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Abstract

A method for solving quasilinear parabolic equations of the types

-[p(ux,x,t)]x + u,=f, -uXA+p(u,,x,t) =f

that differs radically from previously known methods is proposed. For each initial-
boundary-value problem of one of these types that has boundary conditions of the first
kind (second kind), a conjugate initial-boundary-value problem of the other type that has
boundary conditions of the second kind (first kind) is defined. Based on the relations
connecting the solutions of a pair of conjugate problems, a series of parabolic equations
with constant coefficients that do not change step to step is constructed. The method
proposed consists in calculating the solutions of the equations of this series. It is shown to
have linear convergence. Results of a series of numerical experiments in a finite-difference
setting show that one particular implementation of the proposed method has a smaller
domain of convergence than Newton's method but that it sometimes converges faster
within that domain.

1. Introduction

Numerical methods for solving quasilinear parabolic equations, which arise in
heat flow with temperature-dependent coefficients and in other nonlinear diffu-
sion processes, have been considered by Geymonat and Sibony [1], Hughes [2],
Richtmyer and Morton [7], Samarskii [8] and many others. In the present article,
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204 JohnE. Lavery Ul

we propose a method for solving quasilinear parabolic equations of the types

-[/>(«*, *,0L+ «,=/(*.')> 0-0
-uxx + p(u,,x,t)=f(x,t), (1.2)

that differs radically from the methods found up to the present in the literature.
For each parabolic initial-boundary-value problem of one of these types that has
boundary conditions of the first kind (second kind), a conjugate problem of the
other type that has boundary conditions of the second kind (first kind) is defined.
From the relations connecting the solutions of a pair of conjugate problems, a
series of parabolic equations with constant coefficients is constructed. The
method proposed consists in calculating the solutions of the equations of this
series. It can be used in conjunction with any convenient numerical scheme for
solving linear parabolic equations. It is an adaption of a related method for
solving quasilinear elliptic equations [5].

2. Notation and assumptions

We will consider equations (1.1) and (1.2) on the domain D = (a, b) X (0, T),
where a, b and T are finite constants, a < b and T > 0. For the spaces to be used
later on, we adopt notation similar to that of Ladyzhenskaya [4]. Let W2

l
0(a, b)

denote {w G W2\a, b): w(a) = 0, w(b) - 0}, where W2\a, b) = {w G L2\a, b):
w' 6 L2{a, b)}. Define WJ0(D) = {« G W2\D): u(a, t) = 0, u(b, t) = 0 for al-
most all t in (0, T)}. Let H°(D) stand for L2(D) and W2

]'°(D) denote the Hilbert
space {« G H°(D): ux G H°(D)} with inner product

(«, v)w>.o(D) := jj (uv + uxvx)dD

and corresponding norm. Define F10(£>) to be the Banach space consisting of
those elements u of W2

l0(D) for which u(x, t) is in L2(a, b) for each /, 0 < t < T,
and for which || «(x, /)| | L (a b) is a continuous function of /, with the norm

Define K0
10(Z)) to be {u G K'°(Z)): u(a, t) = 0, u(b, t) = 0 for almost all / in

(0, T)}, a strict subspace of K10(D). Define V2\D) to be the Banach space of
elements of Vl0(D) for which w, and uxx are in H°(D), ux(x, t) is in L2(a, b) for
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each t, 0 < / < T, and \\ux(x, t)\\ L (a b) is a continuous function of /, with the
norm

'/2

Let K0
2J(Z>) = {« £ F2 1(O): u(a, t) = 0, M(Z>, /) = 0 for almost all / in (0, T)}

and 0V
2\D) = {« G K21(Z>): U;t(a, t) = 0, «x(6, 0 = 0 for almost all / in

(0, D } .
The function p of equations (1.1) and (1.2) will be assumed to satisfy the

following conditions (2.1):

max \\ux(x,

F o r a l m o s t a l l f i x e d ( x , t ) i n D , p { X , x , t ) G C \ R ] ) .

There exist positive constants m and M such that,

for all (X, x, t)inRx X D, m ^%(X, x, t) < M.
oX

For any function X(x, t) in H°(D),p(X(x, t), x, t)

is in H°(D); for any function h(x, t) in H°(D),

the A^x, /) defined uniquely (cf. condition (2.1b))

by h(x, t) = p{X(x, t), x, t) is inH°(D).

