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AN APPLICATION OF THE SPREAD RELATION TO
DIFFERENTIAL EQUATIONS

by GARY G. GUNDERSEN

(Received 16th April 1991)

If a differential equation with meromorphic coefficients has a certain form where the growth of one of the
coefficients dominates the growth of the other coefficients in a finite union of angles, then we show that this
puts restrictions on the deficiencies of any meromorphic solution of the equation. We use the spread relation
in the proofs. Examples are given which show that our results are sharp in several ways. Most of these
examples are constructed from the quotients of solutions of w" + G{z)w = 0 for certain polynomials G(z) and
from meromorphic functions which are extremal for the spread relation.

1991 Mathematics subject classification: 34A20, 30D35.

1. Introduction

In this paper a meromorphic function will always mean meromorphic in the whole
complex plane. We will assume that the reader is familiar with the fundamental results
and the standard symbols m(r,f), N(r,f), T(r,f), d(c,f), etc., of R. Nevanlinna's theory
of meromorphic functions (see [9]).

We will also use the following notation. Let p(h) denote the order of a meromorphic
function h(z). For q^.1 let Sx, S2,...,Sq be a finite number of angles which have the
form

(1.1)

for i = l , 2 , . . . , q , where 9i<^/l<Q2<\j/2< ••• <Qq<\j/ll<6i +2n. Set

L=t(il,i-di). (1.2)

The main results in this paper are Theorem 1, Corollary 1, and Theorem 2 below.

Theorem 1. Suppose that we have a differential equation of the form
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212 G. G. GUNDERSEN

£>(z)w*0(w')*'... (w(m))*" = P(z, w, w',..., w(v)) (1.3)

where D(z) is meromorphic, k0, ku...,km are non-negative integers, and P is a polynomial
in w, w',..., w(v) with meromorphic coefficients, such that

degree (P)^ko + k1 +•••+km. (1.4)

Suppose that there exists a finite number of angles Slt S2,...,Sq as in (1.1), and constants
a f >0 , /?j>0 (i=l,...,q), such that

'} (1.5)

as z-» oo in St (i=l,...,q), and such that for any coefficient a(z) in P we have

(1.6)

as z->oo in S,(i = l,...,q).
Let w=f(z) be a transcendental meromorphic solution of (1.3).

(i) / / m=0, then for every value c ̂  0 in the extended plane we have

s in - 1
N /^ / ) /2^ ip( / ) (27 t -L) (1.7)

vv/iere L is the number in (1.2).

(ii) / / m ^ l and fem^l, then for every value c in the extended plane except possibly for
at most q finite exceptional values, we have

- L ) . (1.8)

If in Theorem 1, w=f(z) is a rational solution of (1.3), then it is easy to see that we
must have / ( m ) = 0. Thus we eliminate this trivial case by assuming that / is
transcendental in Theorem 1. Theorems 1 and 2 in [7] are special cases of Theorem 1
above.

For convenience in stating some results below, we set

where each Aj(z) and each Bj(z) is meromorphic (An£0, Bp^0), and we assume that the
right side of (1.9) is completely reduced as a rational function in w.

We also need a definition. If Q(z, w, w',..., w*"') is a polynomial in w, w',..., w{>>) with
meromorphic coefficients, then Q is a finite sum of terms of the form

H(z)wko(w')kl... (ww)*" (1.10)
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where H(z) is meromorphic and kQ,kl,...,kll are non-negative integers. The weight of
the term (1.10) is defined to be the sum

and the weight of Q is defined to be the maximum weight of all of its terms (1.10).
The next result is an immediate corollary of Theorem 1 and Theorem B in Section 2.

Corollary 1. Suppose that we have the hypothesis of Theorem 1. Set

a — max {p(H)}

where this maximum is taken over all the coefficients H(z) in equation (1.3).
Then the following two statements hold:

(i) Suppose that equation (1.3) can also be written in the form

where Q is a polynomial in w, w',..., w("> with meromorphic coefficients, and where R has
the form (1.9) with D{z) = An(z) such that either (a) p ^ l or {b) p = 0 and n>weight(Q).
Then for every value c # 0 in the extended plane we have

sin ~ l Jb{c, / ) / 2 ^ i (T(2TC - L) (1.11)

vvnere L is t/ie number in (1.2).

