τ
e− 1

2 ζhτ

)
+
(

1

τ 2α+1
+ 1

τ
e−ζhτ

) 1
2

τ− 2
3

]
, (3.48)

as τ → ∞. According to (3.48), we can derive that

|I8|�
(

1

τ α+1
+ 1

τ
e− 1

2 ζhτ

)
+
(

1

τ 2α+1
+ 1

τ
e−ζhτ

) 1
2

τ− 2
3 , (3.49a)

|I9|� jγ
[(

1

τ 2α+1
+ 1

τ
e− 1

2 ζhτ

)
+
(

1

τ 4α+1
+ 1

τ
e−ζhτ

) 1
2

τ− 2
3

]
, (3.49b)

as τ → ∞. By the Cauchy-Schwarz inequality and the trace theorem, we deduce that

|J1| ≤ C‖u0‖H1(�h)‖w − v‖H1(�h) (3.50)

� ‖u0‖H1(�h)

as τ → ∞, where C is a positive constant arising from the trace theorem. Hence, by virtue of (3.21a)
and (3.21b), from (3.50), it is readily known that

|J1|� (1 + τ )(1 + τ− 2
3 )e−ζhτ (3.51)

as τ → ∞, where ζ is a positive constant given in (3.10).
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Similarly, using Cauchy-Schwarz inequality, the trace theorem and (3.21b), we can obtain that

|J2| ≤ ‖∂νu0‖L2(�h)‖w − v‖L2(�h) ≤ C‖∂νu0‖L2(�h)‖w − v‖H1(Sh)

� ‖∇u0‖L2(�h) � (1 + τ )(1 + τ− 2
3 )e−ζhτ . (3.52)

Substituting (3.35), (3.42), (3.45), (3.51) and (3.52) into (3.34), by virtue of (3.11), we derive that(
CSh

τ
− 1

τ
e− 1

2 ζhτ

)
|η(0)vj(0)|� j−β

[(
1

τ 2
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 2
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

]

+ jγ
[
τ−(α+ 29

12 ) +
(

1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)]

+ j−β
[(

1

τ
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

]
(3.53)

+ j−β
[(

1

τ (2α+1)
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ (4α+1)
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

]

+ (jγ + 1)

[(
1

τ α+1
+ 1

τ
e− 1

2 ζhτ

)
+
(

1

τ 2α+1
+ 1

τ
e−ζhτ

) 1
2

τ− 2
3

]

+ jγ
[(

1

τ 2α+1
+ 1

τ
e− 1

2 ζhτ

)
+
(

1

τ 4α+1
+ 1

τ
e−ζhτ

) 1
2

τ− 2
3

]

+ (1 + τ )(1 + τ− 2
3 )e−ζhτ + τ− 29

12 +
(

1

τ 2
+ 1

τ
e− 1

2 ζhτ

)
+ τ− 17

12

as τ → ∞, where CSh is a positive constant given in (3.11). Multiplying τ on both sides of (3.53) and
letting τ = js, where s> 0, it can be derived that(

Ch − e− 1
2 ζhjs

)
|η(0)vj(0)|� j−β+s + jγ−(α+1)s + j−β+ 1

2 s + j−β+(−α+ 1
2 )s

+ jγ−αs + j−
13
24 s + j−

17
12 s,

(3.54)

as τ → ∞. Under the assumption (3.4), we can choose s ∈ (γ /α, β). Hence in (3.54), let j → ∞ it is
readily to know that

lim
j→∞

∣∣η(0)vj(0)
∣∣= 0.

Since η(0) �= 0, one has limj→∞ |vj(0)| = 0. Using (3.5) and the integral mean value theorem, we can
obtain (3.6).

The proof is complete.

Proof of Theorem 3.2. Due to q ∈ H2(Sh), using the Sobolev embedding property, we know that
q ∈ Cα(Sh) with α ∈ (0, 1]. Under the assumption v ∈ Cα(Sh) (α ∈ (0, 1]), it readily has f (x) := (q(x) −
1)v(x) ∈ Cα(Sh). Hence, we have the expansion of f (x), η and v(x) near the origin as follows

f (x) = f (0) + δf , |δf | ≤ ‖f ‖Cα |x|α

η= η(0) + δη, |δη| ≤ ‖η‖Cα |x|α

v(x) = v(0) + δv, |δv| ≤ ‖v‖Cα |x|α
(3.55)
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Plugging (3.55) into the integral identity (3.30), it yields that

η(0)v(0)
∫
�±

h

eρ·xdσ = f (0)
∫

Sh

u0dx +
∫

Sh

δfu0dx + η(0)v(0)
∫
�±

h

ψ(x)eη·xdσ

+ η(0)
∫
�±

h

δvu0dσ + v(0)
∫
�±

h

δηu0dσ +
∫
�±

h

δvδηu0dσ

−
∫
�h

(w − v)∂νu0dσ +
∫
�h

u0∂ν(w − v)dσ . (3.56)

By adopting similar asymptotic analysis for each integral in (3.56) with respect to the parameter τ as in
the proof of Theorem 3.1, and letting τ → ∞, we can prove Theorem 3.2.

3.2. Proof of Corollary 3.3

Next, we give the proof of Corollary 3.3 regarding the vanishing property of transmission eigenfunctions
to (3.9) near a convex planar corner under two regularity conditions described in Corollary 3.3. Since
the proof of the statement (b) in Corollary 3.3 can be obtained by using the similar asymptotic analysis
for proving Corollary 3.3 (a), we omit it here. In order to prove the statement (a) in Corollary 3.3, we
give the following proposition which is obtained by slightly modifying the proof of Proposition 3.1.

Proposition 3.3. Let Sh and η be defined in (3.2) and (2.3), respectively, where d satisfies (3.10). Then,
we have ∣∣∣∣∫

Sh

eη·xdx

∣∣∣∣≥ C̃Sh

τ 2
−O

(
1

τ
e− 1

2 ζhτ

)
, (3.57)

for sufficiently large τ , where C̃Sh is a positive number only depending on the opening angle θM − θm of
K and ζ .

Proof. Using polar coordinates transformation and (2.6b) in Proposition 2.1, we have∫
Sh

eρ·xdx =
∫ θM

θm

[
�(2)

(τ (d + id⊥) · x̂)2
− IR

]
dθ

= �(2)

τ 2

∫ θM

θm

1(
d · x̂ + id⊥ · x̂

)2 dθ −
∫ θM

θm

IRdθ ,

where IR = ∫ ∞
h

e−τ (d+id)·x̂rrdr. Hence, it can be directly calculated that∫ θM

θm

1(
d · x̂ + id⊥ · x̂

)2 dθ ≥ θM − θm

2

by using the integral mean value theorem.
With the help of Proposition 2.1, for sufficiently large τ , we have the following integral inequality∣∣∣∣∫

Sh

eρ·xdx

∣∣∣∣≥ �(2)(θM − θm)

τ 2

1∣∣d · x(θξ ) + id⊥ · x̂(θξ )
∣∣2 −

∣∣∣∣∫ θM

θm

IRdθ

∣∣∣∣
≥ �(2)

(θM − θm)

1(
d · x̂(θξ )

)2 + (
d⊥ · x̂(θξ )

)2 −
∫ θM

θm

|IR|dθ

≥ C̃Sh

τ 2
− 1

τ
e− 1

2 ζhτ ,

(3.58)

by using (3.10).
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Proof of Corollary 3.3(a). Similar to the proof of Theorem 3.1, we have the following integral identity
according to (3.30) by noting η≡ 0 on �±

h ,

k2fj(0)
∫

Sh

eρ·xdx = I1 + I2 + I3 + J1 + J2, (3.59)

where

I1 = −k2

∫
Sh

(q − 1)(v − vj)u0dx, I2 = −k2

∫
Sh

δfju0dx,

I3 = −k2fj(0)
∫

Sh

eρ·xψ(x)dx,

and J1, J2 are defined in (3.33), respectively.
By the Sobolev embedding theorem and q ∈ H2(Sh), we have q ∈ Cα(Sh), where α= 1. Combining

(3.59) with (3.35), (3.42) and (3.44), we can deduce that

k2

[
C̃Sh

τ 2
− 1

τ
e− 1

2 ζhτ

]
|fj(0)|� j−β

[(
1

τ 2
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 2
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
3

]

+ jγ
[
τ−(α+ 29

12 ) +
(

1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)]
+ τ− 29

12 + (1 + τ )(1 + τ− 2
3 )e−ζhτ

(3.60)

as τ → ∞. Multiplying τ 2 on the both sides of (3.60), using the assumption (3.5), by letting τ = js, it is
easy to see that

k2C̃Sh |fj(0)|� j−β+s + jγ−αs. (3.61)

And under the assumptions γ /α < β, we choose s ∈ (γ /α, β). Letting j → ∞ in (3.61), we obtain that

|fj(0)| = 0.

