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Abstract
Asymptotic dimension and Assouad–Nagata dimension are measures of the large-scale shape of a class
of graphs. Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [J. Eur. Math. Society] showed
that any proper minor-closed class has asymptotic dimension 2, dropping to 1 only if the treewidth is
bounded. We improve this result by showing it also holds for the stricter Assouad–Nagata dimension. We
also characterise when subdivision-closed classes of graphs have bounded Assouad–Nagata dimension.
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1. Introduction
Asymptotic dimension, denoted by asdim, is a measure of the large-scale shape of a metric space.
First introduced by Gromov [12] for the geometric study of groups, it has since been studied for
metrics induced by graphs. While the general definition is somewhat technical, it can reduced
to a colouring problem on graphs (see Proposition 5, along with Proposition 1.17 of Bonamy,
Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2]). Specifically, the asymptotic dimension
of a class of graphs G is the smallest integer n� 0 for which there exists an f :R+ �→R+ such
that, for each G ∈ G and every r ∈R+, G admits an n+ 1-colouring such that every monochro-
matic component of the rth-power of G has weak diameter at most f (r). We direct the reader to
Section 1.1 for the definition of graph powers, weak diameter, and monochromatic components,
and Section 1.2 for a formal definition of asymptotic dimension.

Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2] established the following
break through result, improving or generalising previous work in [1, 9, 18].

Theorem 1 [2]. For every proper minor-closed class of graphs G,
(a) asdim(G)� 2; and
(b) asdim(G)� 1 if and only if G has bounded treewidth.

Asymptotic dimension has also been studied for various non-minor-closed classes in [2, 5, 19].
Another parameter strongly related to asymptotic dimension is Assouad–Nagata dimension,

denoted by ANdim. Originally introduced by Nagata [17] prior to the work of Gromov [12]
(which introduced asymptotic dimension) and defined analogously to Lebesgue dimension, it is
due to an equivalent definition introduced by Assouad [14] that we can view Assouad–Nagata
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2 M. Distel

dimension as analogous to asymptotic dimension instead. Specifically, Assouad–Nagata dimen-
sion is defined identically to asymptotic dimension, except with the extra requirement that the
function f is of the form f (r)= cr for some c ∈R+. See Section 1.2 for a formal definition.

Asymptotic and Assouad–Nagata dimension have applications in geometry group theory [6,
12, 13] and for embeddings into Banach spaces [10, 15]. Furthermore, Assouad–Nagata dimen-
sion has recently been tied to finding good approximations for the travelling salesman problem
[8]. It is immediate from the definition of Assouad–Nagata dimension that it is at least the asymp-
totic dimension, however no upper bound on the Assouad–Nagata dimension in terms of the
asymptotic dimension is possible; indeed, the class of graphs that can be embedded in the plane
with at most one crossing per edge has asymptotic dimension 2 but infinite Assouad–Nagata
dimension [2].

Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2] also showed the following.

Theorem 2. For every integer g � 0, the class of weighted graphs with Euler genus at most g has
Assouad–Nagata dimension 2.

The following question arises naturally from the work of Bonamy, Bousquet, Esperet,
Groenland, Liu, Pirot, and Scott [2]: can Theorem 1 be strengthened by replacing asymptotic
dimension with Assouad–Nagata dimension. While it was already known that the class of Kt-
minor-free graphs has Assouad–Nagata dimension at most 4t − 1 [18], we show that the bound in
Theorem 1 can be matched exactly in the stronger setting of Assouad–Nagata dimension.

Theorem 3. For every proper minor-closed class of graphs G,
(a) ANdim(G)� 2; and
(b) ANdim(G)� 1 if and only if G has bounded treewidth.

We conclude this paper with an exact characterisation of when subdivision-closed classes of
graphs have bounded Assouad–Nagata dimension.

Theorem 4. Let G be a subdivision-closed graph class. Then G has bounded Assouad–Nagata
dimension if and only if there is a graph H such that G is H-minor-free.

Theorem 4 immediately implies the previously mentioned result of Bonamy, Bousquet,
Esperet, Groenland, Liu, Pirot, and Scott [2] that the class of graphs that can be embedded in
the plane with at most one crossing per edge has infinite Assouad–Nagata dimension, since this
class is subdivision-closed and admits every graph H as a minor.