(ii) Suppose that m^ 1 and fem^ 1, and suppose that equation (1.3) can a/so be written in
the form

(w')k'{w")k2... (wC")*- = R(z, w)

where R has the form (1.9) with D(z) = Bp(z) and pSil. Then for every value c in the
extended plane except possibly for at most q finite exceptional values, we have

^ ( 2 n - L ) . (1.12)

Corollaries 1 and 2 in [7] are special cases of Corollary 1 above. We mention that if
the coefficients of a differential equation in Corollary 1 (above) all have finite order,
then it follows from Theorem B (in Section 2) that any meromorphic solution of the
equation must also have finite order.

Theorem 1 and Corollary 1 are sharp in several ways:

(a) Examples in Section 7 will show that the four inequalities (1.7), (1.8), (1.11), and
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(1.12) are sharp in the sense that if we are given any constant n that satisfies Ogr/^1,
then for cases (i) and (ii) in Theorem 1 and Corollary 1, there exist equations of the
form (1.3) which possess a meromorphic solution w = f(z) where (1.7), (1.8), (1.11), and
(1.12) reduce to an equality when c = oo and where <5(oo,f) = n. When 0<r/<l, these
solutions /(z) are meromorphic functions which are extremal for the spread relation.

(b) Examples in Section 8 will show that for any given integer q ̂  1 in Theorem 1 or
Corollary 1, it is possible to have exactly q distinct finite exceptional values in Theorem
1 (ii) or Corollary 1 (ii). These examples will be constructed from quotients of solutions
of equations of the form w" + G(z)w = 0 for certain polynomials G(z).

(c) Examples in Section 9 will show that c = 0 can be an exceptional value in Theorem
l(i) or Corollary l(i).

(d) Examples in Section 10 will show that the condition (1.4) is sharp.

The next result shows that under the conditions of Theorem 1, if we also have
p(f) < oo, then either / or one of its derivatives has a finite asymptotic value in each
angle St.

Theorem 2. Suppose that we have the hypothesis of Theorem 1, and that p(/)<oo.
Then there exists a set E a [0,2n) that has linear measure zero such that the following
two statements hold:

(i) Ifm = 0and <j)eSi-E(i=l, 2,...,q),then

/(z)-O (1.13)

as z -»oo along arg z = <p.

(ii) If m^l and fem^l, then for each i=l,2,...,q, there exists a corresponding finite
constant c, such that for any <peSi — E,

/c»-i>(z)_>c. (1.14)

as z -»oo along arg z = <j>.

In Theorem 2(ii) the constants cl,c2,...,cq may or may not be distinct, while on the
other hand, for each fixed i the constant c, is independent of <f>eSi — E. The proof of
Theorem 1 will consist of combining Theorem 2 and the spread relation (see Theorem A
in Section 2).

I would like to thank Walter K. Hayman and Aimo Hinkkanen for some valuable
discussions. I also thank the referee for suggestions.

2. Preliminary results

This section contains results that we use in the proofs of Theorem 1, Corollary 1, and
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SPREAD RELATION TO DIFFERENTIAL EQUATIONS 215

Theorem 2. The first result can be deduced from the spread relation, which was
conjectured by Edrei and proven by Baernstein.

Theorem A [1]. Let h(z) be a transcendental meromorphic function where p(h) < oo,
and let c be any value in the extended plane. Define sets of arguments J(r, c) c (— n, n] by

= )0 h(reie)-c

= {O:\h(reie)\>r}

Let e > 0 be a given constant.
Then there exists a sequence rk-> + cosuch that

if

if c=oo.

mm(2n, - i - sin"1

\ Pin)

for each rk, where n{J(rk,c)} denotes the linear measure of the set J(rk,c).

