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We present a numerical scheme that solves for the self-similar viscous fingers that emerge
from the Saffman–Taylor instability in a divergent wedge. This is based on the formulation
by Ben Amar (1991, Phys. Rev. A, vol. 44, pp. 3673–3685). It is demonstrated that there
exists a countably infinite set of selected solutions, each with an associated relative finger
angle, and furthermore, solutions can be characterised by the number of ripples located
at the tip of their finger profiles. Our numerical scheme allows us to observe these
ripples and measure them, demonstrating that the amplitudes are exponentially small in
terms of the surface tension; the selection mechanism is driven by these exponentially
small contributions. A recently published paper derived the selection mechanism for
this problem using exponential asymptotic analytical techniques, and obtained bifurcation
diagrams that we compare with our numerical results.
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1. Introduction
Saffman–Taylor viscous fingering is a classic problem in Hele-Shaw flows (Saffman &
Taylor 1958): an inviscid (or less viscous) fluid is injected into a Hele-Shaw cell filled
with a viscous fluid, and the interface between the fluids converges to a steady state with
a single finger propagating along the length of the channel.

The proportion of the finger width to the channel width, λ, is a key parameter of the
problem. It has been shown that a selection mechanism occurs in the small surface tension
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limit ε → 0, where ε is the surface tension parameter (cf. Vanden-Broeck (2010) and
references therein). A countable family of λ values is selected, which can be labelled
1/2 < λ1(ε) < λ2(ε) < · · · < λn(ε) < · · · < 1. Identifying the selected λ values and the
associated solutions has been the focus of a number of works. A numerical scheme
developed by McLean & Saffman (1981) and Vanden-Broeck (1983) was used to plot the
bifurcation diagram. Analytical works have relied on the developing methods in beyond-
all-order asymptotics to derive the selection mechanism (Hong & Langer 1986; Combescot
et al. 1986, 1988; Tanveer 1987, 2000; Chapman 1999).

This paper considers a similar, but more complex, selection mechanism observed in
an associated problem with a Hele-Shaw cell in the shape of a wedge with angle θ0.
The classic channel problem described above is given by the limit where θ0 = 0. The
Hele-Shaw cell is filled with a viscous fluid, and an inviscid fluid is injected from the
corner of the wedge. The interface between the fluids again develops a finger shape, which
propagates outwards away from the corner of the wedge (this is observed experimentally in
Paterson 1981; Thomé et al. 1989). In the general circular Saffman–Taylor problem, fluid
is injected outwards in all directions from a central source, and a number of fingers develop
on the fluid interface. Each of these fingers occurs, approximately, in a wedge with angle
θ0 > 0. The interface near the tip of one of these fingers (away from the far-field regime at
the source) can be approximated using the Saffman–Taylor problem in a wedge geometry.

In the recent work by Andersen et al. (2024), the authors employed techniques in
exponential asymptotics to derive the selection law for Saffman–Taylor fingering in the
wedge. This work built on an existing set of extensive analytical and numerical works by
Brener et al. (1990), Ben Amar (1991a,b), Tu (1991), Levine & Tu (1992) and Combescot
(1992).

In this paper, we construct a numerical scheme that is capable of solving the Saffman–
Taylor problem in a wedge with θ0 > 0. This is significantly more complicated than the
channel problem (θ0 = 0) solved in McLean & Saffman (1981) and Vanden-Broeck (1983)
due to the additional complexities of the governing equations. Our numerical scheme has
improvements in speed compared with using standard Newton solvers, and is capable of
resolving the solution to small values of the surface tension parameter. With this scheme,
exponentially small ripples on the numerical solutions are characterised for the first time,
and we are able to demonstrate agreement with the recent analytical results of Andersen
et al. (2024). Comparison between numerical and exponential asymptotic results for the
Saffman–Taylor problems has not been presented before.