(2.1a)

(2.1b)

(2.1c)

In the conjugate problems defined in this paper, there will occur a function p
that is related top as follows. Let a be any fixed element of H°(D) and (x, /) be
any fixed point of D. The transformation of X G R] into Y G Rl defined by

Y = p(X,x,t) + a(x,t) (2.2a)

is one-to-one and onto by condition (2.1b). Given any 0 in H°(D), one can
define a function p by

X = p(Y,x,t) + $(x,t). (2.2b)

This function p satisfies conditions (2.1) (with m = \/M and M = \/m instead
of m and M in condition (2.1b)). For positive real numbers a and T, define R(a)
and ^ ( T ) to be the smallest real numbers such that

— a (2.3a)

(2.3b)
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206 JohnE. Lavery I4]

for all (X, x, t) in R} X D. It will be assumed that there exist (positive) a and T
such that

R{O)R(T)<}. (2.4)

3. Solution of quasilinear equations (I)

It is our goal in this section to construct an iterative method for solving the first
initial-boundary-value problem for equation (1.1) and the second initial-
boundary-value problem for equation (1.2). We first state these two problems
precisely and develop relations that exist between their solutions. These relations
then serve as the basis for constructing the method, which is shown to have linear
convergence.

The first initial-boundary-value problem for equation (1.1) can be formulated
as follows. Given a in H°(D) and /J in KO

IO(D) such that

/=«x-A (31)
and given g in L2(a, b), find

UEV0
U0(D) (3.2a)

such that

rh
("'/• [p(Ux,x,t)hx-Uh,]dxdt+ f [U(x,t) + P(x,t)]h(x,t)dx
0 Ja Ja

= (' (b[-ahx + ph,]dxdt + fh[g(x) + fi(x,O)]h(x,O)dx (3.2b)

for all h in W^V-0) a n d a 1 1 ' i n (°> T\- Problem (3.2) can be formally stated as the
problem of finding U such that

- [p(Ux, x, t)]x+U, = ax- fi, = / inD, (3.3a)

I/(*,O)=g(jc) on ( a , * ) , (3.3b)

I/(<i, 0 = 0 , U(b,t) = 0 on (0,7-). (3.3c)

(Equalities (3.3) and all subsequent equalities on D, (a, b) and (0, T) are
understood to be "almost everywhere.") The initial condition (3.3b) is contained
in equality (3.2b) and the boundary conditions (3.3c) are contained in condition
(3.2a). With a slight change of notation, the second initial-boundary-value prob-
lem for equation (1.2) can be formulated as follows. Given d in VQ'°(D), 0 in
H°(D) and g in W}(a, b), find

(3.4a)

https://doi.org/10.1017/S0334270000003684 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003684


I s I Quasilinear parabolic equations 207

such that

-Vxx+p(V,,x,t) = ax-0 inD, (3.4b)

V(x,0)=g(x) on(a,b). (3.4c)

Thep and/of equation (1.2) are replaced by p and ax — 0 in equation (3.4b). The
boundary conditions

Vx(a,t)=0, Vx(b,t)=0 on(0,r) (3.5)

are contained in the space OF2|1(£>) of condition (3.4a). We will assume that the
data of problems (3.2) and (3.4) satisfy the relations

« = -j8, (3.6a)

)]dt + c, (3.6b)

where c is an arbitrary constant of integration. A pair of problems (3.2) and (3.4),
the data of which satisfy relations (2.1), (2.2) and (3.6) will be called conjugate
problems.

The method for solving conjugate problems (3.2) and (3.4) that we will propose
is based on relations that exist between the solutions of these problems. Assume
that there exists a solution U of problem (3.2). Define a function V by the
equalities

Vx=U+p, (3.7a)

V,=p(Ux,x,t)+a. (3.7b)

The necessary and sufficient condition that such a V exist is that (Vx), = (V,)x,
that is, that

[U+p],=[p(Ux,x,t) + a]x,

which holds since U satisfies equality (3.2b) (and (3.3a)). Inverting relations (3.7),
we have

Ux = p(Vnx,t) + 0, (3.8a)

U=Vx + & (3.8b)