The next result is essentially due to J. Clunie, since the proof is a simple modification
of the proof of Lemma 3.3 on pages 68-69 of [9].

Lemma A. Let g(z) be a transcendental meromorphic solution of the equation

where P and Q are polynomials in g, g', g",... with meromorphic coefficients Hj(z). If
degree(g)^n, then

where S(r,g) = o(l)T(r,g) as r-*ao outside a possible exceptional set of finite linear
measure.

Lemma B [6]. Let h(z) be a transcendental meromorphic function of finite order p. Let
I and j be integers that satisfy l>j^.O and let e > 0 be a given constant.

(i) There exists a set £^[0 ,271) that has linear measure zero, such that if
<pe[Q,2n) — Elt then there is a constant Ro=Ro{<p)>0 such that for all z satisfying
arg z = <p and \z\ = ô> we have

(2.1)
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(ii) There exists a set £ 2 c(0 ,oo) that has finite logarithmic measure, such that (2.1)
holds whenever \z\ $E2 u [0,1].

The next result is a Malmquist-type theorem which comes from a theorem of Strelitz.

Theorem B. Consider a differential equation of the form

Q(z,w,w',...,w^) = R(z,w) (2.2)

where Q is a polynomial in w, w',..., w'"' with meromorphic coefficients, and where R has
the form (1.9). Set

£ = max {?(#,.)} (2.3)
j

where this maximum is taken over all the coefficients Hj(z) in equation (2.2).
/ / (2.2) possesses a meromorphic solution w=f(z) such that /?(/)>£, then R must

necessarily be a polynomial in w that satisfies

Proof. Since p(f)>%, it follows from a theorem of Strelitz [14] that R must
necessarily be a polynomial in w. We now make the assumption that

degree(K)>weight(0. (2.4)

Let £>0 be a small fixed constant. Since degree(i?) > degree(Q) from (2.4), it follows
from Lemma A that

and then from (2.3) we obtain

f). (2.5)

Now consider the poles of / . If we set / = degree(/?), then from (2.2) and (2.4) we
obtain

f' = P(z,f,f",..., /«) (2.6)

where P is a polynomial in / , / ' , . . . , / ( v ) with meromorphic coefficients hj(z) which
satisfy p(hj) g <J from (2.3), and where weight(F) < /. Thus from (2.6) we obtain

which gives

N(r,f)ZO(r*+'). (2.7)

From (2.7) and (2.5),
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where S(r,/) = o(l)T(r,/) as r->co outside a possible exceptional set of finite linear
measure. Since T(r, f) is a non-decreasing function of r, this implies that [2, p. 68]

as r -»oo through all values of r. Hence p(f) g £ which contradicts the hypothesis of
Theorem B. Thus our assumption (2.4) is false, and this proves Theorem B.

We will prove the next two lemmas in Sections 3 and 4.

Lemma 1. Let S be an angle S:8^argz^4/ where Q<ip, let <f> and Ro^0 be real
constants where 6^<p^}J/, and let \iu\i2,... be an infinite positive sequence that satisfies
Hn -> + oo and R0<fil <fi2<n3< ••• . Let h(z) be a meromorphic function that is analytic
on the set V defined by

V={z:zeS and \z\=fin for some «^1} u {z:argz = 0 and \z\^.R0}.

Let X{r) be a non-decreasing positive function on R0^r< oo, and set

\hi)(z)\C(z)=LJJl (2.8)

where r = \z\ and m^.0 is an integer. Suppose that £(z) is unbounded as z-»oo on V.
Then there exists an infinite sequence {zj} where each Zje V and Zj-*ao, such that

h(m){zj)

h(zj)

as z(->oo, and

• o o (2.10)

Lemma 2. Suppose that we have the hypothesis of Theorem 1, and that p ( / ) < oo. Let
i be any fixed integer that satisfies 1 ^ i ̂  q.