2. Mathematical formulation
Consider a Hele-Shaw cell with very small thickness compared to the length. The cell has
a wedge shape with internal angle θ0, and is filled with viscous fluid. An inviscid fluid is
injected from the corner of the wedge at a prescribed flow rate, and displaces the viscous
fluid to form a petal/finger shape (figure 1a). Eventually, as is seen experimentally (Thomé
et al. 1989), a self-similar shape is reached where a finger occupies an angle λθ0, with
0 < λ< 1. Ben Amar (1991a) refers to this set-up as ‘divergent flow’.

On the free surface, we solve for q e−iτ (these are analogues of the speed q and
streamline angle τ , and reduce to the actual fluid speed and streamline angle in the limit
θ0 → 0) and finger shape ẑ = x̂ + iŷ. We transform the self-similar physical plane x̂ + iŷ
(figure 1) into an infinite strip in a channel using the conformal map

z = 2
θ0

log(ẑ). (2.1)
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Figure 1. (a) Top-down view of the numerically obtained physical profile in the ẑ-plane for the zero surface
tension case with θ0 = 20◦ and λ= 0.6. The Hele-Shaw cell is bounded by the thick black lines and is filled
with a viscous fluid (grey). An inviscid fluid is injected from the corner of the wedge (B F at ẑ = 0) and forms
a finger with angle λθ0. The tip of the finger lies at ẑ = 1 (C E). (b) A numerical plot of the z-plane (obtained
using the mapping (2.1)) is shown for the zero surface tension case with θ0 = 20◦ and λ= 0.6. The tip of the
finger lies at the origin (C E).

In figure 1(b), we show the image of the finger from figure 1(a) under this map. The walls
B A and FG lie on Im(z) = ±1, respectively, and the tip C E is fixed at the origin z = 0.

The independent variable is given as in Vanden-Broeck (1983), by s = e−π f ∗
. Here, f ∗

is a generalised velocity potential as defined in Ben Amar (1991a, p. 43), and is chosen so
that the streamline value Im( f ∗) is constant on the free surface. Under this map, half the
free surface (BC) lies on the real s-axis between 0 and 1, with the finger tip (C) at s = 1.

We require a set of governing equations for the unknowns (x(s), y(s), q(s), τ (s)). Once
these are solved for numerically, we can obtain a profile for the free surface in the physical
wedge, x̂ + iŷ, by reversing (2.1).

First, on the free surface, continuity of pressure yields Bernoulli’s equation

ε2 λ

Q0
qs

∂

∂s

(
r(x)

[
qs

∂τ

∂s
+ �

2
sin τ

])
− q = q

1 − λ + qλ

πQ0

∫ 1

0
− K (t)

t − s
dt. (2.2)

In (2.2), we have defined the following functions for convenience:

r(x(s)) = exp(−θ0 x(s)/2) and K (s) = sin[τ(s)]
q(s) [r(x(s))]2 . (2.3)

In (2.2), we have also defined the dimensionless fluid flux constant Q0, and the scaled
interior wedge angle �, to be

Q0 = −1 − λ
π

∫ 1

0

K (t)

t
dt and � = �(λ) = θ0

π
(1 − λ), (2.4)

where λ is the proportional finger angle parameter. Finally, we have introduced the key
non-dimensional parameter ε by

ε2 = 4π2σ

(1 − λ)2 , (2.5)

where σ is a modified surface tension parameter

σ = b2

12μ

T

R3
0

1
θ2

0
(2.6)

as in Ben Amar (1991b). Here, b is the distance between the plates in the Hele-Shaw cell,
μ is viscosity, T is surface tension, and R0 is a length scale parameter (the length from
the wedge corner to the tip of the finger at time zero). Typically, we are interested in small
surface tension, thus small values of ε.
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Figure 2. (a) Plot of a numerical solution shown in the (x̂, ŷ)-plane in the wedge. (b,c) Plots of the numerical
solutions for the dependent variables q(s), τ (s). In this figure, the parameter values are θ0 = 20◦, ε2 = 1 and
λ= 0.64.

