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Abstract

Logarithmic coefficient bounds for some univalent functions are given in this paper.

1991 Mathematics subject classification (Amer. Math. Soc.): 30C45, 30C50, 30CS5.

Let S denote the usual class of univalent functions f(z) normalized so that f(0) =
f'(0) — 1in |z] < 1. Let C denote the set of functions f(z) normalized as above and
which satisfy the condition Re zf'(z)/g(z) = Oin |z| < 1, where g(z) itself is subject
to the conditions Rezg'(z)/g(z) = 0, g(0) = 0 and Reg’(0) > O in |z| < 1. Then
f(2) is called close-to-convex relative to the starlike function g(z). We denote this
set of functions g(z) by $*. Now let K denote the set of functions Q(z) which satisfy
the conditions: @(0) = 0,Re @'(0) > 0andRe (zQ"/Q’+ 1) > 0in|z| < 1. Such
Q(z) are called convex. Itis well known thateachzQ'(z) e S*and K C S*Cc CC S
(see for example [6, pp. 40-46]; [11, pp. 11-18]; [14, p. 361]).
Now, as in [6, p. 151], each f(z) € S has a logarithmic expansion

(1) log @ _, > v
n=1

z

in |z] < 1 where y, are known as the logarithmic coefficients. The problem of the
best upper bounds for |y,| is still open. In fact even the proper order of magnitude is
still not known. It is known, however, for the starlike functions that the best bound
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is |y.] < 1/n (n = 1) and that this is not true in general [6, p. 151]; [5, p. 898];
(1, p. 1401 and [7].

The importance of this problem in relation to the Bieberbach conjecture was pointed
out by Milin in his conjecture (see [1, p. 141]; [6, pp. 155-156]; [5, p. 899]) that

" 1
klyil? — —) <0,
33 (ke -
which led De Branges, by proving this conjecture, to the proof of the Bieberbach
conjecture [2]. Milin has shown [6, p. 151] that 3, _, (k|yl* — 1/k) < & where
§ < 0.312.

It is known that § cannot be reduced to zero in general [6, p. 155]. However,
its exact value remains unknown. In this note we show that |y,| < 1/n (n > 1),
for f € C, and consequently § = 0 as for the starlike functions. We shall use
> a,z" € Y b,z" tomean |a,| < b, forn > 1[12, p. 52] and f < F to mean that
fO)=F@)and f(z:|z| < 1) C F(z : |z| < 1) or equivalently f(z) = F(¢(z2)),
where ¢(0) = 0 and |¢(2)| < 1 [6, p. 190].

THEOREM 1. Let f € C so that (1) holds. Then for n > 1 we have

1
2 1Val < —.
n

PROOF. For f € C let {f;} be a sequence in C which converges uniformly on
compact subsets to f € C. Let also for a fixed n, J(g) = |y,| where g(z) =
log(f(2)/z) = 23 2, v»2" and let log(fi(2)/z) = 23 oo, y®z". Then, using the
coefficient formula we deduce for z = re®, 0 < r < 1, that

1721 = 1wal| < 17® =l
1 z 4 dz
< r"max|log(fi(2)/f ()|
— 0,
since f; — f uniformly on |z| = r as k — oo [11, p. 40]. Thus we see that
ly®|? — |y,|* so that J(g) is continuous.

Now let £(z) = log(fi(2)/z) = 22:11 v,2", @) = log(fa(z)/2) = 22:11 v, z"
in|z|] < 1 where fi, f, € C. Letalsog =th+ (1 —t)¢p, 0 <t < 1. Thenby [11,
Lemma 5.6] we have
J(@ =wl*=lty, + QA =0)y,))
<ty +Q=-0ly P
=tJh)+ (1 -1)J(¢),
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which implies that J(g) is convex.

Thus, in view of [11, Theorem 4.6], we need only prove Theorem 1 for the extreme
points of the closed convex hull of C, denoted by E HC, sincemax{J(f): f € EHC}
=max{J(f) : f € C} in this case.