Then there exists a set Ec [0,2n) that has linear measure zero, an infinite positive
sequence nl,n2,... that satisfies nn-> + co and

0<nn<nn+l<2fin (2.11)

for all n, and a constant £,->() such that i / ^ e S , — E, then

|"'} (2.12)
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as z —»• oo on the set

Y={z:zsSi and \z\ = fin for some «^1} u {z:argz = $}. (2.13)

3. Proof of Lemma 1

Since £(z) is unbounded as z -»oo on V, it follows that there exists an infinite sequence
{zj} where each z;e V and Zj-*co, such that for each z} we have

«*)£«*,) (3-1)

for all z e V satisfying r^ |zj | , and where (2.10) holds. It remains to show that (2.9) holds.
Obviously (2.9) holds when m = 0, so we assume that m^ 1.

Since A(r) is a non-decreasing positive function, it follows from (2.10) that

hlm)(Zj)^<x> (3.2)

as Zj-»oo, and it follows from (3.1) that

|/t<">(z)|£|*<">(z,)| (3.3)

for all ze V satisfying r^ |zj | .
Now set bo = Roe"t> and z = re'ne V, and consider the equation

him-1)(z) = him-1)(b0) + j hlm)(u)du (3.4)
y

where the curve y first goes from the point b0 to the point re'* along the ray argu = <£
and then goes from re'* to z = reiri along the circle |«| = r. Thus the curve y lies entirely in
V.

If r ^ |f;| for some _/, then from (3.4) and (3.3) we obtain

which gives

|*<"- 1»(z)|^Cm_1 + 8r|/l"»»(zJ)| (3.5)

where Cm_1 = |/i(m~1)(fe0)|. Now if m ^ 2 and rg|z7 | , then from (3.5) we obtain

i""-»| \du\
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SPREAD RELATION TO DIFFERENTIAL EQUATIONS 219

which gives

where Cm_2 = |/i(m 2)(i»o)|- By repeating this process as many times as necessary, we can
deduce that for all m ̂  1 and for any given j ,

m-l

k = 0

for all zeV which satisfy r^ |z j | , where C0,Cl,...,Cm-1 are non-negative constants. By
taking z = Zj in (3.6) and noting (3.2), we obtain that (2.9) holds for all m ^ l . This
completes the proof of Lemma 1.

4. Proof of Lemma 2

For convenience we set S = Sj and p = p( / ) . For equation (1.3), set ?7 = max{m,v}.
Then from Lemma B there exists a set £j <= [0,2n) that has linear measure zero and a
set E2 <= (0, oo) that has finite logarithmic measure, such that if <peS—Eu then there is a
constant Ro = Ro(<f>)>0 such that for all integers / and j that satisfy O^j<l^rj, we have

J W ^u(i-j)p ( 4 !)

for all z in the set

fi = {z: arg z = <p and \z\ ^ Ro} u {z: \z\ $ E2 u [0,1]}. (4.2)

Since E2 has finite logarithmic measure, it follows that for any fixed real constant
t0 > 1 there must exist a point x0 > 0 large enough, such that if x > x0, then the interval
[x, tox] must contain a point that does not belong to E2. Hence it can be deduced that
we can choose an infinite positive sequence / i j , ^ , . . . such that fin$E2v [0,1] for all n,
where

RQ <fin<.nn+i< 2fin (4.3)

for all n, and where \in-* + 00. Then from (4.1) and (4.2), we see that (4.1) holds for all /
and j satisfying O^j<l^rj and for all z in the set

V={z:zeS and |z| = /in for some n ^ 1} u {z:argz = <£ and |z |^ i?0} , (4.4)

since V is contained in Q.
For convenience we set P(z) = P(z,/,/',...,/(v)) and N = ko + k1 + ••• +km in equation
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(1.3). From consideration of (1.3) and (4.1) we can deduce that there exists a constant
T > 0 such that

(4.5)

for all zeV. From (4.5),

\D(z)\-

for all zeV.
We now make the assumption that

fi*) '\fiz)\K (4.6)

(4.7)

is unbounded on the set V. Since (4.1) holds on V, f(z) is analytic on V. Then from the
assumption and (4.4), it follows from Lemma 1 that there exists an infinite sequence {zj}
where each Zje V and z,-» oo, such that

as Zj-»oo, and

1 (4.8)

• o o (4.9)

as ZJ-KX). From (4.8) and (4.6),

(4.10)

Since degree(P)^N from (1.4), it is easy to see that the expression

in (4.10) is made up entirely of the following three types of quantities:

(a) quantities of the form a(zj) where a{z) is a coefficient of P,

(b) quantities of the form fM(zj)/f(zj) where \^n^r\, and
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SPREAD RELATION TO DIFFERENTIAL EQUATIONS 221

(c) quantities of the form l/f(zj).