Analyticity of q e−iτ in the upper half s-plane gives, by the Hilbert transform,

log q(s) = − s

π

∫ 1

0
− τ(t)

t (t − s)
dt. (2.7)

Finally, we close the system with

x(s) + i y(s) = −1 − λ
π

∫ 1

s

eiτ(t)

t q(t)
dt. (2.8)

Thus the full system consists of equations (2.2), (2.7) and (2.8) for the unknowns
(x, y, q, τ ). The appropriate boundary conditions at s = 0 and s = 1 are

x(0) = −∞, y(0) = 1, q(0) = 1, τ (0) = 0, (2.9a)

x(1) = 0, y(1) = 0, q(1) = 0, τ (1) = −π

2
. (2.9b)

The governing equations can be compared with Ben Amar (1991b) equations
(3.15)–(3.17). An example of the numerically obtained solutions for θ0 = 20◦, ε2 = 1 and
λ= 0.64 is shown in figure 2.

We note that following Ben Amar (1991a), the mathematical model of divergent flow
developed here produces a steady-state formulation corresponding to an assumption of
self-similarity of the original system. In particular, the spatial coordinates of the original
system are assumed to scale with a time-dependent dimensionless scaling factor ((2.1) of
Andersen et al. 2024).

3. Exponential asymptotics
We briefly present the exponential asymptotics method that can be used to derive the
selection condition in the limit ε → 0. The full details of this are presented in Andersen
et al. (2024), but we compare their results to our numerical results in § 6. The exponential
asymptotic analysis involves approximating the dependent variables as asymptotic series
in the small parameter ε,

x ∼
∞∑

n=0

ε2nxn, y ∼
∞∑

n=0

ε2n yn, q ∼
∞∑

n=0

ε2nqn, τ ∼
∞∑

n=0

ε2nτn. (3.1)
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The leading-order solutions {x0, y0, q0, τ0} are found analytically as shown in Andersen
et al. (2024) equations (3.7) and (3.8). A plot of the leading-order physical profile (x0, y0)
is shown later, in figure 5. The asymptotic series in (3.1) turn out to be divergent, and it is
necessary to truncate them. If this is done at an optimal point n =N , then the remainder
will be a sum of contributions that are exponentially small in the surface tension parameter
ε. For example, q will have the form

q ∼
N∑

n=0

ε2nqn + A1 Q e−χ1/ε + A2 Q e−χ2/ε + · · · . (3.2)

Exponential asymptotics techniques can be used to derive the forms of the components Ai ,

Q and χi as functions of s. These are given in terms of a different independent variable,
ζ , in Andersen et al. (2024) (equations (6.16), (5.9) and (5.7)), where

s = 1
ζ 2 + 1

. (3.3)

The functions χi are complex functions and are given in terms of ζ by

χi (ζ ) = −
∫ ζ

ζi

2ζ̃
√

sin τ0 + i cos τ0

(1 + ζ̃ 2)q0 r(x0)3/2
dζ̃ . (3.4)

Here, ζi are locations of singularities in the complex ζ -plane (e.g. for θ0 = 20◦,
λ= 0.75, there is a singularity at ζ1 = 0.62 + 3.01i). Since the χi are complex, the
remainder terms introduce exponentially small oscillations in the solution with amplitudes
|Ai Q| e−Re(χi )/ε . These oscillations can be seen on the tips of the fingers in figure 5. By
enforcing the far-field boundary conditions (2.9a) on the remainder terms, it is possible to
obtain the selection condition

|Λ1|
|ΛC |e−Re(χ1(0))/ε+Re(χC(0))/ε cos

(
arg(Λ1) + π

2
− Im(χ1(0))

ε

)

+ 1
2

cos
(

arg(ΛC ) + π

2

)
= 0. (3.5)

By symmetry arguments, only remainder terms related to two singularities (indexed ‘1’
and ‘C’) contribute to the selection condition. The constants Λ1 and ΛC can be found
with further analysis (see Appendix C of Andersen et al. 2024). Bifurcation diagrams can
be plotted showing the solutions that satisfy (3.5), and these are presented in figure 8 in
§ 6 as a comparison to our numerical results.

