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Abstract. In the present paper, for a large family of topological semigroups
namely, compactly cancellative and right cancellative foundation semigroups S, we
study the topological centers of the Banach algebras LUC(S)* and M, (S)**. We
also give a generalization of a known result of Lau and Lorsert by showing that for
such topological semigroups the topological center of LUC(S)* (M ,(S)**, respec-
tively) is the same as M(S) (M (S), respectively).
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In recent years there has been shown considerable interest by harmonic analysts
in the topological center problem of LUC(G)* and L'(G)** of a locally compact
group G. B

In [18] Zappa proved that, for G = R, Z = M(R) (the measure algebra of R),
where Z denote the topological center LUC(G)*. This result was extended to abelian
locally campact groups by Grosser and Losert in [6], and to all locally compact
groups by Lau in [11]. In [14] for a certain discrete group G, Parsons proved that
Z, = £Y(G), where Z; denotes the topological center of £'(G)**. In [10] Isik, Pym
and Ulger proved that for any compact group G the topological center of L'(G)** is
the same as L'(G). This result was generalized to all locally compact groups by Lau
and Losert in [12] and again through a different proof by Lau and Ulger in [13].

It secems to the author that the topological center problem of corresponding
algebras of topological semigroups has not been touched so far. It is the aim of this
paper to generalize these results to an extensive class of topological semigroups
namely, compactly cancellative and right cancellative foundation semigroups, for
which topological groups and cancellative discrete semigroups are elementary
examples.

1. Notation and preliminaries. In this section we have collected some notation
and results which are needed for the subsequent sections. For any Banach algebra 4
with a bounded approximate identity we denote by A* and A** its first dual and
second dual, respectively. The first Arens multiplication on A** is defined in three
steps as follows. For @, b in A, fin A* and m, n in A**, the elements f.a, m.f of A*
and m.n of A** are defined by
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(f.a, b) = (f. ab), (m.f, a) = (m, f.a), (m.n, f) = (m,n.f).

The basic propeties of this multiplication are as follows. For a fixed n in 4**, the
mapping m+—> m.n is weak*—weak*-continuous. For fixed m in 4**, the mapping
n+— m.n is in general not weak*—weak™® continuous unless m is in 4, and so Z the
topological center of A4** with respect to this multiplication, is defined as follows.

Z, = {m € A* : the mapping n+— m.n is weak*—weak™ continuous on A**}.

The second Arens multiplication is defined as follows. For @, b in A4, fin A* and
m,n in A**, the elements aAf, fAm of A* and mAn of A** are defined by the
equations

(b, aAf) = (ba, f), (a, fAm) = (aAf, m), { f, mAn) = ( fAm, n).

For m fixed in A**, the mapping n+— mAn is weak*—weak*-continuous on A**. For
n fixed in A**, the mapping m+— mAn is in general not weak*—weak* continuous on
A** unless n is in 4. Hence the topological center of 4** with respect to this multi-
plication is defined as follows.

Z, = {n € A : The mapping m — mAn is weak*—weak*-continuous on 4™}

We note that with either multiplications 4** defines a Banach algebra [1]. Further-
more for a in A and m € A**, am. =aAm and m.a. = mAa. It is clear that
ACZ NZyand Z;(i=1,2) is a closed subalgebra of the Banach algebra A4**
endowed with the first (second) Arens multiplication.

It is also easy to see that

Zi={neA” :mn=mAn Vne A™}
and
Zy={me A :nm=nAm Vn e A™}.

An element E of A** is said to be a mixed unit if m.E = EAm = m, for all m in A**.
Note that E in A** is a mixed unit if and only if it is a weak* cluster point of some
bounded approximate identity in 4; see [3: p. 146].

We also define the subspaces A*4 and AAA* of 4* as follows:

A*A={fa:fe A" and a € 4},
ANA* —{aAf:fe A" and a € A}.
Analoguous to 4**, the topological center of (4*A)* is defined as follows.
Z) = {u € (A*A)*: The mapping n+—> w.n is weak*—~weak™® continuous on (A*A)*}.
Convention. Throughout the paper, 4** will denote the Banach algebra of 4**
equipped with the first Arens multiplication.