(cf. equalities (2.2) and (3.6a)). Equalities (3.8) imply that V is a solution of the
conjugate problem (3.4). Conversely, assuming that a solution V of problem (3.4)
exists, one can define a function U by equality (3.8b). That equality (3.8a) holds
for this U is a consequence of equality (3.4b). This U is, by equalities (3.7) (which
follow from equalities (3.8)), a solution of problem (3.2). In summary, the
solutions of problems (3.2) and (3.4), if they exist at all, occur in pairs that satisfy
relations (3.7) and (3.8).
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208 JohnE. Lavery 16)

Assume now that positive constants a and T are given. (The roles of a and T will
be discussed below.) From equalities (3.7) and (3.8), it follows that U and V
satisfy the following system of quasilinear parabolic problems:

(3.9a)

-°KX+ K = -°[U+ P]x+p(Ux,x,t) + a inD, (3.9b)

V(x,0) = g(x) on(a,b), (3.9c)

and

UEVo
l»(D), (3.10a)

V fh[Uxhx - rUh,] dxdt + T fb [U(x, t) - a(x, t)]h(x, t) dx
J0 Ja Ja

= f ("{[P(vn x,t) + 0- rV]hx - rah,} dx dt

+ rf"[g(x)-&(x,0)]h{x,0)dx (3.10b)
'a

for all h in W^D) and all t in (0, T\. For example, equality (3.9b) is obtained by
differentiating equality (3.7a) with respect to x, multiplying it by —a and adding
it to equality (3.7b).

Noting that any solution of problems (3.2) and (3.4) must satisfy equalities
(3.7) and (3.8) and, hence, also equalities (3.9) and (3.10), we propose solving the
quasilinear problems (3.2) and (3.4) by a "back door," that is, by solving system
(3.9)—(3.10). We will do this by alternatively solving analogues of problems (3.9)
and (3.10) in which the right-hand sides are known. Since the left-hand sides of
equations (3.9b) and (3.10) are parabolic operators with constant coefficients,
each iteration will consist of solving a relatively simple problem.

Let any element u(n) of KO
I>O(D) be given. Define v(n) to be the solution of the

problem

vin) e0K2J(£>), (3.11a)

-avxx
) + v(,") = -a[u(n) + p]x + p(ux

n\x,t)+a inD, (3.11b)

«<">(*,0) = g{x) on(a,b), (3.11c)

(cf. problem (3.9)). Problem (3.11) is a well-posed linear parabolic problem with a
unique solution (Ladyzhenskaya [4, page 178, Theorem 4.2]). On the other hand,
given any element u(n) of 0V

2'\D), a function u{n+X) can be found by solving the
problem

(3.12a)
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[' fb [ux"
+i>hx - T«("+ | ) / . , ] dxdt + r f" [u<"+1\x, t) - a(x, t)]h(x, t) dx

J0 Ja Ja

= f f"{[P(v<tn)' x,t)+0- rv™]hx - rah,} dxdt
•'0 Ja

,0)dx (3.12b)

for all h in W2\0(D) and all / in (0, T] (cf. problem (3.10)). Problem (3.12) is a
well-posed linear parabolic problem with a unique solution (Ladyzhenskaya [4,
page 171, Theorem 3.2]). Problem (3.12) can be formally restated as the problem
of finding u("+ l ) such that

- u ^ H r u r " = -[p{^"\ x,t) + 0]x + i[f>x* + &], in D, (3.13a)

«C+ 1>(x,0)=g(x) on (a, b), (3.13b)

M( n + l ) (a ,0 = 0, u(n+1)(&, t) = 0 on(0, T). (3.13c)

The initial and boundary conditions (3.13b) and (3.13c) are contained in relations
(3.12b) and (3.12a), respectively.

The method we wish to consider consists of iteratively solving problems (3.11)
and (3.12), that is, of computing the sequence

M(0) _ o<0) _ Md) _ „(!) _ y(2) _, . . . ^ (3 ] 4 a )

starting from any M<0) in Vj'°(D), or the sequence

v(0) _ „(!) _, „(!) _ M(2) _ 0(2) ̂  . . . f (3.14b)

starting from any v(0) in 0K
21(Z)). A formal proof of the convergence of the

method will be presented below. We first explain on the basis of a linear example
why convergence can be expected to occur at all and how one goes about
choosing a and T.