This paper uses many similar techniques to Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot,
and Scott [2]; in particular Lemma 15 loosely follows the method of Lemma 3.2 in Bonamy,
Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2]. Our novel contribution to this method
is to use the “completion” of the graph, where edges in the torso are weighted in order to preserve
the metric exactly, as opposed to the gadgets used in Bonamy, Bousquet, Esperet, Groenland, Liu,
Pirot, and Scott [2] which only approximated the metric. Our other major novel contribution in
this paper regards how almost-embeddedable graphs are handled; the technique used in Bonamy,
Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2] cannot be applied, and while the vortices
and the graph embedded on the surface can be handled individually with relevant ease, handling
their union is challenging as the union would normally destroy any control functions. We solve
this issue by showing that neighbourhood around where the vortices meet the embedded graph is
“well-behaved”, and show that this is sufficient to allow us to extend our control functions for the
vortices and the embedded graph to a control function for the union.

1.1 Basic definitions
Let R+ denote the set of all strictly positive real numbers, and let N := {1, 2, . . .}.
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We consider only simple graphs, and unless otherwise stated, all graphs are finite. Thus, all
further definitions are given assuming graphs are finite, although we remark that most of the
definitions extend to infinite graphs. All weighted graphs will have edge weights in R+ ∪ {∞},
and we consider lengths of paths and distances to be with respect to the edge-weights. We require
that a subgraph H of a weighted graph G inherits the weighting. We use distG to denote distances
in G, which can be between vertices or sets of vertices, and may be infinite. We use standard
graph-theoretic definitions; see Diestel [3].

Given an graph G and a function w : E(G)→R+ ∪ {∞}, to imbue G with w is to create a new
weighted graph with the same vertex and edge sets as G but with weighting w. By contrast, we can
remove the weighting of a weighted graph G to recover the underlying unweighted graph, which
we denote unweighted(G).

A class of graphs is a collection of graphs that is closed under isomorphism. A graph class G
is hereditary if every induced subgraph of a graph in G is also in G. G admits an H-minor if H
is a minor of some graph in G; otherwise G is H-minor-free. G is subdivision-closed if for every
G ∈ G, every subdivision of G is in G. G is minor-closed if for every G ∈ G, every minor of G is
in G. A minor-closed class G is proper if it is not the class of all graphs; in this case, G must be
H-minor-free for some H.

For a weighted graphG, a weighted graphH withV(H)⊆V(G) is isometric inG if distH(u, v)=
distG(u, v) for all u, v ∈V(H). The weak diameter of S⊆V(G) in G, denoted wdiamG(S), is the
maximum distance between vertices of S in G. We remark that “weak diameter” is often referred
to as “diameter” in the metric space literature; we use “weak diameter” to avoid confusion with the
graph-theoretic notion of “diameter”. We also note that the weak diameter of S can be arbitrarily
smaller than the diameter of G[S]. For example, a cycle can have arbitrarily large diameter, but its
vertices have weak diameter 2 within a wheel.

For a real number r� 0, the r-neighbourhood of S⊆V(G) in G, denoted Nr
G(S), is the set of

vertices v ∈V(G) such that distG(v, S)� r; note that N0
G(S)= S. In particular, if S is a singleton

{s}, we instead write Nr
G(s). The r-th power of a weighted graph G, denoted Gr , is the graph with

vertex set V(G) where two vertices u, v are adjacent if distG(u, v)� r. An r-walk [resp. r-path] P
from u ∈V(G) to v ∈V(G) in G is a sequence of vertices of G that form a walk [resp. path] from
u to v in Gr . This is equivalent to requiring that consecutive vertices are at distance at most r. For
technical reasons, we permit walks, and thus r-walks, to have duplicate consecutive vertices. For
Z ⊆V(G), an r-subwalk [resp. r-subpath] of P − Z is a subsequence of P consisting of a string of
consecutive vertices of P which are all not in Z. In particular, an r-subwalk [resp. r-subpath] of P
is any string of consecutive vertices in P. The interior of P, denoted Int(P), is the (possibly empty)
r-subwalk [resp. r-subpath] of P consisting of the entire sequence except the start u and the end v.
The vertices of Int(P) are called the interior vertices of P. Note that if Int(P) has weak diameter in
G at most d, then P has weak diameter in G at most d + 2r.

