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Magnetic geometry has a significant effect on the level of turbulent transport in fusion
plasmas. Here, we model and analyse this dependence using multiple machine learning
methods and a dataset of>200 000 nonlinear gyrokinetic simulations of ion-temperature-
gradient turbulence in diverse non-axisymmetric geometries. The dataset is generated
using a large collection of both optimised and randomly generated stellarator equilib-
ria. At fixed gradients and other input parameters, the turbulent heat flux varies between
geometries by several orders of magnitude. Trends are apparent among the configurations
with particularly high or particularly low heat flux. Regression and classification tech-
niques from machine learning are then applied to extract patterns in the dataset. Due to
a symmetry of the gyrokinetic equation, the heat flux and regressions thereof should be
invariant to translations of the raw features in the parallel coordinate, similar to trans-
lation invariance in computer vision applications. Multiple regression models including
convolutional neural networks (CNNs) and decision trees can achieve reasonable predic-
tive power for the heat flux in held-out test configurations, with highest accuracy for the
CNNs. Using Spearman correlation, sequential feature selection and Shapley values to
measure feature importance, it is consistently found that the most important geometric
lever on the heat flux is the flux surface compression in regions of bad curvature. The
second most important geometric feature relates to the magnitude of geodesic curvature.
These two features align remarkably with surrogates that have been proposed based on
theory, while the methods here allow a natural extension to more features for increased
accuracy. The dataset, released with this publication, may also be used to test other pro-
posed surrogates, and we find that many previously published proxies do correlate well
with both the heat flux and stability boundary.
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1. Introduction

The level of turbulent transport in magnetised plasmas depends on the magnetic
field geometry in complicated ways. In tokamaks, geometric factors include the
aspect ratio, elongation and triangularity, while in stellarators, there is vast additional
freedom in the non-axisymmetric shaping. While direct numerical simulation of the
turbulence can be used to evaluate the transport for specific geometries, numerical
calculations do not immediately give insight into general parametric dependencies.
Numerical turbulence simulations also require non-negligible computation time and
are noisy due to the chaotic dynamics, making it challenging to include them directly
in optimisation or parametric studies. Therefore, a variety of physics-based sur-
rogates for the geometry-dependence of turbulent transport have been proposed
(Mynick, Pomphrey & Xanthopoulos 2010; Mynick et al. 2014; Xanthopoulos et al.
2014; Proll et al. 2015; Hegna, Terry & Faber 2018; Mackenbach, Proll & Helander
2022; Nakata & Matsuoka 2022; Nakayama et al. 2023; Roberg-Clark et al. 2023;
Goodman et al. 2024). However, owing to advances in computing hardware and
simulation software, it is now possible to assemble large sets of turbulence simula-
tion data that span a wide range of possible geometries, even in the high-dimensional
parameter space of stellarators. Moreover, progress in machine learning (ML) meth-
ods and software provide many new opportunities for understanding and exploiting
these data. The purpose of this article is to show how ML methods can discover
patterns in the geometry-dependence of plasma turbulence. Specifically, we present
a new method for generating training data using random three-dimensional (3-D)
geometries, we compare the accuracy of several ML methods at predicting the tur-
bulent heat flux, and we show several interpretable ML techniques that can identify
which geometric factors determine the turbulent heat flux. This last aspect shows that
ML can be more than a black-box interpolation method to accelerate computations –
it can in fact also feed back into more traditional physics analysis. For exam-
ple, the patterns in the data identified here can provide evidence for or against
physics-inspired approximate models and motivate future theoretical studies.

The methods here extend prior work in several ways. ML methods, specifically
neural networks, have been applied previously as surrogates for transport in toka-
maks (Meneghini et al. 2014; Citrin et al. 2015; Meneghini et al. 2017; Narita
et al. 2019; Honda & Narita 2019; van de Plassche et al. 2020; Abbate, Conlin
& Kolemen 2021; Boyer & Chadwick 2021; Li et al. 2024). In contrast to this
previous work, here we allow for non-axisymmetric shaping, in which case, the geo-
metric parameter space is much higher dimensional. In the context of stellarators,
neural networks have been applied to neoclassical transport coefficients (Wakasa
et al. 2007) and magneohydrodynamic (MHD) equilibria (Merlo et al. 2021; Curvo,
Ferreira & Jorge 2025). For stellarator turbulent transport, regressions have been
performed using theory-based analytic models with tuning parameters (Nakayama
et al. 2023). Theory-based surrogates for transport in stellarators have previously
been compared with gyrokinetic simulations for a small number of geometries N ,
e.g. N = 10 by Proll et al. (2015), N = 4 by Mackenbach et al. (2022) or N = 9
by Roberg-Clark et al. (2023). In the present work, the number of geometries con-
sidered is increased by four orders of magnitude to N > 105. Compared with these
earlier studies, the work here is also unique in the new method of data generation
using random novel 3-D geometries, in the application of both neural-network- and
non-neural-network-based ML methods, and in the use of interpretable ML methods
to identify important features in the geometry. Finally, in the supplemental mate-
rial available from Landreman (2025), we are making the training dataset publicly
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available, so other researchers can test the accuracy of different proposed turbulence
surrogates.

To obtain ML models for this problem that are interpretable, we demonstrate
a novel approach that combines a large library of candidate features with for-
ward sequential feature selection (FSFS) and traditional regression and classification
methods. The new approach here is used to ensure that the models respect a
translation-invariance in the gyrokinetic equation: the heat flux should be invari-
ant to periodic translation of all geometric quantities in the direction along the
magnetic field (see § 2). The invariance is guaranteed in our models by using a
library of features that respect the symmetry. The use of a combinatorial library of
candidate features in our method is reminiscent of SINDy (sparse identification of
nonlinear dynamics) (Brunton, Proctor & Kutz 2016), except that we are not inter-
ested in time-dependence and we obtain parsimony through FSFS rather than via
sparsity-promoting optimisation. Our method is also reminiscent of symbolic regres-
sion (Koza 1994) in that we seek symbolic expressions for interpretability. However,
unlike SINDy and symbolic regression, the method here combines the symbolic fea-
ture library with additional regression and classification models (decision trees and
nearest-neighbours) to efficiently allow extra nonlinearity.

We find a remarkable alignment between the results of interpretable ML anal-
ysis here and recently proposed physics-inspired surrogates for turbulence. Across
several ML regression methods and several ways to measure feature importance,
the most important two features are consistent. The most important geometric
factor is found to be the flux surface compression |∇ψ | in regions of bad curva-
ture, where 2πψ is the toroidal flux, reflecting the gradient drive in real space in
regions of linear instability. This factor has been used as an optimisation objective
function for ion temperature gradient (ITG) turbulence by Mynick et al. (2014),
Xanthopoulos et al. (2014), Stroteich et al. (2022) and Goodman et al. (2024), and
a more complicated objective with these elements was used previously by Mynick
et al. (2010). The second most important geometric factor identified in our anal-
ysis is the average magnitude of the geodesic curvature, equivalent to the radial
magnetic drift ∝ B × κ · ∇ψ , where κ is the curvature. This quantity has been pro-
posed as a correlate of turbulence by Xanthopoulos et al. (2011) and Nakata &
Matsuoka (2022). The theoretical motivation for this quantity is related to zonal
flows: larger geodesic curvature leads to stronger linear damping of zonal flows,
resulting in higher levels of saturated heat flux. For both of the two most important
features, our analysis matches the theoretical predictions for the sign of the correla-
tion: increased |∇ψ | and increased absolute geodesic curvature correlate with heat
flux increase.

Since ML methods are most effective when large amounts of data are available
that cover the parameter space of interest, we make several simplifying assumptions
in this work. First, we consider the electrons to be adiabatic. This choice makes the
direct numerical simulations faster by a factor of ∼√

mi/me, where mi and me are
the ion and electron masses. Hence, the maximum stable time step is not limited by
the electron parallel speed, increasing the number of simulations that can be run for
a given computational budget. Compared with simulations with adiabatic electrons,
simulations with kinetic electrons have higher heat fluxes (Chen et al. 2003) and
the difference depends on magnetic geometry (McKinney et al. 2019; Goodman
et al. 2024), so some conclusions of the analysis here may be modified if revisited
with kinetic electrons. By the use of adiabatic electrons, our analysis is necessarily
electrostatic and focuses on ion temperature gradient turbulence.
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When attempting to model the turbulent heat flux, there are two natural options
for the independent geometric variables: one could either use shape parameters of
the plasma or the geometric quantities appearing directly in the gyrokinetic equation.
Examples of the former include elongation and triangularity, or Fourier amplitudes
of the boundary surface, while examples of the latter include the field magnitude
|B| and the guiding centre drift component B−3 B × ∇B · ∇ψ . By taking the inde-
pendent variables to be the plasma shape parameters, an ML regression effectively
models physics of both MHD equilibrium and turbulence. If the independent vari-
ables are instead taken to be the geometry factors in the gyrokinetic equation, the
ML regression becomes a model only for the turbulence, without including MHD
equilibrium physics. Here, we take the latter approach, because by focusing on a nar-
rower aspect of the physics, there is greater hope for interpretability of the model.
At the same time, we nonetheless generate the geometric inputs to the gyrokinetic
equation from actual global MHD equilibria so correlations and constraints among
the geometric features are respected.

To introduce the methods here in detail, we begin in the following section
by reviewing the gyrokinetic equation used in the direct numerical simulations,
highlighting the geometric inputs and its translation invariance. This translation
invariance is important because we will want ML models to respect this symmetry.
The procedure for generating data, including both MHD equilibria and turbulence
simulations, is then detailed in § 3. Neural network fits to the data are presented
in § 4. Section 5 presents alternative ML methods that do not use neural net-
works, allowing for greater interpretability at the expense of reduced accuracy.
These alternative methods require manual feature engineering and feature selec-
tion. In § 6, it is demonstrated how the same dataset can be used to assess other
proposed proxies for turbulence, by evaluating the accuracy of several ITG objec-
tive functions from earlier papers. Finally, we conclude and discuss future directions
in § 7.

2. Relevant properties of the gyrokinetic equation

Here we review the electrostatic gyrokinetic turbulence model for a flux tube
to identify the geometric features that appear. A similar discussion can be found
from Jorge & Landreman (2020). The magnetic field can be written B = ∇ψ × ∇α,
where 2πψ is the toroidal flux and α is a field line label. Coordinates (x, y, z) are
introduced where z is the arclength along the field line, satisfying B · ∇z = B, and
x = x(ψ) and y = y(α) are functions of (ψ, α) that each resemble a distance. (The
results of this section are independent of the exact choice of these two functions.)
We consider a flux tube, for which the domain’s small extent in x and y is of
the order of a few gyroradii, much smaller than typical equilibrium scales like the
minor radius. Therefore, x and y (or ψ and α) can be considered fixed for all
equilibrium quantities. However, we do care about gyroradius-scale fluctuations in
the distribution function and electrostatic potential, so the x - and y-dependence of
these perturbations is retained. Fluctuating quantities are taken to vary with z on
the same scale length as the equilibrium, and the extent of the flux tube domain in z
is of a comparable scale.