Consider the model problem

-dUxx+U, = ax-p,=f in/), (3.15)

with initial and boundary conditions (3.3b) and (3.3c). Here, d is a constant and
p(X, x, t) = d • X. With the a of equality (3.6a), the 0 given by

P=-ad~l (3.16)

and the g of equality (3.6b), the conjugate problem is

-Vxx + d~lV, = ax-fi inD (3.17)

with initial and boundary conditions (3.4c) and (3.5). Relations (3.7) and (3.8)
are, for this pair of conjugate problems,

Vx=U+/3, V, = dUx + a, (3.18)

Ux = d~l -V, + 0, U=Vx + a. (3.19)
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210 JohnE. Lavery 18]

The linear equations (3.11b) and (3.13a) that are to be used to solve the model
"quasilinear" equations (3.15) and (3.17) are

-ou<J» + t>,(n) = (d - a)u<
x
n) -o0x + a in D, (3.20)

- U & + 1 ) + TK<"+I) = (r-d-l)ifixp + ra, - 0X inD. (3.21)

In the right-hand side of equation (3.20), we note that the positive constants d
and a in the coefficient of ux

n) cancel each other, at least partially. In the
right-hand side of equation (3.21), T and d~l in the coefficient of vx"^ also
(partially) cancel each other out. This situation raises the expectation that, if the
amount of cancellation is sufficiently large, convergence will occur. This is indeed
the case, as we will see in the theorem below. In order to guarantee linear
convergence, a and T must merely be chosen so that the ratio of convergence
R(O)R(T), which, for the present example, equals \d— a\ -\d~x — r\ , is less
than unity. The optimum a and r are easily found. If we choose a — d and
T = d~\ convergence occurs on the first iteration, since the term involving ux

n) in
equation (3.20) and the term involving vx"^ in equation (3.21) disappear. In this
case, the linear equations (3.20) and (3.21) of the proposed method coincide with
the model "quasilinear" equations (3.17) and (3.15), respectively.

This realization of how the choice of a and T controls convergence of the
method for the model equation (3.15) can easily be extended to the original
quasilinear problem (3.2). The rate of convergence depends on how much the
terms aux

n) and p(ux"\ x, t) on the right-hand side of equation (3.11b) cancel
each other out and how much the terms [p(v\n), x, t)]x and T[t4n)]» on the
right-hand side of equation (3.13a) cancel each other out. Roughly speaking, the
greater the cancellation is, the smaller the quantity R(O)R(T) will be. Linear
convergence is guaranteed whenever this quantity, the ratio of convergence, is less
than unity. A precise rule for choosing the optimum a and T has not been
determined. However, on the basis of the example above and the numerical
results presented below in Section 5, the author expects that a should be some
kind of weighted average of dp(X, x, t)/dX and T should be I / a .

To close this section, we present a formal statement and proof of the conver-
gence of the method.

THEOREM 1. Let condition (2.4) be fulfilled. Then the conjugate problems (3.2) and
(3.4) have unique solutions U and V. The pair [U, V} is the unique set of solutions of
the system (3.9)—(3.10). The iterates u(n) and v(n) of sequences (3.14) converge
linearly in F0

IO(Z)) to U and linearly in 0V
2\D) to V, respectively. The a priori

rate of convergence is in both cases R(a)R(r).
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[9) Quasilinear parabolic equations 211

PROOF. Replace n by n — 1 in equality (3.11b), subtract that equality from
equality (3.11b) as it stands, multiply the resulting equality by o(n) — u*""1* and
integrate over (a, b) X (0, t). Making use of the boundary conditions for u<n) and
v("~]) contained in the space 0V

2-\D), of the initial condition (3.11c) and of an
intermediate-value theorem, we obtain

' 0 •'a •'a

= f f [^T("*> *> 0 - °l("in) - "i"~l))(t>('') - v<»-») dx dt, (3.22)
•'0 Ja [ V\UX) J

for all / in (0, T], where « = t^""0 + c(M(n) - u("~l)) for some constant c,
0 < c < 1. Letting D, denote (a, b) X (0, f) and recalling inequality (2.3a), one
obtains from equality (3.22) the inequality