We consider colourings to be colourings of some set of vertices, and colourings of a graph to
be a colouring of its vertex set.

Let G be a graph, and let S, T ⊆V(G) with S⊆ T. We say that a colouring cT of T extends a
colouring cS of S if cT

∣∣
S = cS. Notice that if S1, . . . , Sn ⊆V(G), and ci is a colouring of Si for each

i ∈ {1, . . . , n} such that ci = cj on Si ∩ Sj for any i, j ∈ {1, . . . , n}, then there exists a colouring cG of
G that extends c1, . . . , cn simultaneously. Furthermore, if

⋃n
i=1 Si =V(G), then this colouring cG

is unique, and denoted by
⋃n

i=1 ci.
Under a colouring c of a graph G, for any colour i, a set of vertices S⊆V(G) is said to be

i-monochromatic under c if every vertex of S received the colour i under c. S is also said to be
monochromatic under c if it is i-monochromatic under c for some colour i.

For a weighted graph G and a real number r > 0, we say that an i-monochromatic r-
component of G under c is a maximal nonempty connected subgraph M of Gr such that V(M) is
i-monochromatic under c. We then say that a subgraphM of Gr is amonochromatic r-component
ofG under c ifM is an i-monochromatic r-component ofG for some colour i. Observe that for any
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monochromatic r-componentM of G and any u, v ∈V(M), there exists a monochromatic r-path
from u to v in G of the same colour, and that for any monochromatic r-path P in G, there exists a
monochromatic r-componentM of G of the same colour such that P ⊆V(M).

Given a weighted graph G, an integer m� 1, and real numbers r > 0, d� 0, we say that a
m-colouring c of G is an (m, r, d)-colouring if for each monochromatic r-component M of G
under c, V(M) has weak diameter in G at most d. Note that this is equivalent to requiring that
every monochromatic r-path in G under c has weak diameter in G at most d. This definition is
very similar to the concept of weak diameter colourings ofGr used by Bonamy, Bousquet, Esperet,
Groenland, Liu, Pirot, and Scott [2], with the key difference that the weak diameter is measured
in G, rather than Gr . This is done to avoid having to constantly convert between distances in
G and distances in Gr. Observe that for any weighted graph H that is isometric in G and any
(m, r, d)-colouring c of G, c

∣∣
V(H) is an (m, r, d)-colouring of H.

1.2 Control functions and dimension
Many of the following definitions are given in terms of weighted graphs, however we remark that
they can be defined for (and sometimes originate from the study of) arbitrary metric spaces, with
the noteworthy difference of “diameter” (in the metric geometry sense) being used in place of
“weak diameter” whenever applicable.

For a weighted graph G and real number r > 0, S, T ⊆V(G) are said to be r-disjoint if for all
u ∈ S, v ∈ T, we have distG(u, v)> r. A collection C of subsets of V(G) is said to be r-disjoint if the
sets in C are pairwise r-disjoint.

Given a weighted graph G and an integer n� 0, a function f :R+ →R+ is said to be an
n-dimensional control function for G if, for every real number r > 0, there exist n+ 1 collections
C1, . . . , Cn+1 of subsets of V(G) such that:

(a)
⋃n+1

i=1
⋃

S∈Ci S=V(G);
(b) Ci is r-disjoint for each i ∈ {1, . . . , n+ 1}; and
(c) wdiamG(S)� f (r) for each i ∈ {1, . . . , n+ 1} and each S ∈ Ci.
Note that if f is an n-dimensional control function for G, it is also an m-dimensional control

function for G for each integerm� n.
This definition is the standard definition used for general metric spaces, however it is rather

cumbersome. Thankfully, given that we are only interested in weighted graphs, we obtain an
alternative definition as a consequence of the following result, whose proof is in the appendix.

Proposition 5. Let n� 0 be an integer, and let G be a weighted graph. Then f :R+ →R+ is an
n-dimensional control function for G if and only if, for every real number r > 0, G admits an (n+
1, r, f (r))-colouring.