The fluctuating electrostatic potential Φ is Fourier expanded as

Φ(x, y, z, t)=
∑

k

Φ̂k(z, t) exp(ikx x + iky y), (2.1)
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where k denotes (kx , ky). The distribution function of species s is expanded as

fs = FMs − esΦ

Ts
FMs + hs, (2.2)

where FMs = ns(2π)−3/2v−3
s exp(−v2/(2v2

s )) is the leading-order Maxwellian with
density ns and temperature Ts , v is the speed, vs = √

Ts/ms is the thermal speed,
and es is the species charge. The non-adiabatic part of the distribution, hs , has a
Fourier expansion

hs(X, Y, z, v||, μ, t)=
∑

k

ĥs,k(z, v||, μ, t) exp(ikx X + ikyY ), (2.3)

where (X, Y ) are the values of (x, y) at the guiding centre position, μ= v2
⊥/(2B),

and v|| and v⊥ are the velocity components along B or perpendicular to it. The non-
adiabatic distribution is computed by evolving the gyrokinetic equation (Frieman &
Chen 1982),

∂ ĥs,k

∂t
+ v||

∂ ĥs,k

∂z
−μ

∂B

∂z

∂ ĥs,k

∂v||
+ vd · ∇ĥs,k +Ns,k

= es J0,k FMs

Ts

(
∂Φ̂k

∂t
+ iωT

∗sΦ̂k

)
+ Cs,k. (2.4)

Here, b = B−1 B is the unit vector along the magnetic field, ωT
∗s =ω∗s[1 +

ηs(msv
2/2Ts − 3/2)] and ηs = d ln Ts/d ln ns . Also, ω∗s = [σkyTs/(es Bre f )]d ln ns/dx

and σ = (Bref /B2)B · ∇x × ∇y = Bref (dx/dψ)(dy/dα) is constant over the flux
tube domain to leading order. A constant reference field strength is denoted Bref

and Cs,k is the gyroaveraged collision operator. The factor J0,k is shorthand for the
Bessel function J0(k⊥v⊥/
s), where k⊥ = |kx∇x + ky∇y| and 
s = es B/ms is the
gyrofrequency. Also, the magnetic drift is

vd = msv
2
⊥

2es B3
B × ∇B + msv

2
||

es B2
B × κ, (2.5)

where κ = b · ∇b is the curvature and Ns,k denotes the nonlinear term:

Ns,k =
∑

k′

σ J0,k′Φ̂k′ ĥs,k′′

Bref
(k ′

yk ′′
x − k ′

x k ′′
y), (2.6)

where k′′ = k − k′. Note that where v2 is needed in FMs and ωT
∗s , it can be computed

from the independent variables via v2 = v2
|| + 2μB, so the magnetic geometry enters

via B.
The system is closed with the quasineutrality equation:

Φ̂k

∑
s

e2
s ns

Ts
=
∑

s

es

∫
d3v J0,kĥs,k. (2.7)

The integral over velocity space for these velocity coordinates
∫

d3v =
2π

∫∞
−∞ dv||

∫∞
0 dμ B depends on the magnetic field via B.
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Once the potential and distribution function are computed, we are principally
interested in the turbulent heat flux for the ions, s = i :

Q =
∑

k

〈∫
d3v

miv
2

2
ĥi,k

ikyσ J0,kΦ̂−k

Bref

〉
, (2.8)

where 〈. . .〉 denotes a flux surface average: 〈u〉 = (∫
d�/B

)−1 ∫
d� u/B for any

quantity u.
Now, let us examine the places where the magnetic geometry enters the

abovementioned model. From the vd term in (2.4), which can be expanded as

(vd · ∇x) ikx ĥs,k + (vd · ∇y) ikyĥs,k, (2.9)

we see that the ∇x and ∇y components of the magnetic drift (2.5) appear. Note
that b × ∇B · ∇ψ = B × κ · ∇ψ exactly for an MHD equilibrium, even if the ratio
β of thermal to magnetic pressure is not small, so the two terms in vd · ∇x can
be combined as a multiple of b × ∇B · ∇x . Next, in the argument of the Bessel
functions,

k⊥ =
√

k2
x |∇x |2 + 2kxky∇x · ∇y + k2

y|∇y|2, (2.10)

the quantities |∇x |2, ∇x · ∇y and |∇y|2 appear. Finally, B appears in numerous
places: through 
s in the Bessel functions, in the flux surface average in the heat
flux, in v(v||, μB), in

∫
d3v and via ∂B/∂z in (2.4). Thus, we find that the raw

geometric features entering the gyrokinetic model are the following seven functions
of z:

B,
B × ∇B · ∇x

B3
,

B × ∇B · ∇y

B3
,

B × κ · ∇y

B2
, |∇x |2, ∇x · ∇y, |∇y|2. (2.11)

As stated previously, the x and y variation of these equilibrium quantities over the
flux tube simulation domain is negligible due to the small extent of the domain in
these coordinates, so we only need the variation of these quantities in z along a
field line. If a parallel coordinate z other than arclength is used, there would be an
additional geometric input b · ∇z required in the parallel streaming term of (2.4).

We can now understand a translation-invariance property of the abovementioned
gyrokinetic model, which ML models should preserve. The key idea is that z does
not appear explicitly anywhere in the model – z-dependence in the equations enters
only through the functions in (2.11). To precisely state the translation-invariance
property, suppose the gyrokinetic-quasineutrality system is solved with periodic
boundary conditions in z. Then, the heat flux is exactly unchanged if a periodic
shift f (z)→ f (z +Δ) is applied, where f indicates each of the seven raw features
(2.11) along with Φ and hi , where the shift Δ is the same for all quantities. If the
seven raw features are shifted in this way but the initial conditions for Φ and hi

are not, the detailed dynamics will change, but under the usual assumption that the
mean heat flux is independent of the initial condition, the mean heat flux would still
be invariant. We confirmed that this translation-invariance indeed holds for nonlin-
ear GX simulations, as shown in figure 1. If a twist-and-shift boundary condition
(Beer, Cowley & Hammett 1995; Martin et al. 2018) is used in z instead of peri-
odic boundary conditions, and a finite number of kx and ky modes are included,
the translation-invariance will be slightly violated, because the outgoing distribution
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(b)(a)

FIGURE 1. Translation-invariance of the gyrokinetic-quasineutrality system. (a) A periodic
translation in z is applied to all of the z-dependent inputs to the gyrokinetic system, (2.11).
Only four of the seven are shown for simplicity, but all are translated. (b) Average heat flux is
unchanged by the translation.

function is set to zero at the unlinked flux tube ends. However, if the simulation
is well resolved with respect to the number of kx modes, the heat flux is evidently
approximately independent of the number of times a tube segment links to itself and
hence approximately independent of where the outgoing distribution function is set
to zero. Thus, the breaking of translation-invariance should be small.

For all results that follow, the raw features (2.11) are normalised by a reference
length Lref and reference field strength Bref . The effective minor radius a is adopted
for Lref and Bref is defined by equating πa2 Bref = 2π |ψa|, where ψa is the value
of ψ at the equilibrium boundary. We choose the perpendicular coordinates to be
x = a

√
ψ/ψa and y = −αx sign(ψa), so σ = −1.

3. Dataset generation

In this section, we first present the method used to generate stellarator MHD equi-
libria with diverse geometries. Next, details of the nonlinear gyrokinetic simulations
in these equilibria are given. After describing some general properties of the dataset,
a few configurations are highlighted that are interesting due to their extreme values
of the heat flux.

3.1. Magnetohydrodynamic equilibria
An MHD equilibrium is determined by the boundary shape together with two

functions of the toroidal flux, typically the pressure and enclosed toroidal current
(Kruskal & Kulsrud 1958). It is not obvious how to best sample this space, par-
ticularly the space of boundary shapes. Boundaries with self-intersections or other
such pathologies should be avoided. Also, a compromise must be struck between
preserving similarity of the shapes to ‘real’ devices (built experiments or theoretical
configurations designed through serious optimisation) while also allowing for new
possible geometries.

To balance these considerations, we assemble a set of 23577 equilibria drawn
from three groups. The first group has heliotron-like rotating ellipse shapes, in
which parameters of the shape (number of field periods, aspect ratio, elongation,
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FIGURE 2. Examples of the rotating-ellipse equilibria included in the dataset. Two-dimensional
plots show the cross-sections at which the toroidal angle is 0, 1/4, 1/2 and 3/4 of a field period.
Three-dimensional images show each configuration from two angles, with colour indicating |B|
(red = high, blue = low) and field lines in black. Left columns, configurations in which the
boundaries are centred on a circle. Right columns, configurations in which the boundaries are
centred on a curve with torsion.

axis torsion, beta) are sampled randomly. Equilibria in the second group are taken
from the QUASR database of quasi-axisymmetric (QA) and quasi-helically symmet-
ric (QH) configurations (Giuliani 2024; Giuliani, Rodríguez & Spivak 2024). We
use both the original QUASR configurations, which are all vacuum fields, and also
generate new configurations by adding pressure while keeping the plasma boundary
shape fixed. For the third group, random boundary shapes are generated by sam-
pling Fourier modes that have been fit to a dataset of previous stellarator shapes.
The combined set of configurations includes values of aspect ratio ranging from 2.9
to 10, volume-averaged beta from 0 % to 5 %, and number of field periods from
2 to 8. Thus, the set of equilibria is diverse, and includes both omnigenous and
non-omnigenous geometries. All equilibria have the same minor radius and same
boundary toroidal flux, resulting in the same normalising length and normalising
field strength, so the gyro-Bohm normalisations are identical. Examples of equilibria
from the three classes are shown in figures 2–4. More details of the procedures for
generating equilibria are given in Appendix A.