4. Channel problem (θ0 = 0)
By taking the limit of the wedge angle, θ0 → 0, we recover the classic Saffman–Taylor
problem in a channel with parallel walls. This exhibits a similar selection mechanism
for the relative finger widths, 0.5 < λ1 < λ2 < λ3 < · · · < 1. The problem was solved
numerically by McLean & Saffman (1981) and Vanden-Broeck (1983), who plotted
bifurcation diagrams of the selected λ values against the surface tension parameter ε2.
We have replicated their numerical method to generate the bifurcation diagram in figure 3.

The analysis in § 3 can also be repeated for the simpler problem in a channel that is
equivalent to taking the limit θ0 → 0 in (3.5). The selection condition for the channel was
first derived using exponential asymptotic techniques in Chapman (1999), and the selected
λ values are presented in figure 3.
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Figure 3. Bifurcation diagram for the Saffman–Taylor problem in a channel (θ0 = 0) showing the first six
selected λ values for different values of the surface tension parameter ε2. The black curves show the predicted
branches from the exponential asymptotic analysis as done in Chapman (1999). The dots show the branches
predicted using an implementation of the numerical scheme from McLean & Saffman (1981) and Vanden-
Broeck (1983) with N = 1000 mesh points.

This comparison of numerical and exponential asymptotic results for the channel
problem is currently missing from the literature. We see that the results agree well
except for very small values of ε where larger numbers of mesh points in the numerical
scheme would reduce the numerical errors. The Saffman–Taylor problem in a wedge poses
additional difficulties in both the numerics and asymptotic analysis since the Bernoulli
equation becomes more complex. In § 5, we describe a numerical method that can
obtain numerical solutions of the wedge problem, and in § 6, we compare the bifurcation
diagrams with recent exponential asymptotic results.

5. Numerical methodology
Our numerical method is a generalisation of methods from McLean & Saffman (1981)
and Vanden-Broeck (1983), but with additional difficulties from the increased complexity
of the equations. First, we relax the condition for the angle at the tip of the finger, τ(1),
in (2.9b) so τ(1) becomes a free parameter to be solved for as part of the solution. We
then solve for the physical profile at all combinations of ε2 and λ. Each of these solutions
will have an associated τ(1) value. Selecting the solutions with τ(1) = −π/2 will give the
physical fingers with a smooth tip. We now describe the scheme in more detail.

Following McLean & Saffman (1981) and Vanden-Broeck (1983), we introduce a
stretched mesh from s �→ ξ defined by

sρ = 1 − ξγ , (5.1)

where ρ solves the equation

cot(πρ)

ρ2 = ε2θ2
0

4
. (5.2)

The parameter γ defines the distribution of mesh points, with a larger γ meaning that more
points are distributed near the tip of the finger. For the results in this paper, we choose
γ = 4, as is done in Vanden-Broeck (1983). A larger value of γ means that more accurate
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results can be achieved with fewer mesh points. If γ becomes too large (e.g. γ � 5), then
the numerical scheme fails to converge.

The principal mesh points and their related midpoints are respectively defined by
ξ j = j/N for j = 0, 1, . . . , N , and ξm

j = (2 j − 1)/2N for j = 1, 2, . . . , N , and the
corresponding points in the s-plane are found using (5.1). The unknowns are the values
of τ at the mesh points, which we denote τ j = τ(s j ) with j = 0, 1, . . . , N . The condition
τ(0) = 0 from (2.9a) fixes τN = 0. We allow τ0 = τ(1) to be a free parameter, so we have N
unknowns, τ0, . . . , τN−1. We will similarly use subscripts when evaluating other variables
at mesh points, i.e. q j = q(s j ), x j = x(s j ) and y j = y(s j ).