We use this as the definition of a control function from now on. We remark that Proposition 5
is very similar to Proposition 1.17 of Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott
[2], with the key difference that Proposition 1.17 of Bonamy, Bousquet, Esperet, Groenland, Liu,
Pirot, and Scott [2] is stated in terms of asymptotic dimension (see below) instead of control func-
tions. Furthermore, following the proof, one does not actually get an equivalence between control
functions and the bound on the weak diameter of vertex sets of monochromatic r-components,
instead picking up an extra factor of r.

The asymptotic dimension of a weighted graph G, denoted asdim(G), is the smallest integer
n� 0 such that G admits an n-dimensional control function, or ∞ otherwise. While this is con-
sistent with how asymptotic dimension is defined on arbitrary metric spaces, we remark that this
definition is not very interesting, since every finite weighted graph G has asymptotic dimension 0.
Thus, we extend the definitions of control function and asymptotic dimension to classes of graphs.
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Given an integer n� 0 and a class of weighted graphs G, we say that a function f :R+ →R+ is
an n-dimensional control function for G if f is an n-dimensional control function for each G ∈ G.
The asymptotic dimension of G, denoted asdim(G), is then the smallest integer n� 0 such that G
admits an n-dimensional control function, or ∞ otherwise.

Finding the asymptotic dimension of an infinite weighted graph is non-trivial. Nevertheless,
the following result shows a natural way to reduce this problem to a question about finite graphs.

Proposition 6. Let n� 0 be an integer and let G be an infinite weighted graph. Let A be the class
of all finite induced subgraphs of G, and let f be an n-dimensional control function for A. Then for
any real number ε > 0, r �→ f ((1+ ε)r) is an n-dimensional control function for G.

The proof of Proposition 6 is also in the appendix.
It is because of Proposition 6 that we need only consider finite graphs in this paper. We also

remark that Proposition 6 is nearly identical to Proposition A.2 of Bonamy, Bousquet, Esperet,
Groenland, Liu, Pirot, and Scott [2], albeit with a slight tweaking to the control function for G;
this will be important once we introduce Assouad–Nagata dimension.

A function f :R+ →R+ is a dilation if there exists a real number c> 0 such that f (r)� cr for
every real number r > 0. The Assouad–Nagata dimension of a graphG is the smallest integer n� 0
such that G admits an n-dimensional control function f that is also a dilation, or ∞ otherwise.
Likewise, the Assouad–Nagata dimension of a class of graphs G is the smallest integer n� 0 such
that G admits an n-dimensional control function f that is also a dilation, or∞ otherwise. Observe
that the asymptotic dimension of a class is at most the Assouad–Nagata dimension.

Notice that, in Proposition 6, if f is a dilation, then so is r �→ f ((1+ ε)r). Thus, we can also
use Proposition 6 to bound the Assouad–Nagata dimension of an infinite graph in terms of
the Assouad–Nagata dimension of the class of its finite induced subgraphs. Thus, it still makes
sense to only consider finite graphs even when discussing Assouad–Nagata dimension rather than
asymptotic dimension.

Finally, given a function f :R+ →R+, a weighted graphG, and an integer n� 0, sometimes we
can only find (n+ 1, r, f (r))-colourings ofGwhen r is sufficiently large. As such, for a real number
�� 0, we say that f is an �-almost n-dimensional control function for a G if G admits an (n+
1, r, f (r))-colouring for every real number r > 0 with r� �. Note that a 0-almost n-dimensional
control function is just a n-dimensional control function.

2. Path rerouting
One of the key ideas of this paper is the ability to “adjust” or “reroute” particular r-paths to obtain
an r′-path with the same endpoints but whose interior is contained within a “better” part of the
graph G. This is formalised in Proposition 7. Note that this concept of rerouting is not completely
new, and exists in some capacity within Lemma 3.2 of Bonamy, Bousquet, Esperet, Groenland,
Liu, Pirot, and Scott [2] without being formally identified.

Proposition 7. Let r > 0, �, d� 0 be real numbers, let G be a weighted graph, let x, y ∈V(G), and
let P be an r-path in G from x to y. Assume there exist sets Z, S⊆V(G) and a map ι : Z → S such
that:

(a) distG(v, ι(v))� � for each v ∈ Z; and
(b) every r-subpath of P − Z has weak diameter in G at most d.