Since q(0) �= 1, we finish the proof of this corollary.

4. Vanishing of transmission eigenfunctions near a convex conic corner or polyhedral corner

In this section, we study the vanishing of eigenfunctions near a corner in R
3, respectively, where the

corner inR3 could be a convex conic corner or polyhedral corner. Let us first introduce the corresponding
geometrical setup for our study. For a given point x0 ∈R

3, let v0 = y0 − x0 where y0 ∈R
3 is fixed. Hence,

C= Cx0,v0,θ0 := {
y ∈R

3 | 0 �∠(y − x0, v0) � θ0

}
(θ0 ∈ (0, π/2)) (4.1)

is a strictly convex conic cone with the apex x0 and an opening angle 2θ0 ∈ (0, π ) in R
3. Here, v0 is

referred to be the axis of Cx0,θ0 . Specifically, when x0 = 0, v0 = (0, 0, 1)�, we write Cx0,θ0 as Cθ0 . Define
the truncated conic cone Ch := Ch

0 as

Ch := Cθ0 ∩ Bh, �h = ∂C∩ Bh, �h = C∩ ∂Bh, (4.2)

where Bh is an open ball centred at 0 with the radius h ∈R+.
Assume that Kx0;e1,...,e� is a polyhedral cone with the apex x0 and edges ej (j = 1, . . . , �, �≥ 3.

Throughout of this paper, we always suppose thatKx0;e1,...,e� is strictly convex, which implies that it can be
fitted into a conic cone Cx0,θ0 with the opening angle θ0 ∈ (0, π/2), where Cx0,θ0 is defined in (4.1). Without
loss of generality, we assume that the axis of Cx0,θ0 coincides with x+

3 and x0 = 0. Given a constant h ∈R+,
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we define the truncated polyhedral corner Kh
x0

as

Kxh
0
=Kx0;e1,...e� ∩ Bh. (4.3)

For convenience, we have a similar geometry setup with (4.2) as

Kh =Kh
0, �h = ∂K∩ Bh, �h =K∩ ∂Bh. (4.4)

The following theorem states that the transmission eigenfunctions to (1.1) must vanish at a conic
corner if they have H1 regularity and v can be approximated by a sequence of Herglotz wave func-
tions near the underlying conic corner with certain properties, where the detailed proof is postponed to
Subsection 4.1.

Theorem 4.1. Let � be a bounded Lipschitz domain with a connected complement and v, w ∈ H1(�)
be a pair of transmission eigenfunctions to (1.1) associated with k ∈R+. Assume that 0 ∈ � ⊂ ∂� such
that�∩ Bh = C∩ Bh = Ch, where C is defined by (4.1) and h ∈R+ is sufficient small such that q ∈ H2(Ch)
and η ∈ Cα1 (�h), where α1 ∈ (0, 1). If the following conditions are fulfilled:

(a) for any given positive constants β and γ satisfying

γ <
10

11
αβ, α = min{α1, 1/2}, (4.5)

the transmission eigenfunction v can be approximated in H1(Ch) by Herglotz functions

vj =
∫
S2

eikξ ·xgj(ξ )dξ , ξ ∈ S
2, j = 1, 2, · · · , (4.6)

with the kernels gj satisfying the approximation property

‖v − vj‖H1(Ch) ≤ j−β , ‖gj‖L2(Ch) ≤ jγ ; (4.7)

(b) the function η does not vanish at the apex 0 of Ch;

then one has

lim
λ→∞

1

m(B(0, λ) ∩�)

∫
B(0,λ)∩�

|v(x)|dx = 0, (4.8)

where m(B(0, λ) ∩�) is the area of B(0, λ) ∩�.

As remarked earlier, the Herglotz approximation property in (4.7) characterizes a regularity of v
weaker than the Hölder continuity (cf. [41]). In the following theorem, if a stronger Hölder regularity
condition near a conic corner on the transmission eigenfunction v to (1.1) is satisfied, we also have
the vanishing characterization of the corresponding transmission eigenfunction v. Namely, when v is
Hölder continuous near the underlying circular corner, we show that it must vanish at the apex of the
conic corner. The proof can be obtained by modifying the corresponding proof of Theorem 4.1 directly
as for the two-dimensional case, which is omitted.

Theorem 4.2. Let v ∈ H1(�) and w ∈ H1(�) be a pair of transmission eigenfunctions to (1.1) associated
with k ∈R+. Assume that the Lipschitz domain �⊂R

3 with 0 ∈ ∂� contains a conic corner �∩ Bh =
C∩ Bh = Ch, such that v ∈ Cα(Ch), q ∈ H2(Ch) and η ∈ Cα(�h) for 0<α < 1, where Bh, �h and Ch are
defined in (4.2). If η(0) �= 0, where 0 is the apex of Ch, then one has

v(0) = 0. (4.9)

Consider a cuboid corner Kx0;e1,e2,e3 defined by (4.3). In Theorem 4.3, we show that the transmission
eigenfunctions to (1.1) vanish at the cuboid corner Kx0;e1,e2,e3 when they are Hölder continuous at the
corner point. The proof of Theorem 4.3 can be found in Subsection 4.2. Since� is invariant under rigid
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motion, we assume that the apex x0 of Kx0;e1,e2,e3 coincides with the origin, and the edges of Kx0;e1,e2,e3

satisfy e1 = (1, 0, 0)�, e2 = (0, 1, 0)� and e3 = (0, 0, 1)�.

Theorem 4.3. Let v ∈ H1(�), w ∈ H1(�) be a pair of transmission eigenfunctions of (1.1) with k> 0.
Assume that Lipschitz domain �⊂R

3 with 0 ∈ � ⊂ ∂� contains a cuboid corner �∩ Bh =K∩ Bh =
Kh, such that v ∈ Cα(Kh), q ∈ H2(Kh) and η ∈ Cα(�h) for 0<α < 1, where Kh and �h are defined in
(4.3). If η(0) �= 0, then

v(0) = 0.

Remark 4.1. Consider the classical transmission eigenvalue problem (3.9) in R
3, namely η≡ 0 on �

in (1.1), when the underlying domain � of (3.9) has a cuboid corner Kx0;e1,e2,e3 , if the corresponding
potential q has α-Hölder continuity regularity for α > 1

4
near the cuboid corner (cf. [9, Definition 2.2

and Theorem 3.2]), then the transmission eigenfunction v must vanish near the corner. Compared with
the results in [9], the vanishing property of transmission eigenfunctions to (1.1) near the underlying
cuboid corner holds under a general scenario. Namely, the assumption in Theorem 4.3 only needs q
fulfils H2 regularity, v and boundary parameter η are Hölder continuous near x0, where η(x0) �= 0.