3.2. Gyrokinetic simulations
In each equilibrium, we extract at least four flux tubes, more in the QUASR

vacuum configurations so as to include more omnigenous geometries. The radial
location ρ = √

s for each flux tube is sampled randomly from [0, 1], where s =ψ/ψa

is the normalised toroidal flux. All flux tubes are stellarator-symmetric, with at least
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FIGURE 3. Examples of the QUASR quasi-axisymmetric and quasi-helically symmetric equilib-
ria included in the dataset. Two-dimensional plots show the cross-sections at which the toroidal
angle is 0, 1/4, 1/2 and 3/4 of a field period. Three-dimensional images show each configu-
ration from two angles, with colour indicating |B| (red = high, blue = low) and field lines in
black.

one flux tube in every configuration centred on each of the points (θ, φ)= (0, 0),
(π, 0), (0, π/nfp) and (π, π/nfp). Nothing in the procedure limits the method to
stellarator-symmetric equilibria or flux tubes. The total number of flux tube geome-
tries in the dataset is 100 705. The length of the flux tubes in real space was chosen
to be the same for every configuration, 75 times the minor radius, which for aspect
ratio 6 corresponds to roughly two full toroidal transits. Due to the variation in ι,
the number of poloidal transits varied between configurations. By making all flux
tubes have the same physical length, distances in the z coordinate can be compared
meaningfully between flux tubes, and for each integer j , the j th Fourier series coef-
ficients in all flux tubes correspond to the same physical k||. These properties may
be advantageous for extracting patterns in the dataset.

Nonlinear electrostatic simulations with adiabatic electrons were then carried out
with the GX code (Mandell et al. 2024). We run GX twice for each flux tube,
resulting in two datasets each of size N = 100 705. In the first dataset, the tem-
perature and density gradients were fixed to the same values for all flux tubes.
In the second dataset, these gradients were chosen randomly for each flux tube.
Using the latter dataset, models can potentially find interactions between geome-
try and gradients in their effect on the heat flux; for example, the dependence on
geometry may differ close to the critical gradient compared with far above the crit-
ical gradient. However, we also assembled the dataset with fixed gradients since it
enables several of the analyses in § 5 and allows us to focus cleanly on the effects of
geometry. For the fixed-gradient dataset, we take a/LT i = 3 and a/Ln = 0.9, where
a/LT i = −(a/Ti) dTi/dx and a/Ln = −(a/n) dn/dx are the normalised gradients of
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FIGURE 4. Examples of the equilibria generated with random boundary Fourier modes. Two-
dimensional plots show the cross-sections at which the toroidal angle is 0, 1/4, 1/2 and 3/4 of
a field period. Three-dimensional images show each configuration from two angles, with colour
indicating |B| (red = high, blue = low) and field lines in black.

ion temperature and density, reflecting typical measurements at the s = 0.5 surface
of W7-X (Beurskens et al. 2021; Lunsford et al. 2021; Zhang et al. 2023). For the
varying-gradient dataset, each simulation has a/LT i and a/Ln sampled randomly
within plausible experimental ranges.

Additional details of the turbulence simulations are given in Appendix B.

3.3. Configurations with very low or high heat flux
The distribution of heat fluxes for the dataset is shown in figure 5. It is striking that

even for the dataset with fixed gradients, Q varies by over four orders of magnitude
over the data. This variation is evidently due purely to the geometry.

It is interesting to examine configurations with particularly low or particularly high
heat flux. Several such flux tubes are displayed in figure 6. The columns represent
six flux tubes from the dataset. In the fixed gradient dataset with a/LT = 3 and
a/Ln = 0.9, the first three tubes are stable, while the other three have Q > 500,
even though the gradients are identical. These flux tubes are all taken from n f p = 3
equilibria from the group with random boundary Fourier modes. The first six of the
seven rows show the geometric inputs to the gyrokinetic-quasineutrality system. To
simplify the figure, B−3 B × ∇B · ∇y is not shown since it is similar to B−2 B × κ ·
∇y. The bottom row shows the contribution to the heat flux Q as a function of z.
For each of the seven rows, the vertical scales are the same for each column to allow
comparison.

Several patterns are apparent. The configurations with highest heat flux have
regions with very large |∇x |2. The high-heat-flux tubes also have larger magnitudes
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FIGURE 5. Distribution of heat fluxes for the fixed-gradient and varied-gradient datasets. In the
latter, 30 % of the simulations were stable, with Q ≈ 0. Simulations with Q < 0.1, considered
stable, are included in the leftmost bar.

FIGURE 6. Some trends are apparent between flux tubes with very low or high heat flux. The
columns show six flux tubes from the n f p = 3 equilibria with random boundary Fourier modes,
the first three stable, the last three with very high Q at the same gradients. The top six rows are
the inputs to the gyrokinetic-quasineutrality system (B−3 B × ∇B · ∇y is omitted for simplicity
since it is similar to B−2 B × κ · ∇y), while the bottom row shows the contribution to the total
heat flux versus z.

of B−3 B × ∇B · ∇x . The stable tubes have more negative values of B−2 B × κ · ∇y,
meaning mostly good curvature. All of these patterns foreshadow findings in § 5.

For the geometry-gradient pairings with very large heat flux, where the gyro-
Bohm-normalised Q is not small compared with 1/ρ∗, with ρ∗ the ratio of typical
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gyroradius to macroscopic scale, the ordering used to derive the gyrokinetic model
may no longer be accurate. Therefore, these simulation runs may not accurately
describe real physical scenarios. Nonetheless, it is still reasonable to consider the δ f -
gyrokinetic model as an abstract mathematical function, a map from seven functions
(the geometry) and two real numbers (the gradients) to a real number (Q), and to
develop approximations of this function. Moreover, since surrogates will be more
accurate at interpolation than extrapolation, it is desirable to include at least a few
of these extreme data points in the dataset.

3.4. Weighting of errors for regression
When fitting regression models to the heat flux data and assessing their accuracy,

some care is required to measure and weigh errors appropriately. The first issue
is that the heat flux can span several orders of magnitude. If a model makes an
absolute prediction error of 1 in gyro-Bohm units, this error is significant if the
true heat flux is 0.5, but it is a relatively minor error if the true heat flux is 100.
Moreover, the standard deviation (over time) of the heat flux within one simula-
tion tends to scale approximately linearly with the mean heat flux, so high-Q cases
have higher uncertainty than low-Q cases. For these reasons, it is natural to mea-
sure errors in a relative rather than absolute sense. Weighing errors in this relative
sense can be achieved by performing regression on ln Q rather than Q directly.
In particular, models should be scored based on the mean squared error or coef-
ficient of determination R2 evaluated using ln Q. Thus, in the standard definition,
R2 = 1 − [∑

j(y j − f j)
2
]
/
[∑

j(y j − ȳ)2
]
, where y j are the true target values, ȳ is

their mean and f j are the predicted values, one would take y j and f j to be the true
and predicted values of ln Q rather than of Q itself.

However, an additional important consideration is that some simulations are sta-
ble. In a stable simulation, the heat flux is typically slightly positive but 
1 at the
end of the computation due to decay of the initial perturbation and the exact value
of Q is not very meaningful. There is not a steady state to average over and the
final Q is influenced by the magnitude of the initial condition. If the heat flux from
a simulation is Q = 10−12 and a regression model predicts it to be 10−4, the model is
accurately predicting that the system is stable (or nearly so), but scoring the model
based on the error in ln Q would treat the prediction error to be large. In some stable
simulations where |Q| has very small magnitude, Q may even be slightly negative,
in which case, ln Q cannot even be evaluated.

There are several possible approaches to account for these considerations. One
approach is to consider a classification problem for stability versus instability sep-
arately from the regression problem. In this case, the regression only needs to be
evaluated if the classifier has first predicted instability, i.e. in the unstable region
of parameter space, so the regression can be fit using only the subset of the data
in which Q exceeds some small threshold. Here, we adopt this approach with
a threshold of 0.1 and our experience is that results are insensitive to the exact
choice of threshold. With this approach, the training set does not include any points
with Q < 0.1 or negative Q, so it is straightforward to use ln Q as the regression
target. The full dataset is still used for training the classifier. If the classifier is
interpretable, it directly provides insight into the factors that determine the critical
gradient.

Several other approaches are possible. As reported by van de Plassche et al.
(2020), a regression could be fit by minimising a custom objective that penalises
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errors in Q (or ln Q) only in the unstable region, while in the stable region,
only penalising positive values of Q, to prevent spurious prediction of instability.
However, not all regression methods allow for a custom objective, e.g. nearest-
neighbours. Or, regression could be performed on the full dataset with a standard
objective after all values of Q below a threshold are replaced by the threshold.
While straightforward to implement, this method introduces non-smoothness in the
predicted Q; this is not a problem for decision tree models, but it may introduce
inaccuracies with smooth models like neural networks. A fourth option is to perform
regression on the full dataset using the target quantity

Q̂ = ln(1 + Q). (3.1)

For Q � 1, the quantity Q̂ behaves like ln Q, while for Q 
 1, Q̂ varies approxi-
mately linearly with Q. Therefore, for a regression model that is fit by minimising
the mean squared error in Q̂, or R2 computed from Q̂, prediction errors will effec-
tively be based on relative error in Q for large Q, but based on absolute error for
small Q, as desired. We have tried the first, third and fourth of these methods, and
our experience is that they give very similar results. For the rest of the discussion,
we use the first method.

4. Convolutional neural network models

We develop neural network surrogates to predict heat flux values from the
simulations described previously. Our approach involves two key strategies: (i)
designing a neural network that remains invariant to cyclic permutations and (ii)
ensuring reliable predictions through an ensemble of the top-k models selected via
hyperparameter optimisation.

4.1. Cyclic invariant neural network
Our goal is to develop a surrogate model based on a neural network that

maintains invariance to cyclic permutations inherent to the gyrokinetic system.
An analogy exists with computer vision research, where translation invariance is
important as well: if a cat is present in an image, it should be recognised as
a cat even if its location within a bitmap is shifted. A standard approach to
achieving approximate translation-invariance in computer vision is through con-
volutional (as opposed to fully connected) neural networks. This type of neural
network contains convolutional layers, in which the spatial data are convolved
with a kernel, which is a translation-equivariant operation. Between convolutional
layers, pooling layers then reduce the spatial resolution, typically by a factor
of two, and a sufficient number of alternating convolutional and pooling layers
converts the spatial data to approximately translation-invariant features. While com-
puter vision applications use two-dimensional convolution and pooling operations,
for the turbulence application here, we will use one-dimensional convolution and
pooling.