Functions f € EHC are of the form

3 f@)=@E~3&+y2H/A~yz)

where x # y and |x| = |y| = 1.
With a suitable rotation (see [11, p. 83]), this can be written in the form

f(2) =z —bz»)/(1 —2)?

where |b — 1/2| = 1/2.
Writing ¥ (z) = (1 — bz)/(1 — z) we see that

1+(1-2b
Re ¢ (z) = 2 (+—(__l) >3

1-z2

We also see that Re (zy" /¢’ + 1) = Re ((1 + z)/(1 — z)) > 0 which implies that ¢
is convex and consequently starlike of order 1/2 (see [4, p. 418];[6, p. 251]). Thus,
as in [4, p. 417] and [16, p. 722], using Herglotz’s formula (see [6, pp. 22-40]; [11,

pp- 27-30))
2 1+ —it
p(2)=/ (——1 e_nz)du(t)
0 — ez

where p(0) = 1, Re p(z) >0, du(t) > 0and f02" du(t) = 1, we obtain

2T 1
logy(z) = f log (1*—_,) du(t)
0 —ze

o] 2 n
— Z ( / e""”du(t)) %

Z Z_ log
n=1 h
Hence we see that
1 1-b
log 1@ = log + log ?
z 11—z 1—-z
1
<« 2log
1-z

This gives (2) by the definition of < above.
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COROLLARY 1. For f € C we have

1 2f'(2) |

d =144 nlly,)r™
@ Z v

<1+4Z 2

1 27
=_2;/0

wherez =re®, 0 <r <1,and K(z) = z(1 — z)~2.

2

zK'(2)°
K(2)

THEOREM 2. For f € EHC we have

@ log & < log Kiz),
or equivalently
f@ K@
z z

where K (2) is as defined above.

PROOF. This theorem follows from the fact that Re ((1 — bz)/(1 — 2)) > 1/2 is
equivalent to (1 — bz)/(1 —z) < 1/(1 — z), [11, p. 53], and this is equivalent to
log((1 — bz)/(1 — 2)) < log(1/(1 — 2)) [17, p. 23]. Thus we have

f@ _ (1 1 1 — bz
log . _2(21 —1 + (1 )lg1 z)

1
<210g1
—z

as required.

COROLLARY 2. For f € EHC we see from [11, Theorem 3.3]; [6, Theorem 6.1]

and (4) that ,
[l ]
0 0

wherez =re'®, 0 <r < 1,andq > 0. This extends [10, Theorem 1] for f € EHC.

K(z)|?

do

lo g— log

COROLLARY 3. For f € C and y, as defined in Theorem 1 we see from [6, p. 212
(Exercise 7)], (4) and (2) that

Y kinl < 317k
k=1 k=1
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THEOREM 3. Let f € C and f(z) = z+axz? +asz> + - - -. Thenfor n > 2 we have

’lanl - ’an—I’ < 1.

PROOF. For some choice of £ on the boundary, with |§] = 1, we have

1 —§z)@ =exp{n2=1:(2y,, — %) z"}-

Applying the Lebedev-Milin inequality | 8,|* < exp { Y ;_, klow | — > ;_; 1/k} for
the expansion Y ;o izt = exp {d>;_ auz*}, Bo = 116, p. 143]; [5, p. 897, we
deduce by using the triangle inequality that

) 1221 = lan11| < exp {2 > (klnl* —Re (5’%»}.
k=1

We now write § = ¢’ and choose ¢ such that k¢ + arg(y,) = 0. We see that
e*'y, = |y|. Using this and (2) in (5) we deduce Theorem 3 since

Y klnl* —Re ¢ y)) = Y _(kInl - nh <0.
k=1 k=1

REMARK 1. The case n = 3 has been proved by Koepf [13]. For the full class S
the author [9, p. 13] obtained |{as;| — |a»|| < 1.411.

REMARK 2. It has been shown by Pearce [15] that functions of the form (3) are
extreme points of S whenever 0 < [arg(—x/y)| < 7/4 and consequently Theorems 2
and 3 hold for these functions. Our results give a partial answer to the questions raised
in [8] and [3, Problem 6.71; p. 558].

REMARK 3. The Koeke function K (z) = z(1 — z)72 and its rotations show that our
results are the best possible.

REMARK 4. Let (zf'/f)? = 1+ 3 c,(g)z" and [(1+2)/(1 = 2)}* = 1+}_ Da(g)z"
where n, g are positive integers. Then we have |c,(¢q)] < D,(q) since (zf'/f)! «
[(1 4+ 2)/(1 — 2)F in this case. (See [12, Lemma 2.4.1, p. 53].) We now easily see

zf'(2) zK'(2)

that
2 2q 2
do
/0 f@ = ./0 K(2)

and this extends Corollary 1 when q is a positive integer.

2%
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