In the following two corollaries, we consider the classical transmission eigenvalue problem (3.9),
namely η≡ 0 on � in (1.1), where the domain � contains a conic or polyhedral corner. The proof of
Corollary 4.4 is postponed in Subsection 4.3.

Corollary 4.4. Let � be a bounded Lipschitz domain with a connected complement and v, w ∈ H1(�)
be a pair of transmission eigenfunctions to (3.9) associated with k ∈R+. Assume that 0 ∈ � ⊂ ∂� such
that�∩ Bh = C∩ Bh = Ch, where C is defined by (4.1) and h ∈R+ is sufficient small such that q ∈ H2(Ch)
and q(0) �= 1.

(a) For any given positive constants β and γ satisfying γ < 20
37
αβ, if the transmission eigenfunction

v can be approximated in H1(Ch) by Herglotz wave functions vj defined by (4.6) with the kernels
gj satisfying the approximation property (4.7), then we have the vanishing of the transmission
eigenfunction v near Ch in the sense of (4.8).

(b) If v ∈ Cα(Ch) with α ∈ (0, 1), then one has v(0) = 0.

In the subsequent corollary, we consider the case that � contains a polyhedral corner Kh defined
by (4.3). When the transmission eigenfunction v to (3.9) satisfies two regularity assumptions, we can
establish the similar geometrical characterization of v near the polyhedral corner. The proofs are similar
to the counterpart of Theorem 4.2 and Corollary 4.4, where we only need to use the asymptotic analysis
[10, Lemma 2.2] with respect to the parameter in the corresponding CGO solution introduced in the
following subsection. Hence, we omit its proof.

Corollary 4.5. Let � be a bounded Lipschitz domain with a connected complement and v, w ∈ H1(�)
be a pair of transmission eigenfunctions to (3.9) associated with k ∈R+. Assume that 0 ∈ � ⊂ ∂� such
that�∩ Bh =K0;e1,··· ,e� ∩ Bh =Kh, where Kh is defined by (4.3) and h ∈R+ is sufficiently small such that
q ∈ H2(Kh) and q(0) �= 1.

(a) For any given positive constants β and γ satisfying γ < 20
37
αβ, if the transmission eigenfunction

v can be approximated in H1(Ch) by Herglotz wave functions vj defined by (4.6) with the kernels
gj satisfying the approximation property (4.7), then we have the vanishing property of v near Kh

in the sense of (4.8).
(b) If v ∈ Cα(Kh) with α ∈ (0, 1), then one has v(0) = 0.

4.1. Proof of Theorem 4.1

Since the conic cone C defined by (4.1) is strictly convex, for any given positive constant ζ , we define
Cζ as the open set of S2 which is composed by all unit directions d ∈ S

2 satisfying that
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d · x̂> ζ > 0, for all x̂ ∈ C∩ S
2. (4.10)

Throughout this subsection, we always assume that the unit vector d in the form of the CGO solution
u0 given by (2.2) satisfies (4.10). In order to prove Theorem 4.1, we need several key propositions and
lemmas in the following.

Proposition 4.1. Let �h and ρ be defined in (4.2) and (2.3), respectively. Then, we have∣∣∣∣∫
�h

eρ·xdσ

∣∣∣∣≥ CCh

τ 2
−O

(
1

τ
e− 1

2 ζhτ

)
, (4.11)

for sufficiently large τ , where CCh is a positive number only depending on the opening angle θ0 of C
and ζ .

Proof. Using polar coordinates transformation and the mean value theorem for integrals, we have∫
�h

eρ·xdσ = sin θ0

2π�(2)

τ 2

1

((d + id⊥) · x̂(θ0, ϕξ ))2
− sin θ0

∫ 2π

0

IRdϕ, (4.12)

where IR = ∫ ∞
h

e−τ (d+id)·x̂rrdr. Furthermore, for sufficiently large τ , it is ready to know that

1

τ 2
− 1

τ
e− 1

2 ζhτ > 0.

Hence, by virtue of (4.10) and Proposition 2.1, we have the following integral inequality∣∣∣∣∫
�h

eρ·xdσ

∣∣∣∣≥ sin θ0

2π�(2)

τ 2

1

(d · x̂(θ0, ϕξ ))2 + (d⊥ · x̂(θ0, ϕξ ))2
− sin θ0

∫ 2π

0

|IR|dϕ

≥ CCh

τ 2
−O(

1

τ
e− 1

2 ζhτ ),

which completes the proof of this proposition.

Similar to Proposition 3.2, the following proposition can be obtained by direct verifications.

Proposition 4.2. Let Ch be defined by (4.2). For any given t> 0, it yields that

‖eρ·x‖Lt(Ch) ≤ C

(
1

τ 3
+ 1

τ
e− t

2 ζhτ

) 1
t

,

‖eρ·x‖Lt(�h) ≤ C

(
1

τ 2
+ 1

τ
e− t

2 ζhτ

) 1
t

,

(4.13)

as τ → ∞, where ρ is defined in (2.3) and C is a positive constant only depending on t, ζ .

The proof of the following lemma is similar to 3.1, hence we omit it here.

Lemma 4.1. Under the same setup of Theorem 4.1, let the CGO solution u0 be defined by (2.2). We also
denote u = w − v, where (v, w) is a pair of transmission eigenfunctions of (1.1) associated with k ∈R+.
Then, it holds that ⎧⎪⎨⎪⎩

�u0 + k2qu0 = 0 in Ch,

�u + k2qu = k2(1 − q)v in Ch,

u = 0, ∂νu = 0 on �h,

(4.14)

where Ch and �h are defined by (4.2), and

‖ψ(x)‖H1,8 =O(τ− 2
5 ), (4.15)

where ψ and τ are defined in (2.2).
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Lemma 4.2. Let�h and Ch be defined in (4.2). Recall that u0(x) is given by (2.2). Then, u0(x) ∈ H1(Ch),
and it holds that

‖u0(x)‖L2(�h) �
(

1 + τ− 2
5

)
e−ζhτ , (4.16a)

‖∇u0(x)‖L2(�h) � (1 + τ )
(

1 + τ− 2
5

)
e−ζhτ , (4.16b)∫

Ch

|x|α|u0(x)|dx � τ−(α+ 121
40 ) +

(
1

τ α+3
+ 1

τ
e− 1

2 ζhτ

)
, (4.16c)∫

�h

|x|α|u0(x)|dσ � τ−(α+ 43
20 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
(4.16d)

as τ → ∞, where ζ is defined in (3.10) and α ∈ (0, 1).

Proof. Using (4.15) and Lemma 3.2 about the trace theorem, it yields that

‖ψ(x)‖L4(�h) ≤ C‖ψ(x)‖
H

7
8 ,8(�h)

≤ C‖ψ(x)‖H1,8(Ch) = O(τ− 2
5 ),

as τ → ∞. By using polar coordinates transformation, (2.6a) and (4.10), one can derive that

‖eρ·x‖Lt(�h) � e−ζhτ , (4.17)

where ρ is defined in (2.3) and t is a positive constant.
Due to polar coordinates transformation, (4.17), (4.15) and Hölder inequality, it can be calculated

that
‖u0‖L2(�h) ≤ ‖eρ·x‖L2(�h) + ‖eρ·x‖L4(�h)‖ψ(x)‖L4(�h)

�
(

1 + τ− 2
5

)
e−ζhτ , as τ → ∞.

(4.18)

By virtue of Cauchy-Schwarz inequality, (4.16a) and Proposition 2.1, we can deduce that

‖∇u0‖L2(�h) ≤
√

2τ‖u0‖L2(�h) + ‖eρ·x‖L4(�h)‖∇ψ(x)‖L4(�h)

� (1 + τ )(1 + τ− 2
5 )e−ζhτ , as τ → ∞.