Recall also that on a locally compact Hausdorff and jointly continuous topo-
logical semigroup S, M,(S) (or L(S)) [2], [5], [7] denotes the space of all measures
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u € M(S) (the space of all bounded complex Radon measures on S) for which the
mappings x — |u| * 8, (Where §, denotes the Dirac measure at x) and x> 8y * |u|
from S into M(S) are weakly continuous. It is well known that M,(S) is a closed
two-sided L-ideal of M(S). A topological semigroup S is called a foundation semi-
group if U{supp(,u) TS Ma(S)} is dense in S. We also note that if S'is a foundation
semigroup with identity, then M,(S) has a bounded approximate identity and, for
every u in M,(S), both mappings x+> |u| * 8, and x+> 8 * || from S into M ,(S)
are norm continuous; (see [5]).

Let LUC(S) denote the space of bounded left uniformly continuous complex-
valued functions on S; i.e. all fin Cp(S) (the space of complex-valued bounded
continuous functions on S with the supremum norm) such that the map x+> £, f of
S into Cp(S) is continuous when C,(S) has the sup-norm topology, where
U f)Y) = fixy)(x,y € S). Then LUC(S) is a closed subalgebra of Cp(S) invariant
under translation. The space of bounded right uniformly continuous functions
RUC(S) on S is defined similarly. It should be noted that in standard books on
harmonic analysis in the case where S is a locally compact group, the space of
bounded right uniformly continuous complex-valued functions on S is denoted by
LUC(S). It is well known that if S is a foundation semigroup with identity, then for
A= MyS), A*.A = LUC(S) and AAA* = RUC(S); (see Lemma 2.1 of [9]). When S
is a foundation semigroup with identity we shall identify M (S)* with L*°(S, M ,(S)),
the Banach space of all bounded complex-valued p-measurable (1 € M,(S)) func-
tions on S with the sup-norm, via the identification: f+— tr where

() = [S SR € LS. Mo(S)). € Mo(S)):

(see Proposition 3.6 of [16]). Note that if we denote again 7, by f, then two functions
f and g are identical in L*°(S, M,(S)) whenever f(x) = g(x) a.e. u for every u in
M ,(S). Since, by Lemma 2.5 of [2], we have

fwxv) = / % 8,)dv(x) and f(v ) = / 8, % J)dv(),
S
for every f '€ L*(S, M,(S)) and v € M(S), it follows that
Foav) = fl % v) = / / S du(dv(y)
SJS (1)
_ / / SR ()dp(),
SJS
for every wu, v € M,(S). Similarly
HAfv) = v s 1) = / / Fon)dv()du(y) = / / Fon)dv()du
SJS SJS (2)
_ fs /S SN (i, v € Mo(S)).

If we consider M,(S) € Z), then for every u,v e M,(S) and fe L*>®(S, M,, (S)),
(u.f, vy = (u, f-v) = f(v % u). Therefore, uAf = u.f and moreover from (1) and (2) it
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follows that if both u and f have compact supports, then the supports of f.u and
uAf(= u.f) are compact.

A topological semigroup S is called a x-semigroup if there exists a continuous
map * : S — S such that x** = x and (xy)*= y*x* for all x, y in S. Finally, a topo-
logical semigroup S is called compactly cancellative if CD™' and C~'D are compact
subsets of S for every two compact subsets C and D of S, where

CD ' ={zeS:zde Cfor some din D},
C'D={zeS:cze D for some cin D}.

The set C{y}~! (y € S) will be denoted by Cy~'.
Throughout the rest of this paper we shall denote the topological center of
M (S)** and LUC(S)* by Z, and Z,, respectively.

2. The topological center of LUC(S)*. The aim of the present section is to extend
a result of Lau [11] from locally compact groups to compactly cancellative and right
cancellative foundation semigroups with identity by proving that for such semi-
groups the topological center of LUC(S)* is the same as M(S).

It should be noted that Lau’s proof for locally compact groups depends heavily
on the existence of the inverse operation on groups.

Our starting point of this section is the following lemma whose proof is
straightforward.