(3.23a)

Analogously, one can obtain

||O<"> - O<-I)|2W.(1,,) + (O/2)\H"\X, t) - 4"->(x, 0||l2(-,6)
l (3.23b)

oM"* ~ v*"x~l%°(D,) (3-23c)

for all t in (0, T], Replacing / by T on the right sides of inequalities (3.23), taking
the maxima of the left sides, adding the resulting inequalities and simplifying
yields

where

/3":
r — min( 1, a )

From inequality (3.23b), one can also derive the inequality

IK(n) - »rl%°{D) < Jl(a)||«i"> - i i i - l ^ i , , . (3.25)
By similar reasoning, one can show that

5 ( T ) (3-26)
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212 John E. Lavery 110]

R \\ J?(T)|K-> - vr'%0^. (3.27)

Inequalities (3.25) and (3.27) imply that

R IU \\ % (3.28)
(3.29)

Inequalities (2.4), (3.26) and (3.29) imply that, for any n 3* 2 and any k s* 1,

n( \ rt + Ar-1

min(l,r) / = n
2 k'-^'-iif

(3.30)

Analogously, inequalities (2.4), (3.24) and (3.28) imply that, for any n 3= 2 and
any /c s* 1,

(3.31)

Inequalities (3.30) and (3.31) are statements that {w(n)} and (o'"'} are Cauchy
sequences in KO

IO(D) and 0K
21(£>), respectively. Define U = limn_00 u(n) and

F = lirn,,..,*, v(n). Taking the limit in equality (3.12b), we obtain equality (3.10b).
Taking the limit in equalities (3.11b) and (3.11c), we obtain equalities (3.9b) and
(3.9c). Choosing h = U + /? - Vx in equality (3.10b) and using the equality

Ux =p(V, + o(Ux + PX- Vxx), x , t ) + 0,

which is a consequence of equality (3.9b) and relations (2.2), one can show that
equality (3.7a) holds. Even if h = U + /? — Vx is not as smooth as required for
equality (3.10b), equality (3.7a) still holds and can be proved by a limiting
argument. Equalities (3.7a) and (3.9b) imply that equality (3.7b) holds. Since
equalities (3.7) hold, equalities (3.8) also hold. It follows from relations (3.6), (3.7)
and (3.8) that any solutions U and Fof problems (3.9) and (3.10) are solutions of
problems (3.2) and (3.4) and vice versa. That the solutions of these problems are
unique and that the rates of convergence of «(n) to U and of t>(n) to V are linear
with ratio R(o)R(r) can be shown using inequalities similar to inequalities (3.28)
and (3.29). The theorem is proved.
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We note in passing that arguments similar to those by which inequalities (3.30)
and (3.31) were derived can be used to obtain the following a posteriori error
bounds:

[l -/?(a)#(T)]min(l,T)" *

(3.32b)
- R(O

4. Solution of quasilinear equations (II)

We now consider solving the first initial-boundary-value problem for equation
(1.2) in VQ-\D) and solving the second initial-boundary-value problem for
equation (1.1) in Vifi(D). Since the results of this section are analogous to those
of Section 3, comments and explanation will here be held to a minimum.

The two problems to be considered can be formulated as follows. Given a in
H°(D) and $ in F10(Z>) such that/ = 0X - a and given g in W2

l
0(a, b), find

(4.1a)

such that

-Uxx+p(U,,x,t) = px-a=f inD, (4.1b)

U(x,0) = g(x) on(a,b). (4.1c)

With a slight change of notation, the second of these problems can be stated as
follows. Given d in Vlfl(D) and 0 in H°(D) and given g in L2(a, b), find

VSVlfi(D) (4.2a)

such that

J' fb[p(Vx,x,t)hx-Vhl)dxdt+f[V(x,t) + a(x,
J0 J a Ja

= f f"(-0hx + &h,)dxdt + fb[g(x) + d(x,0)]h(x,0)dx (4.2b)
J0 Ja Ja
f

J0 Ja

for all h in W2\D) and all t in (0, T\. The/> and/of equation (1.1) are replaced by
p and fix — a, to create equation (4.2). We will assume that

§(x)=g'(x)+P(x,0). (4.3)
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A pair of problems (4.1) and (4.2) for which conditions (2.1), (2.2) and (4.3) hold
will be called a pair of conjugate problems. The relations

Vx=p(Ul,x,t) + a, V=Ux + fi, (4.4)

Ux=V+&, U,=p(Vx,x,t) + p, (4.5)

hold between the solutions of problem (4.1) and (4.2) (cf. relations (3.7) and
(3.8)).