(4.19)

It is clear that we can get the following integral inequality,∫
Ch

|x|α|u0|dx ≤
∫
Ch

|x|α|eρ·x|dx +
∫
Ch

(|x|α|eρ·x|)(|ψ(x)|)dx. (4.20)

By virtue of polar coordinates transformation and Proposition 2.1, it reveals that∫
Ch

|x|αe−ζ τ |x|dx � 1

τ α+3
+ 1

τ
e− 1

2 ζhτ , (4.21)

as τ → ∞. Next, letting y = τx, using Cauchy-Schwarz inequality and Hölder inequality, it arrives that∫
Ch

(|x|α|eρ·x|)(|ψ(x)|)dx ≤ 1

τ α+3

∫
C
|y|α|e−d·y|

∣∣∣ψ (y
τ

)∣∣∣ dy

≤ 1

τ α+3
‖|y|α|e−d·y|‖

L
8
7 (C)

∥∥∥ψ (y
τ

)∥∥∥
L8(C)

, (4.22)

as τ → ∞, using variable substitution and (4.15), it arrives that∥∥∥ψ (y
τ

)∥∥∥
L8(C)

= τ
3
8 ‖ψ(x)‖L8(C) ≤ τ 3

8 ‖ψ(x)‖H1,8(C) =O(τ− 1
40 ), (4.23)

as τ → ∞. Furthermore, one has

‖|y|α|eρ·x|‖
L

8
7 (C)

=
(∫

C
|y| 8

7 αe− 8
7 d·ydy

) 7
8

≤
(∫

C
|y| 8

7 αe− 8
7 ζ |y|dy

) 7
8

≤ C

ζ 3+ 8
7 α

, (4.24)
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where C = 2πθ0�(3 + 8
7
α)( 7

8
)3+ 8

7 α. Hence, ‖|y|α|eρ·x|‖
L

8
7 (C)

is a positive constant which only depends on
θ0, ζ and α. Combining (4.23), (4.22) and (4.21) with (4.20), one has (4.16c).

Furthermore, we have∫
�h

|x|α|u0|dσ ≤
∫
�h

|x||eρ·x|dσ +
∫
�h

|x|α|eρ·x||ψ(x)|dσ , (4.25)

and we can easily get (4.26) by using polar coordinates transformation and Proposition 2.1,∫
�h

|x||eρ·x|dσ � 1

τ α+2
+ 1

τ
e− 1

2 ζhτ , (4.26)

as τ → ∞. Then letting y = τx and utilizing Hölder inequality, it can be obtained that∫
�h

|x|α|eρ·x||ψ(x)|dσ ≤ 1

τ α+2

∫
∂C

|y|α|e−d·y|
∣∣∣ψ (y

τ

)∣∣∣ dσ

≤ 1

τ α+2
‖|y|α|e−d·y|‖

L
8
7 (∂C)

∥∥∥ψ (y
τ

)∥∥∥
L8(∂C)

. (4.27)

Similar to (4.24), we know that ‖|y|α|e−d·y|‖
L

8
7 (∂C)

is a positive constant. By virtue of variable substitution,
trace theorem and (4.15), it arrives that∥∥∥ψ (y

τ

)∥∥∥
L8(∂C)

� τ 1
4 ‖ψ(x)‖

H
7
8 ,8(∂C)

� τ 1
4 ‖ψ(x)‖H1,8(C) � τ− 3

20 , (4.28)

as τ → ∞. Combining (4.26), (4.27) and (4.28) with (4.25), one has (4.16d).

Now, we are in the position to prove Theorem 4.1.

Proof of Theorem 4.1. The proof of this theorem is similar to the counterpart of Theorem 3.1. Recall
that (v, w) is a pair of transmission eigenfunctions to (1.1). Using Green formula (2.7) and boundary
conditions in (4.14), the following integral identity holds∫

Ch

k2(q − 1)vu0dx =
∫
�h

(w − v)∂νu0 − u0∂(w − v)dσ −
∫
�h

ηu0vdσ (4.29)

where Ch, �h and �h are defined by (4.2). Let

fj = (q − 1)vj.

Due to q ∈ H2(Ch), we know that q ∈ C1/2(Ch) by using the property of embedding of Sobolev space.
Recall that η ∈ Cα1 (�h). Let α= {α1, 1/2}. Furthermore, since the Herglotz wave function vj ∈ Cα(Ch),
it yields that fj ∈ Cα(Ch

). Hence, one has the expansion

fj = fj(0) + δfj, |δfj| ≤ ‖fj‖Cα (Ch)|x|α,
vj = vj(0) + δvj, |δvj| ≤ ‖vj‖Cα (Ch)|x|α,
η= η(0) + δη, |δη| ≤ ‖η‖Cα (�h)|x|α.

(4.30)

By virtue of (4.30), we have the following integral identities

k2

∫
Ch

(q − 1)vu0dx = −
3∑

m=1

Im,
∫
�h

ηu0vdσ = I −
9∑

m=4

Im, (4.31)

https://doi.org/10.1017/S0956792524000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000287


558 H. Diao et al.

where

I1 = −k2

∫
Ch

(q − 1)(v − vj)u0dx, I2 = −
∫
Ch

δfju0dx,

I3 = −fj(0)
∫
Ch

u0dx, I4 = −η(0)
∫
�h

(v − vj)u0dσ

I5 = −
∫
�h

δη(v − vj)u0dσ , I6 = −η(0)vj(0)
∫
�h

eρ·xψ(x)dσ ,

I7 = η(0)
∫
�h

δvju0dσ , I8 = −vj(0)
∫
�h

δηu0dσ ,

I9 =
∫
�h

δηδvju0dσ , I = η(0)vj(0)
∫
�h

eρ·xdσ .

(4.32)

Substituting (4.31) into (4.29), it yields that

I =
9∑

m=1

Im + J1 + J2,

where

J1 =
∫
�h

u0∂ν(w − v)dσ , J2 = −
∫
�h

(w − v)∂νu0dσ . (4.33)

Hence, it readily yields that

|I| ≤
9∑

m=1

|Im| + |J1| + |J2|. (4.34)

In the sequel, we derive the asymptotic estimates of Ij (j = 1, . . . , 9) and Jj, j = 1, 2 with respect to
the parameter τ in the CGO solution u0 when τ → ∞, separately. Using Hölder inequality, Proposition
4.2 and (4.15), it is clear that

|I1| ≤ ‖v − vj‖L2(Ch)‖eρ·x‖L2(Ch) + ‖v − vj‖L2(Ch)‖eρ·xψ(x)‖L2(Ch)

� j−β
[(

1

τ 3
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 3
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
5

]
,

(4.35)

as τ → ∞.
With the help of (4.30), we have

|I2| ≤ k2‖fj‖Cα

∫
Ch

|x|α|u0|dx, (4.36)

and
‖fj‖Cα (Ch) ≤ ‖q‖Cα (Ch) sup

Ch

|vj| + ‖vj‖Cα (Ch) sup
Ch

|q − 1|. (4.37)

Moreover, due to the property of compact embedding of Hölder spaces, one has

‖vj‖Cα (Ch) ≤ diam
(
Ch
)1−α ‖vj‖C1(Ch), (4.38)

where diam(Ch) is the diameter of Ch. It can be directly shown that

‖vj‖C1(Ch) ≤ 4
√
π (1 + k)‖g‖L2(S2). (4.39)

On the other hand, we can obtain the following estimate by using the Cauchy-Schwarz inequality,

|vj| ≤ 4
√
π‖g‖L2(S2). (4.40)
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Using (4.7) and q ∈ Cα(Ch), plugging (4.7), (4.38), (4.39) and (4.40) into (4.37), one can arrive at