During training, we further reinforce the translation-invariance by augmenting the
dataset with a sufficient number of sequences that are randomly permuted (cycli-
cally) in z, allowing the network to learn patterns that are independent of any
particular alignment with respect to z. This strategy prevents the model from devel-
oping biases towards specific alignments, ultimately improving generalisation and
stability.
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Another key aspect of our surrogate model development is the use of ensem-
ble learning, a powerful machine learning technique that aggregates predictions
from multiple base models to improve overall performance. Ensemble methods have
proven to be highly effective in reducing prediction variance, mitigating model biases
and improving generalisation, making them well suited for applications involving
complex, high-dimensional data such as ours. By leveraging an ensemble of multiple
models, we aim to construct a predictive framework that is not only more accu-
rate, but also more stable when encountering unseen data. The core advantage of
ensemble learning is its ability to balance trade-offs between different models – some
models may be more sensitive to specific features, while others may capture different
patterns. By combining them, we create a more comprehensive representation of the
underlying physical system.

To implement this strategy, we design our base model to be highly flexible, allow-
ing variations in neuron count, layer depth, kernel shape, activation functions, etc.
also known as hyperparameters. This flexibility is essential for tuning the model to
achieve optimal predictive performance across different configurations. However,
selecting the best architecture requires careful exploration of the hyperparameter
space. To efficiently search for the best hyperparameters, we employ DeepHyper
(Balaprakash et al. 2018; Egelé et al. 2023), an advanced hyperparameter optimisa-
tion tool designed for deep learning. DeepHyper allows us to automate the search
for high-performing configurations, reducing manual tuning efforts and accelerat-
ing model development. We will discuss the details of this optimisation process in
subsequent sections.

With these considerations in mind, we design our surrogate neural network using
a structured approach that consists of three main components, shown in figure 7.

(i) Feature extraction with convolutional layers. The first component comprises n
consecutive layers of neural network blocks, each containing one-dimensional
convolutional layers (Conv1D). These layers are responsible for extracting spa-
tial features from the input sequences while preserving cyclic invariance. Each
convolutional layer processes x data channels and outputs y number of trans-
formed channels, which are subsequently normalised using batch normalisation
to stabilise training and improve convergence. A max-pooling layer follows
each block to downsample the extracted features, reducing computational
complexity while retaining the most relevant information.

(ii) Global average pooling (GAP) for dimensionality reduction. To further con-
dense the extracted feature maps, we integrate GAP. Unlike traditional pooling
methods that operate on small local regions, GAP computes the average acti-
vation value for each feature map across all spatial dimensions. This not only
reduces the number of parameters, but also ensures that the model focuses
on high-level feature representations rather than localised details, making it
particularly effective for cyclic data.

(iii) Fully connected layers for prediction. The final stage consists of m fully con-
nected linear layers that process the compact feature representation and map
it to the target variable: predicted heat flux averages. These layers refine the
extracted features and produce the final output by capturing complex, nonlin-
ear relationships in the data. Since the temperature and density gradient are
not functions of z, these two inputs bypass the convolutional layers and feed
directly to the first fully connected layer.
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Hyperparameter Count Range Description
kernel_size 5 (2, 16) Conv1D’s convolving

kernel size
conv_channel 5 (4, 32) Conv1D’s number of

output channels
fc_dimension 2 (4, 32) Fully connected layer’s

output feature size
batch_size 1 (16, 64) Batch size
learning_rate 1 (1e-5, 1e-1) Learning rate (sampled in

log-uniform)
scheduler_patience 1 (5, 20) ReduceLROnPlateau

scheduler’s patience
parameter

scheduler_factor 1 (0.1, 1.0) ReduceLROnPlateau
scheduler’s factor
parameter

TABLE 1. List of hyperparameters and their search ranges explored using DeepHyper.

FIGURE 7. Surrogate model architecture to learn heat flux averages using a structured neural
network. It consists of three main components: (a) feature extraction with Conv1D; (b) global
average pooling; and (c) fully connected layers.

4.2. Hyper parameter optimisations and ensemble learning
To enhance the predictive performance of our surrogate model, we employ ensem-

ble learning, which aggregates predictions from multiple base models. By combining
different models, we create a more robust and comprehensive representation of the
underlying physical system, improving accuracy and generalisation.

In our model, we carefully parametrise several key hyperparameters that influence
performance. These include the kernel size of the 1-D convolution layers, the num-
ber of output channels in Conv1D layers, the number of neurons in fully connected
layers, batch size, learning rate and scheduler patience for dynamically adjusting the
learning rate. A summary of these hyperparameters is provided in table 1. We fix the
number of Conv1D layers at five, so the associated pooling layers reduce the number
of spatial points from 96 to 96/25 = 3, and include two fully connected layers. While
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these constraints simplify the search space, the total number of possible hyperpa-
rameter configurations remains extremely large, exceeding one hundred quadrillion
(1017). Exploring this vast space through brute-force methods is computationally
infeasible.

To efficiently navigate this large hyperparameter space, we leverage DeepHyper
(Balaprakash et al. 2018; Egelé et al. 2023), an advanced hyperparameter optimi-
sation tool. DeepHyper systematically finds the best set of hyperparameters that
maximise model accuracy using different search strategies including Bayesian opti-
misation, evolutionary strategies and random search. Bayesian optimisation uses
a probabilistic approach to refining hyperparameters, while evolutionary strategies
optimise parameters through genetic algorithms. Random search serves as a base-
line method. DeepHyper is designed for parallel execution in distributed computing
environments such as clusters and supercomputers, making it effective for hyper-
parameter optimisation tasks at scale. In DeepHyper, Bayesian optimisation (BO)
that we adopt follows a single-manager, multiple-worker scheme to explore and
exploit the search space. The manager maintains a probabilistic surrogate model (e.g.
Random Forest) to predict the performance of configurations and select promising
candidates based on an acquisition function (e.g. expected improvement or upper
confidence bound). The workers asynchronously evaluate these candidates in paral-
lel, returning results to update the surrogate model iteratively. To improve robustness
and generalisation, DeepHyper generates an ensemble of models by aggregating the
top-performing configurations identified during the search.

In this study, we employ DeepHyper to explore the hyperparameter space of our
base model, aiming to identify and select the top-N best models for ensemble learn-
ing. DeepHyper systematically searches the hyperparameter space to optimise model
performance. To guide this optimisation, we use the coefficient of determination R2,
as the objective function, ensuring the selected models achieve the highest predictive
accuracy. The base neural network model is implemented using PyTorch.

Figure 8 presents the results of our hyperparameter search. Each point in the fig-
ure represents a model explored during the optimisation process. The x-axis denotes
the time of completion, while the y-axis shows the model’s performance measured
by the R2 score. Over a period of approximately nine hours, we used 64 GPUs
to conduct this search. DeepHyper evaluated 443 different models with varying
hyperparameter configurations, systematically assessing their performance. After
completing the search, we selected the top 100 models with the highest R2 scores
to form an ensemble, ensuring improved predictive accuracy and generalisation.
The bottom plot presents a histogram of model sizes, represented by the number of
parameters on the x-axis, for all 443 models explored by DeepHyper and the top 100
high-performing selected models, illustrating the distribution of model sizes before
and after selection.

Figure 9 illustrates the prediction performance of this ensemble, which consists
of the 100 highest-performing models from the DeepHyper optimisation, on the
varied-gradient data. Each red dot in the figure represents the mean prediction of
the ensemble at each target value in the test dataset, while the vertical bars indicate
the range of ±1σ (standard deviation) of predictions across the 100 models. We
evaluated the ensemble using a total of 9785 held-out test samples, achieving an
overall R2 score of 0.989, computed by treating the ensemble mean as the prediction.
Additionally, the neural networks exhibited efficient inference speed, taking a total
1031.0 s on a single NVIDIA A100 GPU to process 9785 test samples across the
100 models. To make a single prediction of the heat flux, this time corresponds to
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FIGURE 8. Results of the DeepHyper hyperparameter search. Each point represents a model
with a unique hyperparameter configuration explored by DeepHyper, plotted against its com-
pletion time (x-axis) and performance score (y-axis). The search was conducted using 64 GPUs
over approximately nine hours, evaluating a total of 443 models. The top 100 highest-performing
models, selected for the final ensemble, are highlighted in red. The bottom plot shows the his-
togram of model sizes (number of parameters on the x-axis) for all 443 models explored by
DeepHyper and the top 100 selected models.

an average of 0.001 s for a single CNN and 0.1 s for the ensemble. These times
represent a factor of ∼4000 speed-up for evaluating the ensemble compared with
one of the gyrokinetic simulations used to generate the training data; for evaluating
a single CNN, the speed-up factor over a gyrokinetic simulation is 4 × 105. These
results demonstrate the effectiveness of our ensemble-based approach in providing
accurate and stable predictions across the dataset while maintaining competitive
inference performance.

5. Manual feature engineering

Complementary to the neural network approach discussed in the previous section,
we next present a method to identify patterns in the data using different machine
learning algorithms together with manual feature extraction. While these methods
are not yet able to achieve as close a fit to the data as the neural networks, they
naturally provide some level of interpretability. We proceed by first defining a combi-
natorial procedure to compute a large number of derived features from the raw data
that respect the spatial translation invariance. The Spearman correlation between
each feature and the heat flux provides a first measure of each feature’s importance.
Then we apply FSFS (Efroymson 1960; Whitney 1971), where the order in which
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FIGURE 9. Prediction performance of an ensemble of the top 100 models selected from
DeepHyper for the varied-gradient dataset. After exploring 443 models by DeepHyper, the top
100 were chosen based on their performance and evaluated against a test dataset of 9785 sam-
ples. Each dot represents the mean prediction of the ensemble, while the vertical bars indicate
± 1 standard deviation. The ensemble achieved an overall R2 score of 0.989, demonstrating
strong predictive accuracy and stability.

features are selected provides a second measure of feature importance. FSFS can
be applied using any regression method, and several methods will be compared for
the fixed-gradient and varied-gradient data, with the conclusion that there is general
agreement. Finally, a third measure of feature importance is provided by computing
Shapley values for the models that result from FSFS. We will find broad consistency
among the three measures of importance.

5.1. Feature extraction
Since the heat flux from the gyrokinetic model is invariant under periodic transla-

tion in z, as discussed in § 2, a regression or classification model should preserve this
invariance. However, this invariance would generally be broken if we use the raw
features on grid points as inputs to regression or classification methods (other than
CNNs) directly. For example, a regression could, in principle, find that the heat flux
depends specifically on |∇x |2 at z = 0.3, which is not a translation-invariant quantity.
Instead, the inputs to the regression or classification should be translation-invariant
features that are derived from the raw z-dependent geometric features. To ensure
this invariance in the extracted features, we consider features that are the composi-
tion of equivariant operations with translation-invariant reductions. To explain this
method, let P denote the set of periodic real-valued functions on the interval [0, 1),
representing the z-domain. Each of the seven original raw features can be considered
as an element of the set P . An equivariant operation E is a function from P → P ,
such that translating the input and then applying E gives the same result as first
applying E and then translating. More formally, let f be any element of P and
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let g : P → P indicate a periodic shift by some distance Δ, so g( f )(x)= f (x +Δ
mod 1). Then the equivariance of E means that E(g( f ))= g(E( f )) for all f and
Δ. A reduction is a map from P →R. A reduction A is translation-invariant if
A( f (x +Δ mod 1))= A( f (x)) for all x and any shift Δ.