The main step in the numerical scheme is evaluating (2.2) at the N − 1 internal mesh
points, s1, . . . , sN−1, to give N − 1 equations:

ε2s j

(
r(x j )

[
q j s jτ

′
j + �

2
sin τ j

])′
+ Q0

1 − λ + 1
π

I (s) = 0, j = 1, . . . , N − 1. (5.3)

In (5.3), we have used the definitions of r(x) from (2.3) and � from (2.4). It is also
convenient to define the integral

I (s) =
∫ 1

0
− K j (t)

t − s
dt, (5.4)

where K j = K (s j ). We use trapezoidal rules to evaluate the integrals in (5.3) from x j
(2.8), q j (2.7), Q0 (2.4) and I .

We have defined N − 1 equations in (5.3) for the N unknowns (τ0, . . . , τN−1). To close
the system, we introduce one final equation, which is given by evaluating the trapezoidal
approximation of (2.8) in the far-field, at s = 0,

λ− Im

[
1 − λ
πN

N−1∑
k=1

sin(τk) s′
k

skqk

]
= 0. (5.5)

That is, (5.3) and (5.5) give N equations that can be solved for the N unknowns using a
Newton iteration scheme.

In practice, the evaluation of the equations is computationally intense due to the number
of integrals approximated with trapezoidal rules. The Jacobian matrix is dense, so the
equations must be evaluated many times at each step.

In order to speed up the scheme, we use Broyden’s method (Broyden 1965), which is
a quasi-Newton method. Broyden’s method evaluates the Jacobian only on the first step,
then updates the associated matrix to approximate the Jacobian at later steps. However,
the method requires a much closer initial guess than Newton’s method to converge. We
therefore implement a scheme that uses Newton’s method at low N values (typically N =
250) to provide an interpolated approximation for the initial guess to the Broyden scheme
at higher values of N (e.g. N = 500). We continue doubling N , interpolating the solution
and solving with Broyden until we reach the desired value of N . Using this scheme, we can
obtain a solution for N = 2000 almost five times faster than using pure Newton’s method.
The run times of this scheme compared to the standard Newton’s method are shown in
table 1. We find that the convergence rate of the numerical scheme is O(1/N ) as N → ∞,
therefore a large value of N is needed to obtain accurate results.

1013 A18-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
20

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10205


C. Andersen, P.H. Trinh and J.-M. Vanden-Broeck

θ0 λ ε2 N γ Newton time Broyden–Newton time Ratio

20◦ 0.8 0.5 2000 4 950 210 4.5
20◦ 0.8 1 1000 4 160 54 3.0
20◦ 0.8 0.1 1000 4 130 50 2.6
20◦ 0.7 1 1000 2 130 52 2.5
20◦ 0.7 1 500 4 12 8.1 1.5
10◦ 0.7 0.2 1000 4 140 55 2.5
10◦ 0.8 0.2 2000 4 910 200 4.6

Table 1. Times in seconds (given to two significant figures) for the pure Newton method compared to our
adapted Broyden–Newton method.

0.6 0.7 0.8

λ

0.9 1.0
–1.60

–1.55

–1.50

–1.45

τ0

−π/2

λ1 λ2 λ3 λ4 λ5 λ6

Figure 4. Plot of the angle at the tip of the finger versus λ for ε2 = 1, θ0 = 20◦. Smooth, physical fingers exist at
the intersection points where τ0 = −π/2. The asymptotic analysis of the selection mechanism (Andersen et al.
2024) shows that there exists a countably infinite number of such selected fingers with associated λ values
labelled λ1(ε) < λ2(ε) < λ3(ε) < · · · < 1.

6. Numerical results
The numerical method allows the angle at the tip of the finger (τ0) to be a free parameter.
However, the solutions are physical only if they are smooth, which requires the tip of the
finger to have angle −π/2. In figure 4, we plot the angle at the tip of the finger against
λ for ε2 = 1, θ0 = 20◦. We can identify the selected λ values, λ= λ1, λ2, . . ., at which
τ0 = −π/2.