In case (a) we have

as Zj-*co from (1.6). In case (b) we have

4")

m

(4.11)

(4.12)

from (4.1). In case (c) we have

( 4 1 3 )

as Zj-*co, because (4.13) follows directly from (4.9) when m=0, while if m ^ l then (4.1)
implies

1 < |z,-r

and then (4.13) follows from (4.9).
From (4.13), (4.12), (4.11), and (1.5), we see that (4.10) yields a contradiction as

Zj-* co. Hence our assumption that (4.7) is unbounded on the set V is false.
Therefore,

|/(m)(z)| = O(|z|mp) (4.14)

as z -* oo on V.
We can now use (4.14) to show that for each integer n satisfying O^n^r/, there exists

a constant kn > 0 such that

|/<">(z)| = O(|z|*«) (4.15)

as z-^oo on V.
If m^n^ri, then (4.15) will follow from (4.14) and (4.1). On the other hand, if m ^ l

and 0^n<m, then we can obtain (4.15) by estimating in a similar manner as in the
proof of Lemma 1. Specifically, set bo = Roe

i4> and r = \z\, and consider the equation

y e - D(Z) = y e - 1)(b0)+jfim)(u) du (4.16)
y

for zeV, where the curve y first goes from the point b0 to the point re'* along the ray
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argu = </> and then from re'* to z along the circle \u\ = r. From (4.16) and (4.14) we
obtain

|/(m-1)(z)| = O(|z|m<>+1) (4.17)

as z->oo on V. Thus (4.17) shows that (4.15) holds when m ^ l and n = m— 1. If m^2,
then this process can be repeated with (4.17) and

By repeating this process as many times as necessary we see that (4.15) will hold
whenever m^. 1 and 0^«<m. Hence we have shown that (4.15) holds for all n satisfying

Next we note that N > 0 in (4.5), because if we had N=0, then we would have
degree (P)=0 from (1.4), and this would imply that the differential equation (1.3) does
not depend on w, which is absurd. Thus by using (1.5), (1.6), and (4.15) in (4.5), we
obtain that

|/<"1>(z)|^exp{-(l+o(l))^|z|"'} (4.18)

as z-»oo on V, where £,• = <xf/N > 0. From (4.4) and (4.3), we see that (2.11) holds, that
/*„-• +oo, and that (4.18) holds as z->oo on the set Yin (2.13). By taking E = EU this
shows that (2.12) holds, and the proof of Lemma 2 is now complete.

5. Proof of Theorem 2

First note that Lemma 2 holds. Let i be any fixed integer that satisfies 1 ^ i ̂  q. Let
E a [0,2n) be the set of linear measure zero in Lemma 2, and suppose that <f> e St — E.
Then from Lemma 2, there exists a constant £,>0 such that

|"'} (5.1)

(5.2)

as z->-oo along argz = </». If m=0, then (i) follows from (5.1).
Thus we now assume that m^.1 and fcm^ 1. Consider the equation

where zx and z2 are two points of large modulus that both lie on the ray argz = #, and
where the curve y goes from Zj to z2 along argz = <£. From (5.2) and (5.1) it can be
deduced that the quantity
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can be made arbitrarily small by just having |zj| and |z2| large enough. It follows that
there exists a constant c, such that

/ ( —"(z j -c , (5.3)

as z -»oo along arg z = $.
It remains to show that the constant cf is independent of $ e S, — £. To this end, we

suppose that $j and <j>2 satisfy c^eS, —£ for ; = 1, 2, and </>î </>2. Let j ^ , /i2,... be the
sequence in Lemma 2, and we note that

(5.4)

holds for all n, from (2.11). Set

F1 = {z:zeSi and |z|=/xn for some n ^ l } u {z: argz = </>i}

and

Y2 = {z:zeSi and |z| = A*n for some n ^ l } u {z:argz = 02}.