We propose the following method for solving a pair of conjugate problems. Let
positive constants a and T be given. Let w(n) be any element of KO

2I(Z)). The
problem of finding

„(«) e ^ ° ( i ) ) (4.6a)

such that

f fh(4n)hx - ov^h,)dxdt + o fh[v(n)(x, t) - p(x, t)]h(x, t)dx

= f f{[P(u<in)> x,t) + a- ou<n)]hx - ofih,}dx dt
J0 J a

+ ofb[g(x)-p{x,0)]h(x,0)dx (4.6b)

for all h in W^D) and all / in (0, T] is a well-posed parabolic problem with a
unique solution (Ladyzhenskaya [4, page 178, Theorem 4.1 and page 180, Re-
mark]). Let t>(n) be any element of V>r°(D). The problem of finding

O (4.7a)

such that

-TM<£+1) + u<n + 1 ) = -T[v<-n) + a]x+p(vx"\ x,t) +$ inD, (4.7b)

uin+i)(x,0) = g(x) on(a,b) (4.7c)

is a well-posed parabolic problem with a unique solution (Ladyzhenskaya [4, page
158, Theorem 2.1]). Problems (4.6) and (4.7) are obtained from relations (4.4) and
(4.5) in the same way that problems (3.11) and (3.12) were derived from relations
(3.7) and (3.8). The method we propose consists of iteratively solving problems
(4.6) and (4.7), that is, computing sequence (3.14a) starting from any u(0) in
VQ-\D) or sequence (3.14b) starting from any u(0) in FIO(D). The comments in
Section 3 concerning why convergence can be expected to occur apply with minor
changes here. It is expected that a should be chosen to be some kind of weighted
average of 3/?(X, x, t)/dX and that T should be I/a. The formal statement of the
convergence of the method is contained in the following theorem.
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THEOREM 2. Let condition (2.4) be fulfilled. Then the conjugate problems (4.1) and
(4.2) have unique solutions U and V. The iterates w(n) and u(n) of sequences (3.14)
(obtained by iteratively solving problems (4.6) and (4.7) instead of problems (3.11)
and (3.12)) converge linearly in V^l(D) to U and linearly in K10(£>) to V,
respectively. The a priori rate of convergence is in both cases R(o)R(r).

The proof of Theorem 2 is similar to that of Theorem 1 and is omitted. A
posteriori error bounds analogous to inequalities (3.32) hold:

- R(O)R(T
(4.8a)

where

and

in(l, T) max 1,
2T(b - af

2v2(T+ 1) +(b-a)

in(\, a) (4-8b)

5. Numerical implementation and comparison with other methods

The above discussion is not based on any one numerical procedure but is
carried out on the level of the differential equation before discretization. This fact
is of considerable importance, since it implies that the proposed method can be
used with any numerical procedure, such as finite differences or finite elements,
appropriate for solving linear parabolic equations. We will describe here one way
of numerically implementing the method proposed in Section 3 and compare it
with solution of quasilinear parabolic equations by the commonly used Newton's
method. Before proceeding to the description of the implementations of these
methods, we make the following observation.

For the global convergence discussed in Sections 3 and 4, the functions p and p
are required to satisfy conditions (2.3) and (2.4). These are rather strict require-
ments that will in practice often not be satisfied globally. If they are, however,
satisfied locally for the argument Xof p(X, x, t) and the argument Y of p(Y, x, t)
in some fixed intervals, the method proposed in this paper will converge as long
as the arguments u(

x
n) or u\n) of p and u,(n) or v(

x
n) of p or the numerical

approximations of these arguments remain within the fixed intervals. The purpose
of the numerical experiments, the results of which are presented later in this
section, is to investigate local convergence for the quasilinear problem (3.3).
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To solve problem (3.3) by finite differences, we will use uniform meshes with
length Ax = (b — a)/I in the x-direction and At — T/J in the /-direction, where
/ and J are integers 3= 2. The mesh points will be (JC,, tj) = (a + iAx, jAt), where
i is an integer between 0 and / (for U) or an integer plus one-half between —1/2
and 7 + 1 / 2 (for V) and j is an integer between 0 and J. The finite-difference
approximation of any unknown function and the value of any known function at
(xt, tj) will be denoted by adding a subscript i and a superscript j . For example,
u\n^J and Vj are the approximations of M(n)(x,, /y) and V(x,, ty) and/V stands for
f(xt, tj). All finite-difference equations will be based on the implicit "T" scheme
with truncation error O((Ax)2 + At).