Let v1, . . . , vn be the (possibly empty) subsequence of P that is in Z, including x, y if applicable.
Define P′ to be the sequence x, ι(v1), ι(v2), . . . , ι(vn), y. Then P′ is a (d + 2r + 2�)-walk from x to y
in G whose interior is contained in S.

Proof. It suffices to show that consecutive vertices of P′ are at distance at most d + 2r + 2�. If
P does not intersect Z, P is an r-subpath of P − Z, and hence distG(x, y)� d� d + 2r + 2� as
desired. So we may assume that P intersects Z, and that v1, . . . , vn are defined with n� 1.

https://doi.org/10.1017/S0963548325100175 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100175


6 M. Distel

Consider consecutive interior vertices ι(vi), ι(vi+1) of P′; we must show that
distG(ι(vi), ι(vi+1))� d + 2r + 2�; it suffices to show distG(vi, vi+1)� d + 2r. If vi, vi+1 are
consecutive in P, then distG(vi, vi+1)� r, as desired. Otherwise, let ui be the vertex directly after vi
in P, and letwi+1 be the vertex directly before vi+1 in P; it suffices to show that distG(ui,wi+1)� d.
Consider the r-subpath Pi of P going from ui to wi+1. Pi ∩ Z = ∅ by definition of the subsequence
v1, . . . , vn, thus Pi is an r-subpath of P − Z and has weak diameter in G at most d. Therefore,
distG(ui,wi+1)� d, as desired.

It remains to show that distG(x, ι(v1)) and distG(y, ι(vn)) are at most d + 2r + 2�. We show that
distG(x, ι(v1))� d + 2r + 2�; the argument for distG(y, ι(vn)) is symmetric. If x ∈ Z, then v1 = x
and thus distG(x, ι(v1))= distG(x, ι(x))� �� d + 2r + 2�. Otherwise, let w1 be the vertex directly
before v1 in P; it suffices to show that distG(x,w1)� d + r + �. Let P′ be the r-subpath of P going
from x to w1; we must have P′ ∩ Z = ∅ by definition of v1, hence P′ is an r-subpath of P − Z. Thus,
wdiamG(P′)� d; in particular distG(x,w1)� d� d + 2r + 2�, as desired. �

An important application for Proposition 7 is when the set S is small. To help express this, we
borrow an idea from Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [3]. Given a
weighted graph G, Z ⊆V(G) is said to be a (k, �)-centred set in G if there exists a set S⊆V(G)
with |S|� k such that Z ⊆N�

G(S). We call S a centre of Z. Note that for any weighted graph G of
radius at most �, V(G) is a (1, �)-centred set in G.

Corollary 8. Let k� 1 be an integer, let r > 0, �� 0 be real numbers, let G be a weighted graph, let
Z be a (k, �)-centred set in G, and let x, y ∈ Z be such that there exists an r-path P from x to y in G
that is contained in Z. Then distG(x, y)� (k+ 1)(2r + 2�).

Proof. Let S denote a centre of Z, and define ι : Z → S such that ι(v) ∈N�
G(v)∩ S for each v ∈ Z.

Since P ⊆ Z, it is immediate that every r-subpath of P − Z has weak diameter in G at most 0.
We also know that for any v ∈ Z, distG(v, ι(v))� �. Thus, we can apply Proposition 7 to obtain a
(2r + 2�)-walk from x to ywhose interior is in S. Since |S|� k, P′ can involve at most k+ 2 distinct
vertices, and thus distG(x, y)� (k+ 1)(2r + 2�), as desired. �

The next result is very similar to Lemma 2.1 of Bonamy, Bousquet, Esperet, Groenland, Liu,
Pirot, and Scott [2], albeit the original’s bound as stated is not tight enough for our purposes. We
instead use Proposition 7 for a different, quicker, proof that avoids this problem.

Corollary 9. Let G be a weighted graph, let r > 0, d, �� 0 be real numbers, let m� 1 be an integer,
let C be a set of colours of size m, and let Z ⊆V(G) be a (k, �)-centred set in G such that G− Z
admits an (m, r, d)-colouring c with colours C. Then for any colouring c′ of Z with colours C, the
colouring c∪ c′ of G is a (m, r, (k+ 1)(d+ 4r + 2�))-colouring with colours C.