For the results here, we consider 23 possible translation-invariant reductions: max;
min; range (max−min); mean; median; mean of the square; variance; skewness;
L1 norm; quantiles 0.1, 0.25, 0.75 and 0.9; count above −2, −1, 0, 1 and 2; the
absolute amplitudes of the three longest-wavelength Fourier modes; the expected
k||; and the largest amplitude k||. The last two quantities are defined as follows:
letting

∑N
j=−N f̂ j exp(ik j z), denote the Fourier transform of a raw feature f (z), the

expected k|| is
∑N

j=1 k j | f̂ j |/∑N
j=1 | f̂ j |, while the largest amplitude k|| is k j , where j

is the solution of arg max j | f̂ j |. These last two reductions were included due to the
importance of parallel length scales in critical-balance models of turbulence (Barnes,
Parra & Schekochihin 2011). We indicate the set of these 23 reductions by R.

For the equivariant operations, we consider combinations of unary operations
and products. The unary operations, each an equivariant map P → P , include
11 operations on an input function f : the identity f , | f |, d f/dz, Heaviside( f ),
Heaviside(− f ), ReLU( f )= max( f, 0), ReLU(− f ), 1/ f , f 2, f B and f/B. The
last two operations, multiplying or dividing by the field strength B, were included
since the coordinate Jacobian is 1/B.

We can now state the full set of features that are considered. Let F denote a set
of eight features, given by the original seven raw features together with the local
shear S = (d/dz)(∇x · ∇y/∇x · ∇x). The local shear (Greene & Johnson 1968) is
added here since it is plausible that it could play a role in determining the turbu-
lence intensity. Then, the set of features U (F) is obtained by applying each possible
unary operation to each of the eight elements of F . We let C(U (F)) denote the set
of all possible pairwise products of functions in U (F), supplemented with U (F).
Then, U (C(U (F))) indicates all possible unary operations applied to all elements
of C(U (F)). The full set of features is finally R(U (C(U (F)))), obtained by apply-
ing all of the reductions, for a total of just over 1 million extracted features. This
set includes a few features that are duplicated, improper due to division by 0, or
that include unnecessary operations (e.g. ReLU of a positive-definite function), but
a suitably large fraction are distinct and finite. Of course, larger feature sets could
be considered by including more operations and combinations, but the set here is
suitably rich to find accurate regressions of the data.

5.2. Spearman correlation
One approach to measuring the potential importance of an isolated feature in a

regression problem is to compute its Spearman correlation with the target quan-
tity. Spearman correlation is defined by the Pearson correlation between the sorted
rank of the target with the sorted rank of the feature. The absolute magnitude of
the Spearman correlation has the appealing properties of being fast to compute
and invariant to any monotonic nonlinear function, e.g. for any sequence of points
{x j}, the Spearman correlation of {x j} with {exp(x j)} is 1. We can evaluate the
Spearman correlation between each feature from the previous subsection and the
heat flux. Note that no regression or classification model is used. The most highly
correlated features for the fixed-gradient dataset are listed in table 2. All these top
features include the factor �(B × κ · ∇y), where � is the Heaviside function. In our
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Feature Correlation
Variance(�(B × κ · ∇y)|∇x |2/B) 0.775
Mean(�(B × κ · ∇y)|∇x |8/B2) 0.774
Mean(�(B × κ · ∇y)|∇x |4/B) 0.772
Variance(�(B × κ · ∇y)|∇x |4/B) 0.769
Mean(�(B × κ · ∇y)|∇x |4/B2) 0.769

TABLE 2. Geometric features from § 5.1 with highest absolute magnitude of Spearman
correlation to the nonlinear heat flux at fixed temperature and density gradient. Here,

� denotes the Heaviside function.

sign convention, this quantity is 1 in regions of bad curvature. The most correlated
features all have a similar form, indicating the heat flux is highest when the flux sur-
face compression |∇x | is large in regions of bad curvature. For the features listed,
the sign of the correlations is positive, so greater flux surface compression is asso-
ciated with a higher heat flux, as expected physically. The features also include an
inverse weighting with B, which perhaps reflects the Jacobian ∝ 1/B. The exact
powers of |∇x | and B vary among the top features, but a consistent pattern is
evident.

As mentioned in § 1, these features with highest Spearman correlation to the heat
flux are consistent with ideas by Mynick et al. (2010), Xanthopoulos et al. (2014),
Stroteich et al. (2022) and Goodman et al. (2024). In these earlier works, stellarator
configurations were sought with smaller |∇x | in regions of bad curvature, motivated
by the following physical intuition. At fixed dT/dx , reducing |∇x | reduces the real-
space temperature gradient |∇T | = (dT/dx)|∇x |. Reducing |∇T | reduces the source
of free energy for instabilities and the associated turbulence. This is particularly true
if done in the regions where instabilities and turbulence are localised due to bad
curvature. Positive correlation between |∇x | and quasilinear heat flux estimates was
also noted by Jorge et al. (2024).

Kendall’s τ is another correlation coefficient with many similarities to Spearman’s
correlation. For all results in this paper involving Spearman correlation, essen-
tially the same findings are obtained in comparable computational time if Kendall
correlation is used instead, though numerical values of Kendall correlation are
smaller.

Spearman and Kendall correlation cannot account for dependence of the target
on multiple features that may interact, so we now proceed to more sophisticated
methods.

5.3. Sequential feature selection
In FSFS (Efroymson 1960; Whitney 1971), regression or classification is first

performed using one feature at a time. In other words, if there are n features, we
fit n distinct models, each with one feature. Any regression or classification method
can be used. The feature that yields the best model fit to the data is selected to
progress to the next step. Then, the data are fit using n − 1 independent models
that each use two features, the one selected in the first step plus all possible second
features. Of these n − 1 models, the one with closest fit is selected to progress to the
next step and so forth. Thus, FSFS results in a parsimonious set of features, which
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FIGURE 10. Scores for regression (left) and classification (right) in forward sequential feature
selection, showing improvement as the first few features are added. Each point shows the mean
score on held-out data using five-fold cross-validation.

are effectively ranked from most to least important by the order in which they are
selected.

For the regression and classification models to use in FSFS, we primarily rely on
the gradient boosted decision tree package XGBoost (Chen & Guestrin 2016). This
choice is due to its speed with datasets of this size. Speed is a priority since O(106)
independent models must be fit at each step. Like other decision tree methods,
XGBoost fits a piecewise-constant function to the data, with the location and number
of discontinuities chosen to balance accuracy of fitting the data against complexity
of the surrogate. At each step of FSFS, we use an average score from five-fold cross-
validation. When applying FSFS to the varied-gradient dataset, the temperature and
density gradients are also included among the features that can be selected. Other
scalar features such as ι, dι/dx , dp/dx and n f p can be included, but these features
are not selected by the procedure, which makes sense because they do not appear
in the gyrokinetic equation and hence have only a more indirect relation to the heat
flux.

Figure 10 shows the results of FSFS for regression on both the fixed-gradient
and varied-gradient datasets, as well as for stable versus unstable classification on
the varied-gradient dataset. For regression, we assess the performance using the
coefficient of determination R2. For classification, we choose features in FSFS using
the log-loss measure (also known as cross-entropy; lower is better), while reporting
also the accuracy and ROC-AUC scores (receiver operating characteristic area under
the curve; higher is better) in figure 10(b). It can be seen that the prediction accuracy
rapidly improves with the first few features, then levels off. With three features, the
heat flux for the varied-gradient dataset can be predicted with R2 = 0.88; adding
nine more features results in a marginal improvement to R2 = 0.92. Qualitatively
similar results are obtained using other regression or classification models. As an
example, figure 10 also shows FSFS results for 10-nearest-neighbours regression; the
behaviour is similar to the XGBoost regression but with slightly lower R2.

Another view on FSFS is provided by figure 11. Each panel shows, for a given
number of features, how the predictions with that feature subset compare with the
actual heat flux. In each panel, the regression was fit using 80 % of the data, and the
figure shows the performance on the held-out 20 % of the data. A perfect prediction
would correspond to all the points lying on the grey dotted line. As more features
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FIGURE 11. Accuracy of regression models improves to a point as more features are included
from sequential feature selection. Each panel shows the performance of the XGBoost regression
on 20 % held-out test data from the varied-gradient dataset.

are added, the regression models more accurately predict the heat flux. There is a
trade-off in that the models with more features are more complicated and harder to
interpret due to possible interactions between the features.

For each of the FSFS curves in figure 10, the first five selected features are
listed in table 3. In the table, absFFTCoeff1 indicates the absolute magnitude of
the longest-wavelength (but not constant) Fourier mode in z. In the varied-gradient
dataset, for both regression and classification, the first selected feature is the temper-
ature gradient and the second selected feature is the density gradient. These findings
are consistent with expectations from linear theory that the temperature gradient
is the primary drive for the instability and the density gradient can significantly
affect stability. In both the varied-gradient and fixed-gradient cases, the first geo-
metric feature selected again reflects the flux surface compression in regions of bad
curvature. While the top geometric feature for the classifier involves unfavourable
∇B drift rather than curvature drift, the feature mean(�(B × κ · ∇y)|∇x |2/B) has
almost an identical score, log-loss = 0.123 as opposed to 0.122, so there is little
distinction between the two drifts in this case. Hence, the results are quite consistent
with the Spearman correlation analysis of § 5.2, and support the physical intuition
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Classification, varied gradients, XGBoost
Feature Log-loss
a/LT 0.361
a/Ln 0.189
Mean(�(B × ∇B · ∇y)|∇x |2/B) 0.122
Mean(�(−B × ∇B · ∇x)|∇x |2 B) 0.105
Mean((B × κ · ∇y)/B) 0.094

Regression, fixed gradients, XGBoost
Feature R2

Mean(�(B × κ · ∇y)|∇x |4/B) 0.669
Quantile0.75((B × ∇B · ∇x)|∇x |4/B5) 0.775
Mean(|∇x |4/B6) 0.834
Quantile0.9((B × ∇B · ∇y)/B5) 0.861
AbsFFTCoeff1((B × ∇B · ∇x)/B3) 0.879

Regression, varied gradients, XGBoost
Feature R2

a/L_T 0.524
a/Ln 0.714
Mean(�(B × κ · ∇y)|∇x |4/B2) 0.876
Median((B × ∇B · ∇x)2|∇x |8/B8) 0.901
AbsFFTCoeff1(ReLU(B × ∇B · ∇x)/B5) 0.917

Regression, varied gradients, 10NN
Feature R2

a/LT 0.479
a/Ln 0.696
Quantile0.9(�(B × κ · ∇y)|∇x |2/B) 0.863
Mean(ReLU(B × ∇B · ∇x)|∇x |2/B4) 0.884
Median((B × ∇B · ∇y)|∇y|2/B6) 0.895

TABLE 3. First five features from § 5.1 selected with forward sequential feature selection.
Results are shown both for classification of stability vs instability, and for regression on
the logarithm of the heat flux Q. Results are also shown for both the gradient-boosted
decision tree package XGBoost and for 10-nearest-neighbors (10NN). Here, � denotes the

Heaviside function.

from Mynick et al. (2010), Xanthopoulos et al. (2014), Stroteich et al. (2022) and
Goodman et al. (2024).