We describe first the implementation of Newton's method (cf. Richtmyer and
Morton [7, Section 8.6]). Equations (3.3a) and (3.3c) are approximated by the
nonlinear system of equations

PAx[P\ Ax '*.+ l /2.0+lj P\ Ax

UJ+1 — IP

t# + 1 = t//+1 = 0. (5.1)

In what follows, j is considered to be a fixed integer, 0 <j ; < / — 1. When solving
system (5.1) by Newton's method, one calculates the (« + l)-st approximations
M(«+i)y+i of the 1/.J+1 from the nth approximations MJ")-/+1 and the known values
U/ of the previous time step by solving the linear system

f ,
[P\ Ax ' ^ + > / 2 ' 0 + . ) l Ax J

Ax >*.-\/i"j+i \ Ax !\ AtAt

< ) J

x ,
\i
J I

w0 = w, = 0 (5.2a)

for the w, and setting

Wi> / = ! , . . . , / - ! . (5.2b)
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For each given j , one iteratively solves system (5.2) starting from the initial
approximations uf***' = U/ (on the first time step, one uses the initial condition
(3.3b) in the form U,° = g(x,)) and accepts u\n+^J+x as U,J+1 for the first n such
that

max y" + I W + 1 -«<"> ' + I |<e 1 . (5.3)

One then proceeds to repeat the process again on the next time step.
The implementation of the method proposed in the present paper is as follows.

Equation (3.1 lb) is approximated by

. ) j

2Ax

>X,-\/2>tj+]/2 J
+«/-.1//2> ' = 1 , . . . , / . (5.4a)

The homogeneous Neumann boundary conditions contained in the space 0 F 2 1 ( D )
of condition (3.1 la) are approximated to second order by

(n)y+l _ „(«)>+1 n(n)j+\ — ,,(«)>+1 (
v-\/2 v\/2 ' vI+\/2 — vI-\/2- \

Equations (3.13a) and (3.13c) are approximated by
(n+1)7+1 _ 7 (n+ l)y+l i (n+1)7+1 (n+1)7+1 _

* * / + ! ^ * " i ' **/— 1 • Ĵ i

(Ax)2

1 Al '^+1/2. '7+1/2

( fl(")7+

0 . (5.5)

For each given j , one repeatedly solves system (5.4) for the t^Y/i' and system
(5.5) for the u

(
i
n+l)j+1 starting from the initial approximations vfl^l = V/_l/2 or

u(0)7+i = i/j (o n the fij.st t im e s t ep, the initial conditions (3.11c) and (3.13b) are
used in the forms V?_x/2 = g(x,_i/2) and U° — g(x,)) and accepts u\"+i)j+x as
U/+l for the first n such that inequality (5.3) is fulfilled. One then proceeds to
repeat the process again on the next time step. In this particular implementation,
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the method of Section 3 is used independently on each subdomain (a, b) X
(tj, tJ+l) rather than on all of D simultaneously. The value of the inverse function
p(Y, x, t) is calculated by the standard Newton's method for scalar-valued
functions. The (k + l)-st Newton iterate Xk+X is accepted as p(Y, x, t) for the
first k such that

|-*it+l --**!*= «2- ( 5 - 6 )

Computer programs for carrying out each of the three methods described above
were coded and examples with the data

a = 0, b=l, T=l, p(X,x,t) = (\+ClX
2)X, g(x) = g(x)=0,

f(x,t) = 2<*2{l + 3c,[cf2(l ~2x)]2} +2ctx(l - x), p(x,t)=0,

a(x,t)=fXf(t,t)dZ, Ax = 0.1, A/= 0.01, e, = 10-6, e2 = 10"8

(exact solution is U = c/2x(l — x)) were run for various constants c, and c on a
BESM-6 at the Computing Center of the Siberian Branch of the Academy of
Sciences of the USSR in Novosibirsk, the use of which the author acknowledges
with gratitude. The symmetric tridiagonal matrix systems that arise during the
computations were solved using Cholesky decomposition by the procedures of
Martin and Wilkinson [6].