Consider the equation

/<"-»(fc2) - / < " - 1»(b1) = J/(m)(z)dz (5.5)

where fej and fe2 are two points of large modulus such that arg bl=<f>l and argb2 = $2,
and where the curve T lies entirely in the set Yt u Y2 and is chosen so that the length of
F is as small as possible. Since (5.1) holds as z-»oo on Yt u Y2 from Lemma 2, it can be
deduced from (5.5) and (5.4) that the quantity

can be made arbitrarily small by just having |fcj| and \b2\ large enough. It follows that
the constant cf in (5.3) must be the same constant for all <^eS, — E. This proves (ii) and
the proof of Theorem 2 is complete.

6. Proof of Theorem 1

From (1.1) and (1.2) we have 0<L<2n. Thus (1.7) and (1.8) are obviously true if
p(f) = oo. Hence we assume that p(/)<oo.

Let E c [0,2n) be the set of linear measure zero in Theorem 2. Let e > 0 be a given
small constant.

First suppose that m=0. Since E has linear measure zero, it follows from (1.13),
Theorem A, and (1.2), that for any value c#0 in the extended plane, we have
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224 G. G. GUNDERSEN

min I 2rt, sin'
V P(f)

By letting e-*0 we obtain (1.7). This proves (i)
Now suppose that mj^l and fcm^l. Let cuc2,...,cq be the finite constants in

Theorem 2(ii). Since E has linear measure zero, it follows from (1.14), Theorem A, and
(1.2), that for any value c / c , (i= 1,2,...,g) in the extended plane, we have

4mini 2n,-j— sin"1 JS(c,fim-i})/2
V P(f) J

Letting e->0 gives (1.8). This proves (ii).
The proof of Theorem 1 is complete.

7. The inequalities are sharp

We will first illustrate that the four inequalities (1.7), (1.8), (1.11), and (1.12) in
Theorem 1 and Corollary 1 are sharp for any given numerical value of the deficiency
d(c,f). Speifically, we will show that if r\ is any given constant that satisfies 0^ / ;^ l ,
then for cases (i) and (ii) in Theorem 1 and Corollary 1, there exist equations of the
form (1.3) which possess a meromorphic solution w = f(z) such that the corresponding
inequality reduces to an equality when c = oo and where 5(oo,/) = ̂ .

Suppose first that 0<»7<l. Let T ^ 2 be an integer and let p be any real constant that
satisfies T —1/2 < p < T. Let /(z) be the meromorphic function /(z) that is constructed in
Section 7 of [7], i.e., /(z) is defined by (7.5) on page 73 of [7]. For the discussion below
concerning this particular function /(z), we refer the reader to Section 7 in [7].

We have

p(f) = P,

and /(z) is an extremal function for the spread relation. Now set

and let e>0 be a given small constant. Then there exists a constant C = C(e)>0 and a
finite number of angles Si,S2,...,Sq as in (1.1) such that the number L in (1.2) satisfies

2E,, (7.1)

and
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'} (7.2)

as z->oo in St (i = 1,2,...,q).
In N^O is any fixed integer, then by applying the Cauchy integral formula to (7.2),

we can deduce that for all j satisfying O^j^N,

|/<»(z)|^exp{-(l+0(l))C|z|"} (7.3)

as z-*oo in S, (i=l,...,q). We note that we may have to make the angles S i , . . . , ^
slightly smaller in order to obtain (7.3) from (7.2), but this will not affect anything since
the condition (7.1) will still be satisfied.