‖fj‖Cα (Ch) � jγ , (4.41)

where γ is a given positive constant defined in (4.7). Substituting (4.16c) and (4.41) into (4.36), we
obtain

|I2|� jγ
[
τ−(α+ 121

40 ) +
(

1

τ α+3
+ 1

τ
e− 1

2 ζhτ

)]
(4.42)

as τ → ∞.
With the help of Cauchy-Schwarz inequality and (4.7), it yields that

|I3| ≤
∫
Ch

|eρ·x|dx +
∫
C
|eρ·x||ψ(x)|dx, (4.43)

Similar to (4.24), we have that ‖e−d·y‖
L

8
7 (C)

is a positive constant depending only on ζ and θ0. Letting
y = τx and using (4.23), it can be calculated that∫

C
|eρ·x||ψ(x)|dx ≤ 1

τ 3
‖e−d·y‖

L
8
7 (C)

∥∥∥ψ (y
τ

)∥∥∥
L8(C)

� τ− 121
40 , (4.44)

as τ → ∞. Therefore, with the help of Proposition 4.2, and plugging (4.44) into (4.43), one has

|I3|� τ− 121
40 +

(
1

τ 3
+ 1

τ
e− 1

2 ζhτ

)
, as τ → ∞. (4.45)

By virtue of Cauchy-Schwarz inequality and Lemma 3.2, we can obtain that

|I4|� ‖v − vj‖L2(�h)‖eρ·x‖L2(�h) + ‖v − vj‖L2(�h)‖eρ·x‖L4(�h)‖ψ(x)‖L4(�h)

� j−β
[(

1

τ 2
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 2
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
5

] (4.46)

as τ → ∞.
With the help of Cauchy-Schwarz inequality, Lemma 3.2 and Hölder inequality, one has

|I5|� ‖v − vj‖L2(�h)(‖|eρ·x||x|α‖L2(�h) + ‖|eρ·x||x|α‖L4(�h)‖ψ(x)‖L4(�h))

� j−β
[(

1

τ (2α+2)
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ (4α+2)
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
5

]
,

(4.47)

as τ → ∞.
Similar to (3.19), it can be directly obtained that∥∥∥ψ (y

τ

)∥∥∥
H1,8(C)

≤ τ 3
8 ‖ψ(x)‖H1,8(C) =O(τ− 1

40 ), (4.48)

as τ → ∞. Therefore, following the proof of Lemma 3.3 and using Hölder inequality and Lemma 3.2,
we have

|I6|� 1

τ 2
‖e−d·y‖

L
8
7 (�)

∥∥∥ψ (y
τ

)∥∥∥
L8(�)

� 1

τ 2
‖e−d·y‖

L
8
7 (�)
τ

3
8 ‖ψ(x)‖H1,8(C) � τ− 81

40 , as τ → ∞.
(4.49)
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Moreover, we have the following estimates for I7, I8 and I9 by virtue of (4.16d) directly,

|I7|� ‖vj‖Cα (�h)

∫
�h

|x|α|u0|dσ � jγ
[
τ−(α+ 43

20 ) +
(

1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)]
,

|I8|� τ−(α+ 43
20 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
,

|I9|� jγ
[
τ−(2α+ 43

20 ) +
(

1

τ 2α+2
+ 1

τ
e− 1

2 ζhτ

)]
, as τ → ∞. (4.50)

Using Cauchy-Schwarz inequality and Lemma 3.2, we obtain that

|J1| ≤ ‖u0‖
H

1
2 (�h)

‖∂ν(w − v)‖
H− 1

2 (�h)
≤ C‖u0‖H1(�h)‖∂ν(w − v)‖H1(�h)

� ‖u0‖H1(�h)

(4.51)

as τ → ∞, where C is a positive constant arising from the trace theorem. By virtue of (4.16a) and
(4.16b), it can be calculated that

|J1|� (1 + τ )(1 + τ− 2
5 )e−ζhτ (4.52)

as τ → ∞, where ζ is a positive constant given in (4.10). Finally, using Cauchy-Schwarz inequality, the
trace theorem and (4.16b), we can obtain that

|J2| ≤ ‖∂νu0‖L2(�h)‖w − v‖L2(�h) ≤ C‖∂νu0‖L2(�h)‖w − v‖H1(Ch)

� (1 + τ )(1 + τ− 2
5 )e−ζhτ ,

(4.53)

as τ → ∞.
Substituting (4.35), (4.42), (4.45)−(4.50), (4.52) and (4.53) into (4.34), we have

|η(0)vj(0)|
(

CCh

τ 2
− 1

τ
e− 1

2 ζhτ

)
� j−β

[(
1

τ 3
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 3
+ 1

τ
e−4ζhτ

) 1
4

τ− 2
5

]

+ jγ
[
τ−(α+ 121

40 ) +
(

1

τ α+3
+ 1

τ
e− 1

2 ζhτ

)]

+ j−β
[(

1

τ 2
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 2
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
5

]

+ j−β
[(

1

τ (2α+2)
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ (4α+2)
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
5

]

+ (jγ + 1)

[
τ−(α+ 43

20 ) +
(

1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)]

+ jγ
[
τ−(2α+ 43

20 ) +
(

1

τ 2α+2
+ 1

τ
e− 1

2 ζhτ

)]

+ τ− 81
40 + τ− 121

40 +
(

1

τ 3
+ 1

τ
e− 1

2 ζhτ

)
+ (1 + τ )(1 + τ− 2

5 )e−ζhτ (4.54)

as τ → ∞, where CCh is a positive constant given in (4.11). Moreover, for sufficiently large τ , we know
that

CCh

τ 2
− 1

τ
e− 1

2 ζhτ > 0.
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Hence, multiplying τ 2 on both sides of (4.54) and taking τ = js and s> 0, we derive that(
CCh − jse− 1

2 ζhjs
)

|η(0)vj(0)|� j−β+ 17
20 s + jγ−(α+1)s + j−β+ 11

10 s

+ j−β+(−α+ 11
10 )s + jγ−αs + jγ−2αs

(4.55)

as τ → ∞. Recalling that γ /α < 10
11
β, we can choose s ∈ (γ /α, 10

11
β). Hence in (4.55), by letting j → ∞,

we prove that

lim
j→∞

|η(0)vj(0)| = 0.

Since η(0) �= 0, we have limj→∞ |vj(0)| = 0. Using (4.6) and integral mean value theorem, we can obtain
(4.8).

The proof is complete.

4.2. Proof of Theorem 4.3

In order to prove Theorem 4.3, we first give a crucial estimate in the following proposition. It is pointed
out that K is a cuboid cone in this subsection, where 0 is the apex of K. Denote cone(a, b) = {x ∈
R

3 | x = c1a + c2b, ∀ci ≥ 0, i = 1, 2}, where a and b are fixed vectors. Let e1 = (1, 0, 0)�, e2 = (0, 1, 0)�

and e3 = (0, 0, 1)�. Suppose that the faces ∂K= ∪3
i=1∂Ki, where K1 = cone(e1, e3), K1 = cone(e1, e2)

and K1 = cone(e2, e3).

Proposition 4.3. Let d = (1, 1, 1)� and d⊥ = (1, −1, 0)�. Denote zj = ρ1 · x̂j(θξ ), where

x̂1(θξ ) =
⎡⎢⎣ 0

sin θξ

cos θξ

⎤⎥⎦ , x̂2(θξ ) =
⎡⎢⎣sin θξ

0

cos θξ

⎤⎥⎦ , x̂3(θξ ) =
⎡⎢⎣cos θξ

sin θξ

0

⎤⎥⎦ (4.56)

with a fixed θξ ∈ (0, π/2), and ρ1 = d + id⊥. It holds that∣∣∣∣∣
3∑

j=1

1

z2
j

∣∣∣∣∣≥ sin3 θξ

30
> 0. (4.57)

Proof. By direct calculations, we have
3∑

j=1

1

z2
j

= S(θξ )

z2
1

, S(θξ ) = 1 +
(

z1

z̄1

)2

+ c1z4, (4.58)

where

c1 = |z1|4

||z1|2 − sin θξ cos θξ + i cos θξ (cos θξ + sin θξ )|4
,

z4 = (|z1|2 − 1/2 sin 2θξ − i cos θξ (cos θξ + sin θξ )
)2

.