Proof. Let S denote a centre of Z, and let Z′ := Nr+�
G (S). For any u, v ∈V(G) \ Z′ at distance

at most r in G and any shortest path Q from u to v in G, observe that Q is disjoint from Z, as
otherwise we would have u, v ∈Nr

G(Z)⊆ Z′. Thus, Q is also a path of length at most r in G−
Z, and distG−Z(u, v)� r. Therefore, for any monochromatic r-path P in G under c∪ c′, any r-
subpath P′ of P − Z′ is a monochromatic r-path in G− Z under c. Thus, P′ has weak diameter
in G− Z (and G) at most d. Define a map ι : Z′ → S by selecting ι(z) ∈Nr+�

G (z)∩ S for each z ∈
Z′; by Proposition 7, we obtain a (d + 2r + 2(r + �))= (d + 4r + 2�)-walk which has the same
endpoints as P but whose interior is contained in S. Since |S|� k, this (d + 4r + 2�)-walk involves
at most k+ 2 distinct vertices, and thus has weak diameter at most (k+ 1)(d + 4r + 2�) in G,
as desired. �

The main purpose of Proposition 7 and Corollaries 8 and 9 is to give sufficient conditions
under which we can show that a given colouring is a (m, r,D)-colouring. With this in mind, we
introduce one more tool to do this in a non-trivial setting, however we need to introduce a bit
more terminology first.
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A separation of a graph G is a pair of subgraphs (A, B) of G such that G=A∪ B. The set S :=
V(A∩ B) is called the separator of the separation.

Next, given a real number r > 0, a set of colours C of size at least 2, a weighted graph G, S⊆
V(G), and Z ⊇N3r

G (S), we say that a colouring c of Z with colours C has an (S, r)-barrier in G if
there exist distinct colours α, β ∈ C such that:

(a) for each v ∈Nr
G(S) \ S, there exists s ∈Nr

G(v)∩ S with c(s)= c(v)
(b) N2r

G (S) \Nr
G(S) and N3r

G (S) \N2r
G (S) are α-monochromatic and β-monochromatic respec-

tively under c.

Note that this definition is not completely new; something similar was used in the proof of
Lemma 3.2 in Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2] without being
formally identified. Note that for any colouring cS of S with colours C, there exists a colouring of
Z with colours C that extends cS and admits an (S, r)-barrier. Further, note that the presence of an
(S, r)-barrier in G is preserved upon extending a colouring.

The choice of name “barrier” comes from the following observation. For any r-path P from
u ∈N2r

G (S) to v ∈V(G) \N2r
G (S), P must contain a vertex in both N2r

G (S) \Nr
G(S) and N3r

G (S) \
N2r
G (S). Since these two sets are monochromatic of different colours, this means that P cannot

be monochromatic. Hence, this colouring contains a “barrier” near S that blocks monochromatic
r-paths. The requirement on howNr

G(S)− S is coloured is to prevent a “sudden” change in colour-
ing, in the sense that vertices close to S still use similar colours to S, and the monochromatic sets
only appear further away from S. This is not important when G is the full graph, however we use
it when G is one half of a separation of a larger graph, and S is the separator. Property (a) then
prevents a sudden transition of colours upon crossing the separator, and property (b) prevents
monochromatic r-components from leaking far across the separator.

We are now in position to state the main tool of this section, Lemma 10. While the statement
of Lemma 10 is new, the proof uses similar techniques to the later parts of the proof of Lemma 3.2
in Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [3].

Lemma 10. Let r > 0, �� 0 be real numbers, let k� 1 be an integer, and set �′ := (k+ 1)(6r + 2�)
and r′ := 2r + 2�′. Let m� 2 be an integer, let C be a set of colours of size m, and let d,D> 0
be real numbers such that D� d + 2r′. Let G be a weighted graph, and for some integer a� 0, let
G0,G1, . . . ,Ga be isometric subgraphs of G such that:

(a) G= ⋃a
i=0 Gi;

(b) for each i ∈ {1, . . . , a}, if G̃i := ⋃a
j=0,j
=i Gj and Si := V(Gi ∩ G̃i), then:

(i) Si ⊆V(G0); and
(ii) Si is a (k, �)-centred set in G;

(c) G0 admits a (m, r′, d)-colouring c0 with colours C;
(d) for each i ∈ {1, . . . , a}, Gi admits a colouring ci with colours C such that:

(i) ci is an (m, r,D)-colouring of Gi;
(ii) ci = c0 on Si; and
(iii) ci has an (Si, r)-barrier.