LeEMMA 2.1. Let S be a foundation semigroup with identity such that C'D is a
compact subset of S for every two compact subsets C and D of S. Let f in
L>®(S, M (S)) and n in M,(S) both have compact supports. Then the support of f.ju is
compact.

Notation. We denote by L5°(S, M,(S)) the sup-norm closure of the space of all
functions in L°(S, M,(S)) with compact support. We also denote by MX(S) the
space of all measures in M,(S) with compact support.

The proof of the following lemma is omitted, since it is straightforward.

LEmMMA 2.2. Let S be a foundation semigroup with identity e. Let Uy be a fixed
neighbourhood of e with compact closure and let A denote the set of all neighbourhoods
of e contained in Uy. Suppose that A is directed downwards and, for each ) € A, w; is
chosen so that wy >0, ||uyll =1 and u;(S\A) =0. Let g in L*°(S, M,(S)) be con-
tinuous at e. Then limy (u;, g) = g(e).

REMARK 2.3. The net (u;) in the statement of the preceding lemma defines a
bounded approximate identity for M,(S) (see, Proposition 5.16 of [15]).

LEMMA 2.4. Let S be a foundation semigroup with identity and let m € Z,. Then
there exists a net (u,) in MX(S) such that for every f in L®(S, M,S)),
|fApa —fAm|| — 0. In particular, fAm is in LUC(S) and (x, fAm) = (m, r.f), for
every x € S.

Proof. Let C denote the convex set of all v € Mf(S) with ||v]| < ||m]. By Gold-
stine’s theorem and the norm density of MX(S) in M,(S), there exists a net (v,g) in C
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that converges to m in the weak*-topology of M,(S)**. For every n in M,(S)** and f
in L*>(S, M,(S)), since M,(S) € Z;, we have

li/gn(n,fAvﬂ) = li}}n(vﬂAn, = li/gn(vﬁ.n, I8
= lign(v,g, n.f)y = (m, nf)

= (m.n, f) = (mAn, f)
= (n, fAm).

Now, for every m’ € L>(S, M,(S))* we define i’ : L®(S, M,(S)) — L*=(S, M,(S)) by
m'(f) = fAm'. Then ' is in B(L*®(S, M,(S))) (the space of bounded linear operators
on L*(S, M,(S)) with ||| < ||m||. From the above equalities it follows that vg — m
in the weak operator topology of B(L*(S, M,(S))). Since C={i:veC}is also
convex, from Corollary 5 on page 477 of [4] it follows that 7 is in the closure of C
with respect to the strong operator topology. Hence there is a net (u,) in C such that
|fApe —fAm| — 0. Since for every u,ve My(S), nAv = p.v, it follows that
fAp =f.u, for every fe L*(S, M,(S)). Therefore fAm € LUC(S), by what was
mentioned in the preliminaries. Let (1) be a net as in the statement of Lemma 2.2.
Then (MA) converges to a right identity E of M,(S)** in the weak*-topology, so that

(e, fAm) = li{n(u’k, JfAm) = liin(mAu’k, f)
= lim(m.. /) = (m.E. /)
= (m, f).

By a similar argument one can easily prove that (x, fAm) = (m, rf)(x € S).

LemMma 2.5. Let S be a compactly cancellative foundation semigroup with identity.
Then Zi N Co(S)"C LE(S, M (S))*.

Proof. Let m € Z; N Cy(S)*. To show that m € L3(S, M (S))* we only need to
prove that m(f) = 0, for every fin L*(S, M,(S)) with compact support. Fix such an
fin L*°(S, M,(S)). Then, as in the proof of the preceeding lemma,

(m, f) = (e.fAm) = lim(u}, fAm) == lim(mAw,, f)

= lim{m.i;, ) = lim{m, 1, f) =0,

since supp(u}.f) is compact and u}.f = u; Af € RUC(S). O

The proof of the next result is similar to that of Lemma 1 of [11] and therefore it
is omitted.

LEMMA 2.6. Let S be a non-compact locally compact semigroup such that C~'D
and Dy~" are compact subsets of S for every two compact subsets C, D of S and y in S.
Then there is a net {K, : o € 1} of compact subsets of S which is closed under the for-

mation of finite unions of its members and such that S =J,.; K% (K% denotes the
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interior of Ky). Furthermore, there are two nets (Vo)ye; and (Zo)gey in S such that the
families {Kyyo : a € I} and {Kyzo : o € I} are pairwise disjoint.