By using the estimates in (7.3) it is easy to construct examples of differential equations
for which the inequalities (1.7), (1.8), (1.11), and (1.12) will reduce to equalities. For
example, in each of the following seven equations, let the meromorphic coefficient Dj(z)
(j = 1,2,...,7) be defined by the equation:

2- Z)2(z)(/') ( / ) / / #

3. D 3 ( Z ) / W / ' ( / " ) 2 - Z 3 / < 5 > + 1.

4. D4(z)/4 = (tan z) / ' +(sin z)(/ ' ) 3-e2 .

5. />5(z)/3(/')7 = / - ( / ' ) 7 + e z / 2 + l .

6. D 6 ( Z ) / 8

7. £»7(z)/9

We can use (7.3) and /?>1 to deduce that for each ; = 1,...,7, there exists a constant
a = a(;,e)>0 such that

as Z-KX) in each S, (i= 1,2,...,q). Thus each of these seven equations gives an example
for Theorem 1, while equations 5, 6, and 7 give examples for Corollary 1 also. For each
of the seven examples, either the inequality (1.7) or the inequality (1.8) when c = oo is
approaching an equality (p£/2 on both sides) as e-+0, and we have <5(oo,/) = r/. In
equations 5, 6, and 7 we have p(f) = p{Dj) for j = 5, 6, 7, because p(f)^p(Dj) from
Theorem B, while p(f)^p(Dj) is obvious. Thus for each of the equations 5, 6, and 7,
either the inequality (1.11) or the inequality (1.12) when c = oo approaches an equality
(p£/2) as £->0, and we have <5(oo, f) = rj. Hence these examples show that each of the
four inequalities (1.7), (1.8), (1.11), and (1.12) is sharp for any given numerical value of
ri = 5(c,f) satisfying 0<?7< 1.

By using elementary functions it is very easy to generate examples which show that
these four inequalities are sharp when either rj = O or rj = l. As one example, for the case
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when r] = d(co,f)=l in (ii) of Theorem 1, we have that w = e~z satisfies ezw(w')2 =
w-e'zw"'-e~2. See also [7].

8. q exceptional values are possible

We will next construct examples which show that for any given integer q ̂  1 in
Theorem 1 or Corollary 1, it is possible to have exactly q distinct finite exceptional
values in Theorem l(ii) or Corollary 1 (ii).

First we suppose that q^2. Let G(z)^0 be a polynomial of degree q — 2. It is well
known [3] that any solution w^O of

w" + G(z)w = 0 (8.1)

is entire with p(w) = q/2. For the discussion below concerning equation (8.1) we refer the
reader to [4, 5, 10, 11, 12, 13].

Set fi = q/2, and let e>0 be a given small constant. Then there exist q angles
Sl,S2,...,Sq as in (1.1), where

L = 2n-e (8.2)

in (1.2), and there exists a constant £ = £(£)>() such that for any solution w^O of (8.1)
and any angle S, we must have either

\ \ \ \ } (8.3)

as z -»oo in S,, or

| | | H (8.4)

as z->oo in S,. (The angles Su...,Sq can be chosen so that they each have the same
angle measure.) In most cases (8.3) will hold.

On the other hand, Hellerstein and Rossi [10] have shown that there exists a
polynomial Gq-2(z) of degree q — 2 such that the equation

w" + G,_2(z)w=0 (8.5)

will possess q pairwise linearly independent solutions wl,w2,..-,wq such that for each
j=l,2,...,q, Wj(z) satisfies (8.4) as z-»oo in Sj, and Wj(z) satisfies (8.3) as Z-KX> in S,- for
all iVy. Concrete examples of this type are G,_2(z)= —z*~2 (see [8]).