The physical profiles for the first six selected solutions are shown in figure 5 for ε2 = 3,
θ0 = 20◦. The figure shows that small oscillations appear in the profiles near the tips of the
fingers. We also see that each successive selected value of λ(ε) has an associated physical
profile with one additional wavelength of oscillations at the tip. The selection condition
can be obtained analytically by analysing these exponentially small contributions to the
solution using the techniques from exponential asymptotics. This analysis is done in a
separate paper (Andersen et al. 2024), and the key ideas were briefly summarised in § 3.

We can measure the amplitude of the oscillations near the tip as ε varies. For each value
of ε, we fix λ= 0.85 and then use our numerical method to find τ along the free surface.
We subtract the leading-order component of τ , associated with zero surface tension, which
makes the oscillations easier to identify, as shown in figure 6. The amplitude of the
oscillations varies with s, so we measure the amplitudes at a fixed value s = 0.8, which lies
near the tip of the finger. Since s = 0.8 does not necessarily fall at a peak of the oscillations,
this requires an approximation of the amplitude, which we obtain by interpolating from the
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Figure 5. Numerical solutions showing the physical profiles (black) for the first six selected solutions with
ε2 = 3, θ0 = 20◦. The interface develops oscillations near the tip of the finger for the higher branches. Here,
ε = 3 is chosen since this is large enough for the oscillations to be visible. The leading-order solution (x0, y0)

is shown in grey.
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Figure 6. Plot of τ − τleading showing the exponentially small oscillations in the solution. The amplitudes of
the oscillations are approximated at s = 0.8 by interpolating from neighbouring peaks, and the approximated
amplitudes are plotted in figure 7 for different values of ε.

amplitudes of the neighbouring peaks. The approximated oscillation amplitude versus 1/ε

is shown in figure 7.
We see in figure 7 that for a range 1/ε ≈ 0.9−1.9, the logarithm of the oscillation

amplitudes follows a straight line with negative gradient (approximate gradient −4.6
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Figure 7. The amplitude of the small oscillations shown in figure 5, measured via τ at s = 0.8 as a function of ε.
These correspond to computations with N = 1000, λ= 0.85 and θ0 = 5◦, 20◦. The straight line shows the line
of best fit (approximate gradient −4.6 for θ0 = 20◦, and −4.3 for θ0 = 5◦), confirming exponential smallness
in ε. The predicted gradient (−5.9 for θ0 = 20◦, and −4.8 for θ0 = 5◦) from the exponential asymptotics for
θ0 = 20◦ is also shown.

for θ0 = 20◦, and −4.3 for θ0 = 5◦). This shows that the measured oscillations are
exponentially small with respect to the surface tension parameter ε, in the limit ε → 0.
For θ0 = 20◦, the predicted gradient from the exponential asymptotics is −5.9, and for
θ0 = 5◦, the predicted gradient is −4.8.

For larger ε values, it is expected that figure 7 will cease to be linear, as the small
ε approximation breaks down, and nonlinear components will begin to dominate. For
smaller ε values, the oscillations on the profile become very small and are difficult to
identify. To measure the amplitude of these oscillations, we would first need to subtract out
the O(ε) trends; however, the complexity of numerical solutions of higher-order algebraic
corrections rivals that of the full nonlinear problem.

Finally, we use the numerical method to find the selected solutions with a smooth
tip (τ0 = −π/2), and use numerical continuation to follow the families of selected
solutions λi (ε) for decreasing values of ε. Values for these selected families of λi (ε),

i = 1, 2, . . ., are plotted in bifurcation diagrams in figure 8 using N = 1000 mesh points.
The bifurcation diagrams are compared to exponential asymptotic results from Andersen
et al. (2024) in figures 8(a)–8(c) for three different wedge angles. We see good agreement
between the numerical results and the exponential asymptotics, particularly for higher
branches and larger values of ε2.

A numerical error occurs for small ε values; however, in figures 8(a)–8(c), we have
omitted the numerical results when this error is large. The error is demonstrated in
figure 8(d) for the third branch, λ3, in the case with θ0 = 20◦. Here, the error between the
numerical results and exponential asymptotic results increases significantly when ε2 < 0.1.
As shown in figure 8(d), with N = 500, 1000, 2000, the accuracy can be improved for
small ε values by increasing the number of mesh points. We have found the error to be
O(1/N ) as N → ∞, so a very large number of mesh points would be needed to accurately
resolve the bifurcation diagram at low values of ε2.