REMARK. The following result is an analogue of Theorem 1 of Lau [11]. It
should be noted that Lau’s proof is not valid for weakly cancellative discrete semi-
groups as claimed, since the two functions f” and f” in his proof are not well-defined
for such semigroups.

THEOREM 2.7. Let S be a right cancellative foundation semigroup with identity
such that C™'D and Cy~" are compact subsets of S, for any y € S and any two com-
pact subsets C and D of S. Then Z; N Cy(S)*= {0}.

Proof. Let me Z1 N CO(S)l. If m # 0, then we may assume that ||m| = 1. Sup-
pose 0<e<¢ is given. Choose fe L¥(S, My(S)) such that |f| =1 and
|(m,f)| > 1 — &. Choose the family {K, : « € I} of compact subsets of S, the nets
(Va)wes and (z4),¢; s in the statement of Lemma 2.6. Define the two functions f” and
f” on S by f(xye) = f"(xzo) = fix) if x € K,, and zero otherwise. Since the families
{Kaya ‘o€ I} and {K,z, : @ € I} are pairwise disjoint and S is also right cancella-
tive, we infer that /" and f” are well defined. By Lemma 2.4 there exists a measure
in MX(S) such that ||| <1 with|fAu —fAm|_<e. |f'Apw—f Am|_<e, and
||f”AM —f"Am H <& Thus there exists ag e/ such that supp(u)C K. Let
g=ry, f’ and g’ — r}uf’ Since g'(x) = f’ (Ayao) = f(x), for all x € K,,, we have

’(f/AM’ ya()) - <f/A’/n’ )’a())| = i(l‘Lv f) - (mv g,>| > E.
Also, since

—(fAu, o)

— ”fAWl _fA'U“”oo< €,
it follows that |(u, f)| > 1 — 2e. Consequently |m(g’)| > 1 — 3e. Similarly |m(g")| >
1 —3e.

Let K = (KoyYVay)Vay U(KayZay)Z, - Then K is compact. Since the support of g'g
is contained in K, from Lemma 2.5 1t follows that m(g’g”) = 0. Hence

(|g/(1 "

///

Jml) = [(g(1 = g"),m)| = |m(g)] > 1 - 3e,

and

(g" A =g)|. Iml) = |(g"(1 — &), m)| = |m(g")| > 1 — 3e;

(see [17 p. 40]). Adding the above equations we obtain

(l¢ +&"||1 =g’ Iml) > 2 —6e > 1,

since 0 <& <¢. But |[¢+¢"||l —gg"|| <1. This contradicts the assumption

lmll = lllmlll = 1. O

REMARK. We remark that the hypothesis of the above theorem does not force S
to be a sub-semigroup of any group. To see this, let S = {1, 2, ..., n}(n € N). Define
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the multiplication on S’ by 1k = k1 = k for every k € §" and k¢ = k for k # 1 and
¢ #1. Let G be any locally compact group. Then S =S x G with the product
topology and coordinatewise multiplication defines a foundation semigroup (see [5,
p. 43] that satisfies the hypothesis of the preceding theorem. It is also clear that S is
not a subset of any group.

We also note that if S is a right cancellative foundation semigroup, then the
conclusion of the above theorem is not valid. To see this, let S be an infinite set, for a
fixed element e in S we define ex = xe = x, for all x € S, and for all x, y € S\{e} we
define xy = x. Then S defines a right cancellative foundation semigroup with iden-
tity for which C~'D and Cy~! are not in general compact subsets of S for every two
compact subsets C, D of S and y € S. But it is clear that Co(S)* is a non-zero sub-
space of Z;.

The following is the main result of this paper.

THEOREM 2.8. Let S be a right cancellative foundation semigroup with identity
such that, for every two compact subsets C and D of S and y € S, C™'D and Cy~! are

compact. Then Z(LUC(S)*) = M(S).