By noting θξ ∈ (0, π/2), it yields that c1 ≥ 0.05 sin θξ and �(z4) ≥ 2 sin2 θξ . Hence according to (4.58),
we obtain (4.57).

Proposition 4.4. Assume that Kh is a truncated cuboid. Let �h = ∂Kh ∩ Bh and ρ be defined in (2.3),
where d = (1, 1, 1)� and d⊥ = (1, −1, 0)�. Then, one has∣∣∣∣∫

�h

eρ·xdσ

∣∣∣∣≥ C
′
Kh

τ 2
−O

(
1

τ
e− 1

2 ζhτ

)
, (4.59)

for sufficiently large τ , where C
′
Kh is a positive number not depending on τ .
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Proof. Since K is a cuboid, by the geometrical setup and notations in this subsection, we have �h =
�h1 ∪ �h2 ∪ �h3, where �h1 := ∂K1 ∩ Bh, �h2 := ∂K2 ∩ Bh, �h3 := ∂K3 ∩ Bh.

According to Proposition 2.1, it can be derived that∫
�h

eρ·xdσ =
∫
�h1

eρ·xdσ +
∫
�h2

eρ·xdσ +
∫
�h3

eρ·xdσ

= 1

2πτ 2

3∑
j=1

1

(ρ1 · x̂j(θξ ))2
−O(

1

τ
e− 1

2 ζhτ ),

where θξ ∈ (0, π/2) is fixed. By virtue of Proposition 4.3, we complete the proof.

The proof of Theorem 4.3. Using the fact that f = (q − 1)v ∈ Cα(Kh), v ∈ Cα(Kh), η ∈ Cα(�h), we have
the following expansion

f = f (0) + δf , |δf | ≤ ‖f ‖Cα |x|α,
v = v(0) + δv, |δv| ≤ ‖v‖Cα |x|α,
η= η(0) + δη, |δη| ≤ ‖η‖Cα |x|α.

(4.60)

Combining the integral identity (4.29) with (4.60), it arrives that

η(0)v(0)
∫
�h

eρ·xdσ =
6∑

i=1

Ii + J1 + J2, (4.61)

where

I1 = f (0)
∫
Kh

u0dx, I2 =
∫
Kh

δfu0dx, I3 = η(0)v(0)
∫
�h

ψ(x)eρ·xdσ ,

I4 = η(0)
∫
�h

δvu0dσ , I5 = v(0)
∫
�h

δηu0dσ , I6 =
∫
�h

δηδvu0dσ ,

J1 = −
∫
�h

(w − v)∂νu0dσ , J2 =
∫
�h

u0∂ν(w − v)dσ .

(4.62)

There must exist a convex conic cone C contains the cuboid cone K, namely K⊂ C. Hence, by virtue of
(4.45) and (4.16d), we have

|I1| ≤ |f (0)|
∫
Kh

|u0|dx ≤ |f (0)|
∫
Ch

|u0|dx � τ− 121
40 +

(
1

τ 3
+ 1

τ
e− 1

2 ζhτ

)
, (4.63)

and

|I2| ≤
∫
Kh

|δfu0|dx ≤
∫
Ch

|δfu0|dx � τ−(α+ 43
20 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
, (4.64)

as τ → ∞.
In view of (4.49), we have

|I3|� τ− 81
40 . (4.65)

In addition, by using (4.16d) in Lemma 4.2, we have the following inequalities:

|I4|� τ−(α+ 43
20 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
, (4.66)

|I5|� τ−(α+ 43
20 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
, (4.67)

|I6|� τ−(2α+ 43
20 ) +

(
1

τ 2α+2
+ 1

τ
e− 1

2 ζhτ

)
, (4.68)
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as τ → ∞. Moreover, by using (4.52) and (4.53), we have

|J1|� (1 + τ )(1 + τ− 2
5 )e−ζhτ (4.69)

and

|J2|� (1 + τ )(1 + τ− 2
5 )e−ζhτ . (4.70)

as τ → ∞. Let ρ be defined in (2.3) with d = (1, 1, 1)� and d⊥ = (1, −1, 0)�. By Proposition 4.4, one
has (4.59). Plugging (4.63)-(4.70) and (4.59) into (4.61), it arrives that

|η(0)v(0)|
(

C
′
Kh

τ 2
− 1

τ
e− 1

2 ζhτ

)
� τ− 121

40 +
(

1

τ 3
+ 1

τ
e− 1

2 ζhτ

)
+ τ−(α+ 43

20 )

+
(

1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)
+ τ− 81

40 + τ−(α+ 43
20 ) +

(
1

τ α+2
+ 1

τ
e− 1

2 ζhτ

)

+ τ−(2α+ 43
20 ) +

(
1

τ 2α+2
+ 1

τ
e− 1

2 ζhτ

)
+ (1 + τ )(1 + τ− 2

5 )e−ζhτ ,

(4.71)

where the positive constant C
′
Kh not depending on τ is defined in (4.59). Multiplying τ 2 on both sides

of (4.71) and letting τ → ∞, one has

|η(0)v(0)| = 0.

Due to η(0) �= 0, we complete the proof of Theorem 4.3.

4.3. Proof of Corollary 4.4

Due to the proof of Corollary 4.4, (b) can be obtained by adopting the similar process as one of Corollary
4.4 (a); hence, we only give the proof of Corollary 4.4 (a). Firstly, we give the following proposition.

Proposition 4.5 (27, Lemma 2.4). Let Ch and ρ be defined in (4.2) and (2.3), respectively. Then, we
have ∣∣∣∣∫

Ch

eρ·xdx

∣∣∣∣≥ C̃Ch

τ 3
−O

(
1

τ
e− 1

2 ζhτ

)
, (4.72)

for sufficiently large τ , where C̃Ch is a positive number only depending on the opening angle θ0 of C
and ζ .

Proof of Corollary 4.4(a). The following integral identity can be obtained according to (4.29):

k2fj(0)
∫
Ch

eρ·x = I1 + I2 + I3 + J1 + J2, (4.73)

where Im, m = 1, 2, 3, J1 and J2 defined in (4.32).
With the help of (4.35), (4.42), (4.45), (4.52) and Proposition 4.5, we have the following integral

inequality

k2

[
C̃Ch

τ 3
− 1

τ
e− 1

2 ζhτ

]
|fj(0)|� j−β

[(
1

τ 3
+ 1

τ
e−ζhτ

) 1
2

+
(

1

τ 3
+ 1

τ
e−2ζhτ

) 1
4

τ− 2
5

]

+ jγ
[
τ−(α+ 121

40 ) +
(

1

τ α+3
+ 1

τ
e− 1

2 ζhτ

)]
+ τ− 121

40 + (1 + τ )(1 + τ− 2
5 )e−ζhτ

(4.74)
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as τ → ∞. For sufficiently large τ , we know that

C̃Ch

τ 3
− 1

τ
e− 1

2 ζhτ > 0.

Then, multiplying τ 3 in the both sides of (4.74) and letting τ → ∞ and τ = js, one has

k2C̃Ch |fj(0)|� j−β+ 37
20 s + jγ−αs. (4.75)

Due to the assumption that γ < 20
37
αβ, we choose s ∈ (γ /α, 20

37
β). By letting j → ∞, we have

|fj(0)| = 0.

Since q(0) �= 1, the proof of this corollary is complete.