Numerical results for the two methods, designated "Newton's method" and
"method of pseudolinear equations," are presented in Table 1. In each box of the
table, two items are given: the first is the computing time (exclusive of compila-
tion time and time for printing) quantified in units of 0.02 sec. and the second is a
measure of the error at t — T = /A/ of the approximate numerical solution versus
the exact theoretical solution U = ct2x(\ — x) given by

max \Uf - U(x,,T)\.
1 </«:/-1

If the computations were not completed up to t = T, the computing time and the
symbol * (denoting " time expired") were entered in the box.

From the data in Table 1, one sees that, for the two cases of "small nonlinear-
ity," c, = 0.01, 0.1, c = 1, the method of pseudolinear equations with optimum
parameters a = 1, T = 1 (optimum with respect to computing time by comparison
with the other entries for these cases) is 18.5% and 16.3% faster than Newton's
method. However, for larger nonlinearities, the performance of the method of
pseudolinear equations is not as good. For c, = 1, c = 1 with optimum parame-
ters a — 1, T = 1, it is only 4.8% faster than Newton's method. For c, = 0.01,
c = 10 with optimum parameters a = 1.2, r= 1/1.2, it is 8.5% slower. For
c, = 10, c = 1 with optimum parameters a — 3, T = 1/3, it is 84.8% slower.
Finally, for c, = 0.01, c = 100, it fails to converge at all.
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A comparison of the optimum a observed in Table 1 with the minima and
maxima over D of dp(Ux, x, t)/d(Ux) is given in Table 2. It shows that the
optimum a lie between the minima and maxima, closer to the minima (cf.
discussion of how to choose a in Section 3).

TABLE 2

Comparison of observed optimum a to minima and maxima of dp(Ux> x, t)/d(Ux),
with U = ct2x(\ -x).

cl

0.01
0.01
0.01
0.1
1
10

1
10

100
1
1
1

dp(Ux,x,t)
111111 -,/„ \

1
1
1
1
1
1

dp(Ux,x,t)
niax . .

1.03
4

301
1.3
4
31

observed optimum
a from Table 1

1
1.2
—
1
1
3

From the viewpoint of accuracy, the relative performance of the method of
pseudolinear equations improves as the nonlinearity increases—just the opposite
of the situation for computing time. For small nonlinearities (c, = 0.01, 0.1,
c = 1), the minimum and maximum of the relative errors for the method of
pseudolinear equations are 0.89% (= 0.00222834/0.25 for c, = 0.01, c = 1, a =
7.0) and 0.97% (= 0.00242638/0.25 for c, = 0.1, c = 1, a = 1.2). The relative
errors of Newton's method for these cases lie between these two values. For larger
nonlinearities (c, = 0.01, c = 10 and c, = 1, 10, c = 1), however, the method of
pseudolinear equations, which has relative errors between 0.58% ( =
0.00145087/0.25 for c, = 10, c = 1, a = 2.0) and 1.00% (= 0.00251081/0.25 for
c, = l , c = l , a = 3.0), is significantly more accurate than Newton's method,
which has relative errors between 1.31% (= 0.0328677/2.5 for c, = 0.01, c = 10)
and 2.13% (= 0.00531361/0.25 for c, = 10, c = 1).

6. Concluding remarks

The main computational advantage of the method of pseudolinear equations is
that, on all iterations, only the right-hand side of the linear algebraic system to be
solved need be recalculated. For Newton's method, on the other hand, both the
right-hand side and the matrix must be recalculated on each iteration.
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In terms of overall applicability, the method of pseudolinear equations has one
final advantage over Newton's method. The function p is required by the method
of pseudolinear equations to be only (boundedly) differentiable with respect to X
(see inequalities (2.3) and (2.4)), while Newton's method (Kantorovich and Akilov
[3, Chapter 18]) requires roughly one additional order of differentiability.
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