For each of the four tables within table 3, the second geometric feature again
includes the flux surface compression |∇x |, but this time involving the radial
rather than binormal component of the ∇B drift, B × ∇B · ∇x . Note that there
is no distinction between the ∇B drift and curvature drift in the radial direction:
B × ∇B · ∇x = B B × κ · ∇x for any MHD equilibrium at any β. So, the quantity
B × ∇B · ∇x appearing in the second geometric features is the geodesic curvature
(times B|B × ∇x |). As mentioned in § 1, the geodesic curvature has been discussed
recently as a correlate of turbulence (Xanthopoulos et al. 2011; Nakata & Matsuoka
2022), motivated by the fact that geodesic curvature plays a prominent role in the
gyrokinetic equation for zonal flow modes (Rosenbluth & Hinton 1998). More work
would be needed to confirm that the high significance of geodesic curvature in our
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Sequential feature selection step 3
Feature R2

Mean(�(B × κ · ∇y)|∇x |4/B2) 0.876
Mean(�(B × κ · ∇y)|∇x |4/B) 0.874
Variance(�(B × κ · ∇y)|∇x |2/B) 0.871
Quantile0.9(�(B × κ · ∇y)|∇x |2/B) 0.870
Mean(�(B × κ · ∇y)|∇x |8/B4) 0.869

Sequential feature selection step 4
Feature R2

Median((B × ∇B · ∇x)2|∇x |8/B8) 0.901
Quantile0.75(ReLU(−B × ∇B · ∇x)2|∇x |8/B6) 0.901
Median((B × ∇B · ∇x)2|∇x |8/B6) 0.901
Median(|B × ∇B · ∇x ||∇x |4/B4) 0.901
Quantile0.75(ReLU(−B × ∇B · ∇x)|∇x |4/B3) 0.901

TABLE 4. Top-scoring features from steps 3–4 of forward sequential feature selection, for
regression on the heat flux using the varied-gradient dataset with XGBoost. At each step,
there are many features which are variations on a theme that have nearly identical R2 score.

Here, � denotes the Heaviside function.

analysis is due to the effect of zonal flows on the turbulence, but the connection is
at least suggestive.

At each step of FSFS, there are typically many features which are variations on a
theme and which would give nearly the same score, similar to table 2. For instance,
table 4 shows the top five features in steps three and four of FSFS for regressions
on the varied-gradient dataset. At step 3, the top features are all based on the flux
surface compression |∇x | in regions of bad curvature, weighted by various powers
of the Jacobian. At step 4, the top features all involve the radial magnetic drift,
weighted by the flux surface compression and powers of the Jacobian. Since the R2

score is so similar among the various options at each step, we should not ascribe
too much importance to the details that vary, such as the power of B at step 3.
However, aspects that are consistent among the top features, such as the consistent
appearance of the radial magnetic drift (i.e. geodesic curvature) at step 4, are more
likely to be physically meaningful.

Other regression and classification models besides XGBoost can achieve a reason-
able fit to the data. Figure 12 shows a comparison of several regression methods for
the heat flux, all using the same set of 12 features with the varied-gradient dataset
(a/LT , a/Ln and the top 10 geometric features from FSFS). In addition to XGBoost
and 10-nearest-neighbours (10NN), performance is also shown for three other mod-
els. One is the gradient-boosted decision tree package LightGBM (Ke et al. 2017).
Another is random forest regression. Lastly is linear regression after the features
are transformed with the Yeo–Johnson power transform (Yeo & Johnson 2000).
Models other than XGBoost and LightGBM use the implementations from scikit-
learn (Pedregosa et al. 2011). All models use the default hyperparameters from the
relevant python package and the performance shown is the average score from five-
fold cross-validation. While the prediction accuracy is highest for the decision-tree
methods, it is meaningfully high for the other methods as well.
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FIGURE 12. Comparison of regression methods for the heat flux in the varied-gradient dataset.
In all cases, the feature set is a/LT , a/Ln and the top 10 geometric features from FSFS with
XGBoost.

5.4. Shapley values
Another way to measure the importance of the features in regression and classifica-

tion models is via Shapley values. A concept originating from game theory, Shapley
values are a fair way to divide value among the input features, based on how the
model performance degrades when that feature is removed, and considering all sub-
sets of features (Shapley 1953; Lipovetsky & Conklin 2001). Here, we specifically use
the Shapley Additive exPlanation (SHAP) formulation by Lundberg & Lee (2017).
Shapley values naturally provide the average sign of correlation between each feature
and the target. For calculations here, we use the SHAP python package (Lundberg
& Lee 2017; Lundberg et al. 2020), which allows for efficient computations with
decision tree models.

Figure 13 shows the distribution of Shapley values for regression on the
varied-gradient dataset, using the first 12 features from FSFS. Within each row,
corresponding to one of the features, a histogram of the Shapley values is shown.
The horizontal dimension gives the contribution to ln Q from that feature. Wider
distributions therefore indicate more important features. The features are sorted in
decreasing order of the average absolute Shapley value, i.e. decreasing importance.
Each point is coloured by the value of the feature for that flux tube, scaled to the
range of that feature over the dataset. So, if the distribution is purple/dark on the
left and yellow/light on the right, larger values of that feature increase the predicted
Q. Conversely if the distribution is yellow/light on the left and purple/dark on the
right, increasing values of the feature decrease Q.

The order of feature importance as measured by Shapley values in figure 13 is not
exactly the same as the order in which features were selected in FSFS, but the first
three features are the same, and the pattern is broadly similar. Unsurprisingly, the
most important feature is a/LT , which is found to increase Q. The next most impor-
tant feature is a/Ln, which decreases Q, as expected from linear theory. Consistent
with the findings from Spearman correlation and FSFS, the most important geo-
metric feature is an average of |∇x | in regions of bad curvature. Here, the next
most important feature, mean(|∇x |4/B6), also reflects the average flux surface com-
pression, but now independent of bad curvature. As the distributions for these
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FIGURE 13. Distribution of Shapley values for regression with the varied-gradient dataset, using
an XGBoost fit with top 12 features from FSFS. Features are listed in decreasing importance as
measured by mean magnitude of the Shapley values.

two features are blue on the left and yellow on the right, both of these features
increase Q, consistent with physical intuition. The next most important features,
median((B × ∇B · ∇x)2|∇x |8/B8) and absFFTCoeff1(ReLU(B × ∇B · ∇x)/B5),
both involve the geodesic curvature, consistent with the pattern in table 3. The
colours indicate that larger average magnitude of geodesic curvature increases Q,
coinciding with the theoretical prediction of Xanthopoulos et al. (2011) and Nakata
& Matsuoka (2022). Physically, larger geodesic curvature means greater neoclassical
damping of zonal flows, hence smaller average zonal flow magnitude, and therefore
higher turbulence intensity.

The second-most-important geometric feature according to Shapely values,
mean(|∇x |4/B6), was the fifth most important geometric feature according to FSFS
order. Other differences appear in the ranking of feature importance between
Shapley values and FSFS after the two geodesic curvature features. Since Shapely
values and FSFS order are different measures of importance, there is no guarantee
that they will rank the features in the same order, particularly farther down in the
list where the effect sizes become smaller.

5.5. Fine-tuning the top feature
From the previous subsections, there is a consistent and robust finding that the

most important geometric feature is the flux surface compression in regions of bad
curvature. With this in mind, we can repeat the analyses of the previous subsec-
tions with a new set of extracted features that focuses on this general combination
of quantities, giving more variations on this theme. Optimisation can also be used
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FIGURE 14. Comparing the true heat flux and the single geometric feature fQ in (5.1) for fixed
gradients, it is clear that there is significant correlation. No regression model is used here.

to tune constants and exponents appearing within a proposed functional form. For
example, considering features of the form mean([�(B × κ · ∇y)+ α]|∇x |β/Bγ ), the
parameters {α, β, γ } can be optimised to maximise R2. Both approaches – trying
a set of variations on a theme and optimisation – result in broadly similar conclu-
sions: slightly improved prediction of Q is found if a shift is added to the Heaviside
function and the exponent on |∇x | is modified, yielding the feature

fQ = mean([�(B × κ · ∇y)+ 0.2]|∇x |3/B). (5.1)

The shift of 0.2 to the Heaviside function effectively combines the top two geometric
features according to the Shapley values in figure 13 (though with different powers
of B.) For this single feature with the fixed-gradient dataset, the Spearman corre-
lation is 0.788 and XGBoost regression on ln Q yields R2 = 0.737. These values
are slightly increased from 0.775 and 0.669, respectively, without the shift to the
Heaviside function. For the varied-gradient dataset, using models with the three fea-
tures {a/LT , a/Ln, fQ}, regression on ln Q gives R2 = 0.887, slightly improved from
R2 = 0.876 from table 3.

Figure 14 shows a comparison of the single feature fQ and the GX heat flux for
the fixed-gradient dataset. Note that there is no regression model applied here. While
(5.1) does not explain the full variation in the heat flux, it clearly does explain some.
It is possible that with additional work, a single geometric feature of comparable
complexity could be found with even higher predictive accuracy.

The set of three features {a/LT , a/Ln, fQ} does reasonably well in the classifier
for predicting stability: log-loss = 0.128, accuracy = 0.944, ROC-AUC = 0.989.
However, the geometric feature that best predicts the stiffness of the heat flux above
marginal stability is not necessarily the best feature for predicting the stability bound-
ary. Using the same methods described earlier in this subsection, a single geometric
feature can be fine-tuned to marginally improve the stability classifier’s accuracy.
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FIGURE 15. Comparing several proposed ITG objectives using three scores. The classification
and regression scores are computed using XGBoost with three features: the single geometric
feature, a/LT and a/Ln .