It is well known that there exists two linearly independent solutions w=fl(z) and
w=/2(z) of (8.5) which both satisfy (8.3) as Z - K » in each S, (i=l,2,...,q). Since the
solutions w1,w2,...,wq are pairwise linearly independent, it follows that there exist
distinct non-zero constants cuc2,...,cq such that
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fi-cJ2 = aiWi (8.6)

for i= l ,2 , . . . ,9 , where al,a2,...,aq are non-zero constants.
Now set

f=fy. (8.7)
J2

From the growth properties of f1,f2 and wl,w2,...,wq in each angle Sh we see from
(8.6) that

/(*)-> c, (8.8)

as z-yco in S, (i = l, 2,...,q). It is well known that

<5(Cj,/)=? (8.9)

for each i= 1,2,...,q.
Since f' = b/(f2)

2 where £>#0 is a constant from (8.7) and Abel's identity, and since / 2

satisfies (8.3) in each S,, it follows from the Cauchy integral formula that for any given
integer JV^ 1 we have for all j satisfying 1 ^j^N,

(8.10)

as z-»oo in each St (i=l,2,...,q). (The angles S, may have to be made slightly smaller
to obtain (8.10), but this does not affect anything.)

From the estimates in (8.10), it will be easy to construct the kind of examples that we
desire. For example, in each of the following four equations, let the meromorphic
coefficient D}{z) (j = l, 2, 3, 4) be defined by the equation (where M > 0 is a very large
constant):

1. D

2. D2(

3. D3(

4. D4(

We can use (8.10), (8.8), and c,-^0 for i=l,...,q, to deduce that for each j=\, 2, 3, 4,
there exists a constant a = a(;,6)>0 such that

as z->oo in each S, ( i=l ,2, . . . ,q) . Thus each of these equations gives an example of
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Theorem l(ii), while equations 3 and 4 give examples for Corollary l(ii) also. From (8.2)
and p(f)< oo, we see that for these four equations the right side of the inequality (1.8)
approaches 0 as e-+0. Hence from (8.9), we see that (1.8) does not hold for the q distinct
finite values cuc2,---,cq. Similarly, for equations 3 and 4 above, the inequality (1.12)
does not hold for the q values cuc2,...,cq. This follows from (8.9) and the observation
that the right side of (1.12) approaches 0 as e->0 (since p(D3) <oo and p(D4)<oo are
immediate from equations 3 and 4).

Hence these examples show that for any given integer q^2 in Theorem 1 or
Corollary 1, it is possible to have exactly q distinct finite exceptional values in Theorem
l(ii) or Corollary l(ii).

It is also possible to have q = 1 in Theorem 1 or Corollary 1 and to have exactly q = 1
finite exceptional value in Theorem l(ii) or Corollary l(ii). For example, w=l + secN/z
satisfies D(z) ww' = w—w' where

u\z) ~

and the exceptional value is c= 1.

9. c=0 can be exceptional

The function w = sec z is a solution of each of the following three equations:

1. (cosz)w3 = ww"-(secz)4 + (cotz)2(w')2-(tanz)2w2,

2. (sin z) w3 = w' + ww'—(tan z)w,

3. (cosz)w5 = w"—(tan z)2w —

These three examples show that c = 0 can be an exceptional value in Theorem l(i) or
Corollary l(i). Example 1 illustrates this property about Theorem l(i), Example 2
illustrates this property about case (a) in Corollary l(i), and Example 3 illustrates this
property about case (b) in Corollary l(i).

10. Condition (1.4) is sharp

The function w = sin z is a solution of each of the following four equations:

1. (cos z)w7 = (cot z)(w")8,

2. (sinz)w2(w')4= -(tanz)3(w"')7,

3. (sinz)w3=(cscz)w+(tanz)ww'(w(4))2 —1,

4. (sinz)w2(w')5=(cscz)(cotz)5w6 + (cotz)5w8-(w')5.

These four examples show that the condition (1.4) is sharp with respect to all the
possible cases in Theorem 1 and Corollary 1. All four examples illustrate this property
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about Theorem 1, while examples 3 and 4 illustrate this property about Corollary 1
also. Specifically, for each of the four examples, the conclusion in the respective result
(i.e., in Theorem 1 or Corollary 1 or both) does not hold when c = oo while at the same
time all of the hypothesis in the respective result holds except for (1.4) where we have
deg(P) = /co + fei + —l-^m+1 in each of the four examples. We observe that if deg(P)>
ko + ki + ' " + ^m, then case (b) in Corollary l(i) is not possible.
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