5. Visibility and unique recovery results for the inverse scattering problem

In this section, we show that when a medium scatter with a conductive transmission boundary condition
possesses either one of a convex planar corner, a convex polyhedral corner, or a convex conic corner, it
radiates a non-trivial far-field pattern, namely the visibility of this scatterer occurs. Furthermore, when
the medium scatter is visible, it can be uniquely determined by a single far-field measurement under
generic physical scenarios.

In the following theorem, it indicates that a conductive medium possesses an aforementioned corner
under generic physical conditions always scatters.

Theorem 5.1. Consider the conductive medium scattering problems (1.3). Let (�; q, η) be the medium
scatterer associated with (1.3), where � is a bounded Lipschitz domain with a connected complement
in R

n, n = 2, 3. If either of the following conditions is fulfilled, namely,

(a) when ��R
2, there exists a sufficient small h ∈R+ such that �∩ Bh = Sh, where Sh is defined by

(3.1), q ∈ H2(Sh), η ∈ Cα(�±
h ) satisfying α ∈ (0, 1) and η(0) �= 0, and �±

h = ∂Sh \ ∂Bh;
(b) when ��R

3, there exists a sufficient small h ∈R+ such that �∩ Bh =Kh, where Kh is a cuboid
defined by (4.4), q ∈ H2(Kh), η ∈ Cα(�h) satisfying α ∈ (0, 1) and η(0) �= 0, and �h = ∂Kh \ ∂Bh;

(c) when ��R
3, there exists a sufficient small h ∈R+ such that �∩ Bh =Kh, where Kh is a

polyhedral corner but not a cuboid, then q ∈ H2(Kh) satisfying q(0) �= 1 and η≡ 0 on ∂Kh \ ∂Bh;
(d) when��R

3, there exists a sufficient small h ∈R+ such that�∩ Bh = Ch, where Ch is defined by
(4.1), q ∈ H2(Ch), η ∈ Cα(�h) satisfying α ∈ (0, 1), η(0) �= 0 and �h = ∂Ch \ ∂Bh;

then � always scatters for any incident wave satisfying (1.2).

Proof. By contradiction, suppose that the mediums scatterer � possesses either one of a convex planar
corner, a convex polyhedral corner and a convex conic corner, where the assumptions (a)-(d) are fulfilled.
Assume that� is non-radiating, namely the far-field pattern u∞ ≡ 0. By virtue of Rellich lemma, the total
wave field u and incident wave ui satisfies (1.1) associated with the incident wave number k. It is clear
that the incident ui is α-Hölder continuous and non-vanishing near the underlying corner. According to
Corollaries 3.3 and 4.5, Theorems 4.2 and 4.3, one has ui must vanish at the corresponding corner point,
where we get the contradiction.

The proof is complete.

In the following, we shall study the unique recovery for the inverse problem (1.4) associated with the
conductive scattering problem (1.3) in R

3. In the field of inverse scattering problems, it is concerned
with the shape determination of � by a minimum far-field measurement (cf. [22]). We utilize the local
geometrical characterization of transmission eigenfunctions near a corner in Section 4 to establish the
uniqueness regarding the shape determination of (1.4) by a single measurement under generic physical
scenario, where a single far-field measurement means that the underlying far-field pattern is generated
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only by a single incident wave ui. The unique determination results of (1.4) for recovering the material
parameters associated with (1.3) by infinitely many far-field measurements with a fixed frequency can
be found in [14, 15, 36, 37]. We obtain local unique recovery results for the determination of� without
a-prior knowledge on the material parameters q and η in this section. When � is a cuboid or a corona
shape scatterer with a conductive transmission boundary condition, the corresponding global uniqueness
results on the shape determination can be drawn under generic physical scenarios. It is pointed out
that when η≡ 0 on ∂�, namely consider the inverse problem (1.4) associated with the corresponding
scattering problem ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�u− + k2qu− = 0 in �,

�u+ + k2u+ = 0 in R
n \�,

u+ = u−, ∂νu+ = ∂νu−, on ∂�,

u+ = ui + us, in R
n,

limr→∞ r(n−1)/2(∂rus − ikus) = 0, r = |x|,

(5.1)

we can establish global unique recovery results for the shape of � within convex polyhedral or corona
geometries by a single far-field measurement, whereas the corresponding single measurement unique-
ness result regarding the shape determination of a convex polygonal or cuboid shape associated with
(5.1) was studied in [38].

In Theorem 5.2, we show the local uniqueness results for (1.4), which aims to recover a scatterer
(�; q, η) by knowledge of the far-field pattern u∞(x̂; ui) with a single measurement. First, let us introduce
the admissible class of the conductive scatterer and the related notations in our study.

Definition 5.1. Let � be a bounded Lipschitz domain in R
3 with a connected complement and

(�; k, d, q, η) be a conductive scatterer with the incident plane wave ui = eikx·d, where d ∈ S
2 and k ∈R+.

Consider the scattering problem (1.3). Denote u by the total wave field, which is associated with (1.3).
The scatterer � is said to be admissible if the following conditions are fulfilled:

(a) q ∈ L∞(�) and η ∈ L∞(∂�).
(b) After rigid motions, we assume that 0 ∈ ∂�. Recall that Ch and Kh are defined in (4.2) and (4.3)

respectively, where 0 is the apex of the conic corner Ch or the convex polyhedral corner Kh. If
� possesses a convex conic corner Ch (or a cuboid corner Kh), then q ∈ H2(Ch) (or q ∈ H2(Kh))
and η ∈ Cα(�h) satisfying η(0) �= 0 and α ∈ (0, 1), where �h = Ch ∩ ∂� (or �h =Kh ∩ ∂�). If �
possesses a convex polyhedral cornerKh = Bh ∩�, then q ∈ H2(Kh) satisfying q(0) �= 1 and η≡ 0
on Kh ∩ ∂�.

(c) The total wave field u is non-vanishing everywhere in the sense that for any x ∈R
3,

lim
λ→+0

1

m(B(x, ρ))

∫
B(x,λ)

|u(x)|dx �= 0, (5.2)

where m(B(x, λ)) is the measure of B(x, λ).

Remark 5.1. The assumption (5.2) is a technical condition for deriving the unique results, which can be
fulfilled under generic physical scenarios. For example, when k · diam(�) � 1, by the well-posedness
of the direct scattering problem (1.3) (cf. [15, Theorem 2.4]), the condition (5.2) can be satisfied. The
detailed discussion on this point can be found in [26, Page 44]. We believe that (5.2) can be fulfilled under
other physical settings, where we choose not to explore this aspect in this paper and shall investigate it
in the future.

Theorem 5.2. Consider the conductive scattering problem (1.3) with two conductive scatterers
(�j; k, d, qj, ηj), j = 1, 2, in R

3. Let u∞
j (x̂; ui) be the far-field pattern associated with the scatterers

(�j; k, d, qj, ηj), j = 1, 2 and the incident field ui. If (�j; k, d, qj, ηj) are admissible and

u∞
1 (x̂; ui) = u∞

2 (x̂; ui) (5.3)
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Figure 1 Schematic illustration of corona shape scatterers.

for all x̂ ∈ S
2 with a fixed incident ui. Then,

�1��2 := (�1 \�2) ∪ (�2 \�1) (5.4)

cannot contain a convex conic corner or a cuboid corner. Furthermore, if �1 and �2 are two cuboids,
then �1 =�2.