Again, adding a shift to the Heaviside function and modifying the exponents, we
arrive at

fstab = mean([�(B × ∇B · ∇y)+ 0.4]|∇x |/√B). (5.2)

Using XGBoost with the three features {a/LT , a/Ln, fstab}, the classifier achieves
log-loss = 0.111, accuracy = 0.953 and ROC-AUC = 0.991.

6. Testing other proposed surrogates

A natural application of this dataset is to test objective functions for reduced ITG
transport that have been proposed previously. Several such objectives are compared
in figure 15. Each quantity is rated by three scores: Spearman correlation with Q for
the fixed-gradient dataset, accuracy for classification with the varied-gradient dataset
and R2 for regression on the varied-gradient dataset. For the latter two scores, an
XGBoost model is fit using three features: the geometric feature in question along
with a/LT and a/Ln. The classification and regression scores are averages from five-
fold cross-validation. A control is also shown, in which XGBoost is fit using only
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the two features {a/LT , a/Ln} with no geometric features, since the accuracy using
only these gradients is already significant.

One set of proposed objectives in figure 15 comes from Mynick et al. (2014):
Q pr1b-Q pr1 f . The definitions can be found in figure 15, in terms of the flux tube
average 〈. . .〉 = [∫ . . . dz/B]/ ∫ dz/B. In the earlier publication (Mynick et al. 2014),
the average was not defined, and it was stated that the component of curvature used
was the radial component, but we confirmed with the first two authors that the
expressions in figure 15 are what was actually used. Another similar proposed objec-
tive in figure 15 is that from Xanthopoulos et al. (2014): 〈ReLU(b × κ · ∇y)|∇x |4〉.
In that paper, the average was not written and again the component of curvature
used was described as radial, but we confirmed with the author that the expression in
figure 15 is what was actually used. Our sign convention for y is reversed compared
with these earlier papers, so the arguments of Heaviside and ReLU functions have
opposite sign.

One more previously proposed objective in figure 15 is that from Stroteich et al.
(2022), namely |∇x | at a specific point p: the outboard midplane of the taller
stellarator-symmetric cross-section. This quantity is not well correlated with Q in
our dataset because 3/4 of the flux tubes in our data do not include this point.
Therefore, we also include a modified objective which is usually similar for flux
tubes that include p but more meaningful in those that do not: the maximum |∇x |
in regions of bad curvature: max(�(B × κ · ∇y)|∇x |).

Another feature included in figure 15 is the estimated critical gradient from equa-
tion (6) of Roberg-Clark et al. (2023). We use the curvature drift rather than ∇B
drift to compute this quantity as it results in slightly higher scores, though the dif-
ferences are small. A typical flux tube may have multiple intervals of bad curvature,
in which case, the estimated critical gradient is computed for each interval and the
minimum over all intervals is used as the feature. We note here that the critical
gradient estimate is not intended to correlate inversely with heat fluxes, but rather
to predict the gradient where heat fluxes become significant. Any inverse correlation
of the feature with heat fluxes above the critical gradient, perhaps through the phys-
ical connection between |∇α| and finite Larmor radius damping of ITG modes, is
incidental.

Finally, the comparison in figure 15 includes the ITG objective from Goodman
et al. (2024). In that work, an integral over a full flux surface was used; here, we
modify the expression to integrate only over a flux tube. The specific expression we
consider is mean(ξ�(ξ95 − ξ)), where ξ =�(B × κ · ∇y)|∇x |2 and ξ95 is the 0.95
quantile of ξ over the flux tube.

Figure 15 shows that with the exception of |∇x |(θ = 0, ζ = 0), all of these pro-
posed objectives have significant predictive power for both the stability boundary
and heat flux. This is perhaps not surprising as these objectives are similar to each
other, all measures of the flux surface compression, bad curvature or both. Their
performance is nearly as good as for our optimised features fQ and fstab, and is
significantly better than the control with no geometric information.

7. Discussion and future work

In this work, we have presented a large new dataset of nonlinear gyrokinetic turbu-
lence simulations covering a wide and diverse range of magnetic geometries. Applied
to the dataset, a variety of machine learning methods can accurately predict the non-
linear heat flux and classify stable versus unstable conditions. It was important that
these classification and regression methods be applied in such a way as to respect the
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translation-invariance of the gyrokinetic system, as can be done using convolutional
neural networks or translation-invariant reductions of transation-equivariant opera-
tions. Beyond providing these fast surrogates, machine learning methods can also
extract insights that can stimulate theory. Thus, machine learning can be more than
a black-box interpolation: it can provide understanding and feed back into more tra-
ditional physics calculations. To extract insights in this case, we have demonstrated a
variety of methods – Spearman correlation, sequential feature selection and Shapley
values – which can measure the importance of geometric features in the data. While
some details differ between the conclusions of these methods, such as the exponent
of B in the most important features, certain patterns are quite robust.

Multiple lines of evidence point to the flux surface compression in regions of
bad curvature as the most important geometric feature, with more surface compres-
sion yielding higher heat flux Q. This feature is identified from its high Spearman
correlation, from its early choice in sequential feature selection and by its large
Shapley values. It arises in FSFS using multiple regression algorithms (decision
trees and nearest-neighbours), using both regression and classification, and both with
fixed or varied temperature and density gradients. These findings provide evidence
supporting the physical arguments regarding this feature by Mynick et al. (2010),
Xanthopoulos et al. (2014), Stroteich et al. (2022) and Goodman et al. (2024). It is
not obvious that the importance of this feature can be explained purely in terms of
linear growth rates, as |∇x | does not appear in the linear gyrokinetic equation for
kx = 0 modes, which are typically the most unstable.

Another robust finding is that the next most important feature is the geodesic cur-
vature, with larger magnitudes giving higher Q. These conclusions are supported by
both FSFS and Shapley values. Our findings support the discussion of this feature’s
importance by Xanthopoulos et al. (2011) and Nakata & Matsuoka (2022), and
are suggestive of the effect of zonal flow dynamics. Further analysis of the existing
dataset could be done to elucidate the role of zonal flows.

Another theoretical framework for turbulence that has been discussed recently is
critical balance (Barnes et al. 2011), in which the parallel wavenumber k|| plays an
important role. Although thousands of features involving k|| were included in the set
of features that could have been selected, these features were not selected in FSFS,
indicating lower importance than the surface compression or geodesic curvature. It
would be valuable to better understand these findings theoretically in the future.

There are many directions in which this research can be extended in the areas
of data generation, fitting the data with surrogate models, physics understanding
and applications. Regarding data generation, the set of equilibria could be expanded
with more quasi-isodynamic configurations. New datasets of nonlinear gyrokinetic
simulations could be generated with kinetic electrons and electromagnetic effects.
The physics model would then include additional instabilities such as trapped elec-
tron modes and kinetic ballooning modes. Similar analysis methods to those used
here could then be applied to such data, including also regression on the particle
flux. For both future data and the present data, the feature engineering methods
here could be applied with larger sets of possible features beyond the set from § 5.1,
and alternative regression methods could be tried. Of particular interest would be
symbolic regression and Kolmogorov Arnold networks (Liu et al. 2024) due to their
advantages for interpretability. It would also be valuable to use saliency maps and
related methods to understand the features learned by the neural networks. If these
saliency maps can be understood, the results may suggest new features that could
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be checked directly for correlation with the true heat flux and to include in the
FSFS.

In the area of physics understanding, researchers can aim to derive relationships
between the top geometric features here and the nonlinear heat flux using traditional
analytic methods. This should be done first for the most important feature (and
variations thereof) related to flux surface compression, but could also be attempted
for the next most important features. Other quantities inspired by plasma theory
could be checked for correlations against the heat flux and added to the menu of
possible features for sequential feature selection. It would be natural for instance to
check quantities from linear zonal flow dynamics in this way.

The surrogate models developed in this paper could be applied in multiple ways.
One application is for predicting the radial profiles of temperature, using the surro-
gate as a fast model for the gradient-flux relationship inside a solver of the transport
equations. (Prediction of the density profile would require a dataset of nonlinear
simulations with kinetic electrons.) Such profile prediction using surrogate models is
already available for tokamaks (Citrin et al. 2015; Meneghini et al. 2017), but this
could now be extended to stellarators. The other evident application would be for
turbulence optimisation of stellarators. While optimisation of a geometric feature
similar to the top feature here is already being done (Goodman et al. 2024), the
results of this paper allow several improvements. First, this turbulence objective can
now be justified through validation on this data and modified slightly as in § 5.5
for better correlation to nonlinear simulations. Second, the surrogates here provide
better correlation to the true heat flux by incorporating more geometric informa-
tion, either via multiple features in the FSFS method or through holistic use of all
the geometric information in the neural networks. Lastly, since the surrogates here
could allow information from all flux surfaces and the gradients to be combined in
a transport solver to rapidly predict the fusion power, this enables the fusion power
to be used directly as an optimisation objective.
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Appendix A. Details of equilibrium generation
As discussed in § 3.1, the equilibria in this study consist of three classes. Here,

we give additional details of how the equilibria in each class were generated. In all
cases, the equilibria were computed using DESC (Dudt & Kolemen 2020) release
v0.12.0.

For the group of rotating-ellipse equilibria, the number of field periods was sam-
pled randomly from the interval [2, 8], the aspect ratio was chosen randomly from
[6, 10], and the elongation (ratio of major to minor axis of the cross-section in a
constant-φ plane) was chosen randomly from [1, 4]. For half of the rotating-ellipse
configurations, the ellipses were centred on a constant-major-radius circle. For the
other half, the ellipses were centred on a curve with torsion, by setting the m = 0,
n = n f p Fourier mode of R and Z on the boundary to a random number between 0
and the minor radius, with sign chosen to increase iota. A pressure profile with fixed
shape p(s)= 1 − 1.8s + 0.8s2 is chosen, where s is the normalised toroidal flux,
reflecting a plausible level of peaking, with random magnitude chosen for a uni-
form distribution of volume-averaged β ∈ [0, 0.05]. Equilibrium calculations were
then run, assuming no toroidal current for simplicity. Configurations with |ι|< 0.2
were dropped.