Further, figures 8(a)–8(c) show that the agreement between the exponential asymptotic
results and the numerical results improves for the higher branches. We conjecture that
one of the assumptions in the asymptotic theory is violated for the lower branches. The
selection condition (3.5) is based on two singularities, ζ1 and ζC , in the complex ζ -plane.
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Figure 8. Bifurcation diagrams for wedge angles (a) θ0 = 5◦, (b) θ0 = 10◦ and (c) θ0 = 20◦, showing the first six
selected λ values for different values of the surface tension parameter ε2. The black curves show the predicted
branches found by evaluating (3.5) from the exponential asymptotic analysis in Andersen et al. (2024). The
dots show the branches predicted using the numerical scheme described in § 5 with N = 1000 mesh points. The
numerical scheme is able to solve for higher branches than the results of previous numerics for this problem
presented in Ben Amar (1991b) for θ0 = 20◦. (d) Zoom in on the third and fourth branches from the bifurcation
diagram for θ0 = 20◦ with numerical results (dots) for N = 500 (light grey), N = 1000 (grey), N = 2000 (black)
mesh points.

In addition, there are branch points at ζ = ±i. In the dual limit as λ→ 0.5 and θ0 → 0, the
singularity ζ1 approaches the branch point at i. The exponential asymptotic analysis relies
on the assumption that the singularities in the complex plane are well separated, and this
breaks down in the dual limit. We conjecture that a special regime needs to be considered
when the singularity ζ1 enters the neighbourhood of the branch point at ζ = i, and that this
would improve the exponential asymptotic results on the lower branches.

7. Discussion
This paper presents a numerical scheme that solves for the self-similar divergent Saffman–
Taylor fingers in a wedge. Using the numerical scheme, we have been able to plot selected
solutions and observe the characteristic oscillations on the tips of the fingers. Further,
we proved numerically that the oscillation amplitudes are exponentially small in terms of
the surface tension parameter ε, in the limit ε → 0. Finally, we present the bifurcation
diagrams obtained numerically, which are compared to recent exponential asymptotic
results. There are a number of interesting extensions to the work in this paper in the fields
of Hele-Shaw cells and numerical solutions to free surface problems.
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One of the main restrictions to the numerical method used in this paper is the
computational cost. The governing equations (2.2), (2.7), (2.8) are evaluated numerically
using a number of trapezoidal schemes, which becomes very computationally expensive
when a large number of mesh points are used. We find that a large number of mesh points
are required (O(103) mesh points) to obtain accurate numerical results for small surface
tension values. First, using a larger value of γ distributes more mesh points near the tip
of the finger, and means that numerical results of the same accuracy can be obtained
with fewer mesh points (for this reason, we use γ = 4, as is done in Vanden-Broeck
1983). Further, in this work, we implement a novel scheme using a quasi-Newton method
(Broyden’s method) that greatly increases the speed of the computation. The use of quasi-
Newton solvers is well researched in the field of numerical analysis, but to our knowledge,
it is rarely applied to this style of problem. Schemes of this style could be used in numerical
methods to improve the numerical results of other similar free surface problems that are
restricted by their requirement for large numbers of mesh points.

Additionally, in the full circular geometry, a phenomenon known as ‘tip-splitting’
occurs, where a single finger is observed to split into two narrower fingers. Understanding
this behaviour remains an open problem. It is also believed that a tip-splitting instability
occurs in the wedge problem after long time when the similarity solution assumption
breaks down. Studying a time-dependent model will be necessary to make progress here.
We have started work and have written a time-dependent code for the circular geometry
based on the numerical method described in Dallaston & McCue (2014). We hope that
this will provide an insight into the time-dependent behaviour when the single finger in a
wedge approaches a tip-splitting instability, and the progression of the free surface as it
divides into two fingers.
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