Proof. 1t is clear that M(S) € Z, by Lemma 3 of [12]. If S is compact, then
M(S) = LUC(S)*, and thus Z = M(S). Hence we may assume that S is not compact.
By Theorem 2 of [8], LUC(S)*= M(S) @ Co(S)" and Cy(S)" is also a left ideal in
LUC(S)*. Let m € Z. Then m = p + m, for some u € M(S) and m, € Co(S)*. Since
Co(S)™* is a left ideal in LUC(S)*, it follow that v.m; is Co(S)*, for every v € M,(S).
On the other hand v.m; € Z;(M,(S)™), by part (c) of Lemma 3.1 of [13]. Thus
vy € Co(S)ENZ 1 (My(S)*). Therefore v.m; =0, by Theorem 2.6. Hence
(v.my, h) =0, for all he L*(S, M,(S)) and v e M,(S). Let fe LUC(S). Then
f=h.v, for some h € L>=(S, M,(S)) and v € M,(S). Hence

(my, f); = (my, hv) = (my, hAv)
= (vAmy, h) = (v.my, h) =0

and so m; = 0. This completes the proof.

3. The topological center of M ,(S)** of certain foundation x-semigroups. In the
present section we shall generalize Lau’s result of the topological center L'(G)** of
locally compact groups G to cancellative foundation x-semigroups S with identity
for which C~!'D and Cy~! are compact for every two compact subsets C and D of S
and y € S. We have concluded this section with an example of such a *-semigroup
which is not a subsemigroup of any locally group.

We start with the following result which is a generalization of Lemma 2.3 of [10].

LEMMA 3.4. Let S be a foundation semigroup with identity. Let f € L>¥(S, M,(S))
be such that for every two pair (e;), (ej/-) of positive bounded approximate identities in
M (S), lim( £, e;) = lim;{ f, e}). Then f'is identical to a function g in L*=(S, M,(S)) that
is continuous at the identity.

Proof. Without loss of generality we may assume that f'is real. Suppose f'is not
(apart from the zero function in L*°(S, M,(S)) continuous at e. Then every neigh-
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bourhood V of e contains two sets V' and V” which are not M,(S) negligible (i.e.
there exist ' and u” in M,(S) such that u/(V’) # 0 and p”"(V”) # 0) with f > 1 on V'
and f'<1 on V”. Choose probability measures ) and pyp» in M,(S) such that
wy(S\V") =0 and up»(S\V") = 0. By Proposition 4.16 of [15] each of the nets (u)")
and (up~) defines a bounded approximate identity, whenever each of the collections
of the sets Vs and V"’s is directed downwards. Therefore (lim inf),, ( f; ) > 1 and
(lim sup),-{ f, wp») < 0. This contradicts the hypothesis.

As an application of the above lemma, by a method similar to that of Theorem
5.4 of [13] one can easily obtain the following generalization of that theorem. The
details are omitted.

THEOREM 3.2. Let S be a foundation semigroup with identity and let A = M ,(S).
Then for m in A**, the following are equivalent.

(a) misin A.

(b) (1)) Am < A. (ii) For each E.m = m. (iii) For each fin A*, m.f is in AA*.

An argument similar to the proof of Corollary 5.5 of [13] with the aid of
Theorem 2.7 and Theorem 2.8 gives the following generalization of that corollary.

COROLLARY 3.2. Let S be a cancellative foundation *-semigroup with identity such
that C~'D is a compact subset of S for every two compact subsets C and D of S. Then
Z(M(S)™) = Mu(S).

REMARK. Let S be the set of all 2x2 matrices of the form |:8

{0,1,2,...} and a #0, ¢ # 0. Then with the usual multiplication, the involution

i:| with a, b, ¢ in

[g ZZ:| = |:6 Z] and the discrete topology, S defines a non-commutative cancel-

lative foundation x-semigroup with the identity |: O:| such that C~'D is a com-

0 1
pact subset of S for every two compact subsets C and D of S. It is clear that with this
involution S is not a subsemigroup of any group G such that x* = x~! for every
x € S, where x~! denotes the inverse of x in G. Note that if G is any locally compact
group, then S x G (with the product topology and the involution (s,g)*=
(s*,g7")(s € S, g € G)) also satisfies the hypothesis of the preceding theorem.
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