Another group of equilibria were derived from the QUASR database (Giuliani
2024; Giuliani et al. 2024). This database includes coils in addition to plasma shapes,
and many entries in QUASR differ primarily in coil geometry while having similar
plasma parameters. Also, some configurations in QUASR have much better qua-
sisymmetry than others and we wish to focus on those with better quasisymmetry
(since the other equilibrium groups in our study contain many non-quasisymmetric
geometries.) Therefore, a subset of QUASR was selected as follows. First, all config-
urations with high quasisymmetry error, ι < 0.2, or aspect ratio >10 were excluded.
Then, for each symmetry class (QA versus QH) and n f p, for each interval in aspect
ratio (1–2, 2–3, 3–4, .., 9–10) and ι, the two configurations in QUASR with lowest
QS error were chosen. DESC was run for these boundary shapes assuming a vac-
uum field and also with the aforementioned pressure profile for multiple pressure
magnitudes spanning 〈β〉 ∈ [0, 5 %]. For some strongly shaped geometries or high
〈β〉 values, the resulting force residual was high, indicating the equilibrium was not
well converged, so these cases were dropped.

The third group of equilibria were generated by randomly sampling Fourier modes
from distributions that have been fit to a dataset of previous stellarator shapes.
Consider the common representation of toroidal boundary shapes as a double
Fourier series:

R(θ, φ)=
∑
m,n

Rm,n cos(mθ − nfpnφ), (A1)

Z(θ, φ)=
∑
m,n

Zm,n sin(mθ − nfpnφ), (A2)

where (R, φ, Z) are cylindrical coordinates, nfp is the number of field periods, θ
is some poloidal angle and stellarator symmetry has been assumed. The sums are
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considered to include only non-negative m, with both positive and negative n for
m > 0, but only non-negative n for m = 0. To randomly generate boundary shapes,
we sample the Rm,n and Zm,n coefficients from independent normal distributions for
each (m, n) (and independent for R and Z ). The mean and standard deviation of
each distribution are taken from the dataset of 44 stellarators collected by Kappel,
Landreman & Malhotra (2024). This set includes both built experiments (W7-X,
LHD, HSX, CFQS, TJ-II, etc.) and theoretical configurations. Before extracting the
sample mean and standard deviation, all configurations were scaled to the same
minor radius. To further standardise the data, φ→ −φ reflections were applied
to configurations with ι < 0, so all configurations have rotational transform of the
same sign, and toroidal rotations by half a field period were applied to any con-
figurations in which the cross-section at φ = π/nfp is not as tall as at φ = 0. After
this data cleaning, the sample mean and sample standard deviation are computed
over the 44 configurations for each Rm,n and Zm,n. Configurations with all values
of nfp are included together in this calculation. Only modes with m � 4 and |n|� 4
are considered, since some theoretical stellarators in Kappel’s dataset resulting from
optimisation do not include boundary modes with higher mode number. The result-
ing mean and standard deviation values are used to define normal distributions
which can then be sampled.

To generate a new random equilibrium, new values of Rm,n and Zm,n are first sam-
pled from the distributions determined previously, after which R0,0 is computed
by root-finding to give the desired aspect ratio. To ensure that the same gyro-
Bohm normalisation is used in every turbulence simulation, each configuration is
scaled slightly to the same minor radius, and the toroidal flux is set to the same
value. As with the other equilibrium groups, a pressure profile with fixed shape
p(s)= 1 − 1.8s + 0.8s2 is chosen, with random magnitude chosen for a uniform
distribution of volume-averaged β ∈ [0, 0.05]. The current profile is taken to be
zero for simplicity. Next, a fast and low-resolution equilibrium calculation is run
using the code VMEC (Hirshman & Whitson 1983). If this calculation does not
converge to a threshold value of force residual in a given number of iterations,
the configuration is rejected, ensuring that self-intersecting boundaries are excluded
quickly.

A potential issue with the abovementioned procedure is that most resulting config-
urations in the third group have larger values of mirror ratio Bmax/Bmin than typical
stellarators. For this reason, configurations with Bmax/Bmin > 5 are immediately
rejected. Also, a subset of the random configurations is selected to bias the distribu-
tion towards smaller mirror ratios. For the selected configurations, higher-resolution
equilibrium calculations are then run using DESC.

The final set of 23 577 equilibria included 3200 rotating-ellipse configurations cen-
tred on a circle, 3200 rotating-ellipse configurations centred on a curve with torsion,
413 QUASR vacuum configurations, 3964 QUASR finite-beta configurations and
3200 random boundaries for each of four values of n f p. More flux tubes were drawn
from the QUASR vacuum fields to increase the representation of this class. The final
set of 100 705 flux tubes included 12 795 tubes from rotating-ellipse configurations
centred on a circle, 12 791 tubes from rotating-ellipse configurations centred on a
curve with torsion, 8235 tubes from QUASR vacuum configurations, 15 809 tubes
from QUASR finite-beta configurations and 51 075 tubes from random-boundary
equilibria.
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FIGURE 16. Dependence of Q on the resolution parameter nz for a selection of flux tubes
with associated gradients from the varied-gradient dataset. The seven tubes, shown by different
colours, all have the highest value of n f p in the dataset (8) to give short scales in z. The vertical
dotted line shows the value of nz used for the main dataset (96). Variation of Q with increasing
resolution is small compared with the differences between geometries and gradients, indicating
sufficient convergence.

Appendix B. Details of turbulence simulations
Here, more details are given of the nonlinear turbulence simulations. Calculations

were performed using the version of GX from git commit b88d763.
For the dataset with varied gradients, the gradients were sampled randomly in

each simulation using the following procedure. Since a/LT i typically increases with
radius, we choose it to be ρ times a random number with mean 4 and standard
deviation 3, resampling the latter until the result is �1.5. Similarly, a/Ln is chosen
to be ρ times a random number with mean 1 and standard deviation 2, resampling
until the number is �− 0.5. This procedure results in 70 % of the simulations yielding
instability, 30 % stable.

In all simulations, physical collisions were included with magnitude νi i aminor/vi =
0.01 and we take Ti/Te = 1. The transient behaviour for tvi/aminor < 150 was ignored
and a mean of the heat flux was computed over the remaining simulation time.

Resolution parameters for the simulations were as follows: box size x0=y0=10
× 2π , perpendicular spatial resolution nx=ny=64, (so the dealiased kx and ky grids
were 2.1,−2.0, . . . ,−0.1, 0, 0.1, . . . , 2.0, 2.1), number of grid points along the field
line nz=96, parallel velocity resolution nhermite=8, perpendicular velocity res-
olution nlaguerre=4, simulation time tmaxvi/aminor = 800 and time step given by
0.9 times the Courant–Friedrichs–Lewy condition. To arrive at these values, first,
each of these parameters was scanned individually for a selection of flux tubes and
gradients. An example is shown in figure 16, in which nz is varied for several con-
figurations with n f p = 8, the highest value of n f p included in the dataset, resulting
in the shortest parallel length scales among the flux tubes in the collection. For each
parameter, a value was adopted at which Q had approximately reached an asymp-
tote. For changes to the box size in x or y, nx or ny was varied proportionally to
keep the highest wavenumber fixed. Flux tube length was not considered to be a
resolution parameter like the others abovementioned, since longer tubes do sample
different regions of the flux surface geometry, so changes to Q are physical rather
than numerical. Then, to confirm that the selected resolution parameters would be
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FIGURE 17. Evidence of sufficient convergence with respect to numerical resolution parameters.
For 100 randomly sampled entries in the varied-gradient dataset, every resolution parameter is
varied by a factor of 2 or 10. The box sizes in x and y are denoted x0 and y0 in the legend.

sufficient for most simulations in the dataset, 100 random flux tubes and gradients
were selected from the varied-gradient data. Every resolution parameter was varied
by a factor of two or more for each flux tube and GX was re-run. The results are dis-
played in figure 17. The coefficient of determination between the original-resolution
data and modified-resolution data is R2 = 0.993 for the unstable cases, or includ-
ing both stable and unstable cases R2 = 0.995 using (3.1). The accuracy score for
predicting the stability at high resolution from the stability at standard resolution is
0.994. These values are greater than the values for any of the surrogate fits discussed
in this paper, meaning scatter due to discretisation error is smaller than imperfection
in the fits. We therefore deem the resolution parameters to be adequate.

Periodic boundary conditions were employed in all three spatial coordinates. For
the z coordinate, the twist-and-shift boundary condition (Beer et al. 1995) and its
generalisation to stellarators (Martin et al. 2018), while well-motivated physically,
are inconvenient when the integrated local magnetic shear is small. In this case,
the box size in x is required to be very large, necessitating large nx to resolve
adequately high kx , increasing computation time. Were we to use the alternative
boundary conditions by Martin et al. (2018) that constrain the tube length to certain
specific values, it would no longer be possible to use the same tube length for all
configurations, complicating the analysis. Martin et al. (2018) found that the heat
flux is insensitive to the choice of boundary conditions as long as enough Fourier
modes in x are included to resolve sufficiently high kx . We find the same to be true
for the simulations here. Figure 18 shows a comparison of periodic versus twist-and-
shift boundary conditions (using equations (24)–(25) of Martin et al. 2018) for a

https://doi.org/10.1017/S0022377825100536 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100536


36 M. Landreman and others

FIGURE 18. Comparison of boundary conditions in z for 100 randomly sampled flux tubes from
the varied-gradient dataset. The heat flux is insensitive to the choice of boundary condition if
the number of Fourier modes in x is increased in each twist-and-shift calculation to match the
same maximum kx as the periodic calculations, as is done here.

random sample of 100 flux tubes and associated gradients from the varied-gradient
dataset. For the twist-and-shift calculations, the box size in x is set by the quantisation
condition and nx is increased as needed for each tube to match the same maximum
kx as in the periodic case (kx = 2.1). The heat fluxes for the two choices of boundary
conditions are highly correlated. The R2 for predicting ln(Q linked) from ln(Qperiodic)
is 0.97, and the accuracy score for predicting stability for the twist-and-shift case
based on stability for the periodic case is 0.95. These values are deemed sufficiently
high that the periodic boundary condition was adopted for the study, given the
computational savings it allows.

At the resolution parameters given previously, the mean simulation wallclock time
was ∼8 minutes on one Nvidia A100 GPU. The ∼2 × 105 nonlinear simulations
took <7000 node-hours, equivalent to <28 000 gpu-hours (4 gpus/node).

In terms of normalised variables, the heat flux returned directly by GX is
Q/〈|∇ρ|〉, where Q = 〈∫ d3v f (v2/2)vd · ∇ρ〉 and 〈. . .〉 = (

∫
dz/B)−1

∫
dz(. . .)/B.

For results in this paper, we multiply through by 〈|∇ρ|〉 to focus on Q itself.
Simulations with Q > 103 are dropped from the dataset, since longer simulation

times and larger box sizes are likely needed for adequate resolution of these cases.
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