Proof. We prove this theorem by contradiction. Suppose that �1��2 contains a convex conic corner.
Without loss of generality, we assume that the underlying convex conic corner Ch ⊂�2 \�1, where
0 ∈ ∂�2 and �2 ∩ Bh = Ch with a sufficient small h ∈R+ such that Bh ⊂R

3 \�1.
Due to (5.3), with the help of Rellich’s Theorem (cf. [21]), it holds that us

1 = us
2 in R

3 \ (�1 ∪�2),
we have

u1(x) = u2(x), ∀x ∈R
3 \ (�1 ∪�2). (5.5)

Since �h = ∂Ch ∩ ∂�2, by virtue of transmission conditions on ∂�2 of (1.3) and (5.5), it yields that

u+
2 = u−

2 = u+
1 , ∂u−

2 = ∂u+
2 + η2u

+
2 = ∂u+

1 + η2u
+
1 on �h. (5.6)

According to (5.6) and direct scattering problems (1.3) associated with (�j; k, d, qj, ηj), one has⎧⎪⎨⎪⎩
�u−

2 + k2q2u−
2 = 0 in Ch,

�u+
1 + k2u+

1 = 0 in Ch,

u−
2 = u+

1 , ∂νu
−
2 = ∂νu

+
1 + η2u

+
1 on �h.

By the well-posedness of the direct scattering problem (1.3), it yields that u−
2 ∈ H1(Ch) and u+

1 is real
analytic in Bh. By virtue of the condition (b) in Definition 5.1, using Theorem 4.2, we know that
u1(0) = 0, which is contradicted to the admissibility condition (c) in Definition 5.1.

The first conclusion of this theorem concerning a cuboid corner can be proved similarly by using
Theorem 4.3. We omit the proof.

By the convexity of two cuboids �1 and �2 and the first conclusion of this theorem, it is ready to
know that �1 =�2.

The proof is complete.

In the following, we introduce an admissible class T of corona shape, which shall be used in Theorem
5.3. The schematic illustration of corona shape scatterers can be found in Figure 1.

Definition 5.2. Let D be a convex open bounded Lipschitz domain with a connected complementR3 \ D.
If there exist finite many strictly convex conic cones Cxj ,vj ,θj (j = 1, 2, . . . , �, � ∈N) defined in (4.1) such
that

(a) the apex xj ∈R
3 \ D, Cxj ,vj ,θj ∩ D �= ∅ and Cxj ,vj ,θj \ D has two disconnected components, where

C∗
xj ,vj ,θj

is the bounded component of Cxj ,vj ,θj \ D;

(b) ∂C∗
xj ,vj ,θj

\ ∂Cxj ,vj ,θj ⊂ ∂D and ∩�
j=1

(
∂C∗

xj ,vj ,θj
\ ∂Cxj ,vj ,θj

)= ∅;
(c) � := ∪�

j=1C∗
xj ,vj ,θj

∪ D is admissible described by Definition 5.1;

https://doi.org/10.1017/S0956792524000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000287


European Journal of Applied Mathematics 567

then � is said to belong to an admissible class T of corona shape.

A global unique recovery for the admissible scatter belonging to T of corona shape is shown in
Theorem 5.3, which can be proved by using Theorem 5.2 and the assumptions in Theorem 5.3. Indeed,
the assumptions (5.7a) and (5.7b) imply that the set difference of two scatters�1 and�2 cannot contain
a convex conic corner if �j ∈ T, j = 1, 2.

Theorem 5.3. Suppose that �m, m = 1, 2 belong to the admissible class T of corona shape, where

�m = ∪�(m)

j(m)=1C∗
xj(m) ,vj(m) ,θj(m)

∪ Dm, m = 1, 2.

Consider the conductive scattering problem (1.3) associated with the admissible conductive scatterers
�m, m = 1, 2. Let u∞

j (x̂; ui) be the far-field pattern associated with the scatterers (�m; C∗
xj(m) ,vj(m) ,θj(m)

), m =
1, 2 and the incident field ui. If the following conditions:

D1 = D2, (5.7a)

θi(1) = θj(2) , vi(1) = vj(2) for i(1) ∈ {1, . . . , �(1)} and j(2) ∈ {1, . . . , �(2)} when xi(1) = xj(2) , (5.7b)

and (5.3) are satisfied, then �(1) = �(2), xj(1) = xj(2) and θj(1) = θj(2) , where j(m) = 1, . . . �(m), m = 1, 2. Namely,
one has �1 =�2.

In Theorem 5.4, we first show a local uniqueness result regarding a polyhedral corner by a single
measurement, where we can prove this theorem in a similar manner as for Theorem 5.2 by utilizing
Corollary 4.5. Hence, the detailed proof of Theorem 5.4 is omitted. We emphasize that an admissible
convex polyhedral scatterer � can be uniquely determined by a single far-field measurement, which a
global uniqueness result for (1.4) associated with (1.3) is established.

Theorem 5.4. Consider the conductive scattering problem (1.3) with conductive scatterers
(�j; k, d, qj, ηj), j = 1, 2, in R

3. Let u∞
j (x̂; ui) be the far-field pattern associated with the scatterers

(�j; k, d, qj, ηj), j = 1, 2 and the incident field ui. If (�j; k, d, qj, ηj) are admissible and (5.3) is fulfilled,
then�1��2 defined by (5.4) cannot contain a convex polyhedral corner. Furthermore, if�1 and�2 are
two admissible convex polyhedrons, then

�1 =�2.

Consider the direct scattering problem (5.1) associated with a convex polyhedron medium (�; k, d, q),
which is a special case of (1.3) by letting η≡ 0 on ∂�. In Corollary 5.5, we give a global unique determi-
nation for a convex polyhedron� associated with the direct scattering problem (5.1) by a single far-field
measurement under generic physical settings. Corollary 5.5 can be proved directly by using Theorem
5.4 and the detailed proof is omitted. Compared with the corresponding uniqueness result in [38] for the
shape determination of a cuboid scatterer by a single measurement, we relax the geometrical restriction
on the uniqueness determination regarding medium shapes by a single measurement from a cuboid to a
general convex polyhedron.

Corollary 5.5. Consider the scattering problem (5.1) with scatterers (�j; k, d, qj), j = 1, 2, in R
3. Let

u∞
j (x̂; ui) be the far-field pattern associated with the scatterers (�j; k, d, qj), j = 1, 2 and the incident

field ui. Assume that the total wave field uj corresponding to (5.1) associated with (�j; k, d, qj) (j = 1, 2)
satisfies (5.2). Suppose that �j is a convex polyhedron, j = 1, 2. Denote V(�j) by a set composed of
all vertexes of �j with j = 1, 2. For any xc,j ∈ V(�j), if there exists sufficient small h ∈R+ such that
qj ∈ H2(Kh

xc,j
) with qj(xc,j) �= 1 for j = 1, 2, whereKh

xc,j
=�∩ Bh(xc,j) ��j, then the condition (5.3) implies

that �1 =�2.

When the shape of an admissible scatter � is uniquely determined by a single measurement, under
a-prior knowledge the potential q associated with � we can recover the surface parameter η by a single
measurement provided that η is a non-zero constant. We can use a similar argument for proving [26,
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Theorem 4.2] to establish Theorem 5.6. The detailed proof is omitted. The technical condition (5.8) can
be easily fulfilled under generic physical scenarios; see the detailed discussion in [26, Remark 4.2].

Theorem 5.6. Consider the conductive scattering problem (1.3) with the admissible conductive scat-
terers (�m; k, d, q, ηm) in R

3, where ηm �= 0, m = 1, 2, are two constants. Let u∞
m (x̂; ui) be the far-field

pattern with the scatterers (�m; k, d, q, ηm), m = 1, 2 and the incident field ui. Suppose that

u∞
1 (x̂; ui) = u∞

2 (x̂; ui), for all x̂ ∈ S
2

with a fixed incident wave ui. If

k is not an eigenvalue of the partial differential operator �+ k2q, (5.8)

and �m is a cuboid (m = 1, 2), we have η1 = η2. Similarly, when

�m = ∪�(m)

j(m)=1C∗
xj(m) ,vj(m) ,θj(m)

∪ Dm ∈ T, m = 1, 2,

if the conditions (5.8), (5.7a) and (5.7b) are fulfilled, one has η1 = η2.
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