Then c := ⋃a
i=0 ci is a well-defined (m, r,D)-colouring of G with colours C.

Proof. If a= 0 the claim is trivially true, as G=G0 by (a) and c= c0 is an (m, r,D)-colouring of
G0 =G by (c), since r′ � r and d�D. So assume a� 1.

Observe that c is a well-defined colouring of G by (a), (b)(i) and (d)(ii). So it suffices to
show that for every real number r > 0 and every monochromatic r-component M of G under
c, wdiamG(V(M))�D.
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Figure 1. A diagram of the separation (Gi , G̃i) of G for some i ∈ {1, . . . , a}, with several relevant sets of vertices near the sep-
arator Si labelled. Vertices and edges of G are not depicted, instead the dotted line denotes a region in which all vertices
and edges are contained. Observe that any r-path P from a vertex in V(Gi) \ N2i to a vertex in V (̃Gi)∪ N2i must contain a ver-
tex in both S2i and S

3
i , which are monochromatic of different colours, depicted here as red and blue. Thus, P cannot be

monochromatic. Additionally, observe that any r-path from a vertex in S2i to a vertex in G̃i ∪ N1i must contain a vertex in S1i .

By (a), for each i ∈ {1, . . . , a}, (Gi, G̃i) is a separation of G with separator Si, which we use
implicitly throughout this proof. Also, note that

⋂a
i=1 V(G̃i)=V(G0) by (b)(i).

For all i ∈ {1, . . . , a} and j ∈ {1, 2, 3}, let Nj
i := Njr

Gi
(Si) and Sji := Njr

Gi
(Si) \N(j−1)r

Gi
. Note that

for each i ∈ {1, . . . , a}, since ci has an (Si, r)-barrier, S2i , S
3
i are both monochromatic of different

colours, and for each v ∈ S1i there is an s ∈ Si ∩Nr
Gi
(v)⊆ Si ∩Nr

G(v) with the same colour as v. Let
V ′ := V(G0)∪ ⋃a

i=1 N2
i .

Claim: For each monochromatic r-component M of G under c, V(M) is contained either in V(Gi)
for some i ∈ {1, . . . , a}, or in V ′.
Proof. For any i ∈ {1, . . . , a}, any r-path P from u ∈V(G̃i)∪N2

i to v ∈V(Gi) \N2
i must contain

a vertex in S2i and S3i ; see Fig. 1. As S2i and S3i are monochromatic of different colours, P cannot
be monochromatic. It follows that for any monochromatic r-component M of G, V(M) must be
contained in either V(G̃i)∪N2

i or V(Gi) \N2
i . Accounting for the fact that this holds for each

i ∈ {1, . . . , a}, we can conclude that V(M) is either contained in V(Gi) \N2
i ⊆V(Gi) for some

i ∈ {1, . . . , a}, or in ⋂a
i=1 (V(G̃i)∪N2

i )=V ′. �
By assumption, G0, . . . ,Ga are all isometric subgraphs of G. Thus, any monochromatic

r-component M of G under c whose vertices are contained in V(Gi) for some i ∈ {1, . . . , a} is
also a monochromatic r-component of Gi under ci; in this case V(M) has weak diameter at most
D in Gi and G. Similarly, any monochromatic r-component M of G under c whose vertices are
contained in V(G0) is a subgraph of a monochromatic r′-component of G0 under c0 as r� r′, and
thus V(M) has weak diameter at most d�D inG0 andG. So henceforth, we only need to consider
monochromatic r-components whose vertices are contained in V ′ but are not contained in any
V(Gi), i ∈ {0, . . . , a}. Consider such a monochromatic r-componentM.

Claim: For each v ∈V(M), there exists s ∈V(G0)∩N�′
G (v) with the same colour as v under c.

Proof. This is trivially true for any v ∈V(G0), and for any v ∈ S1i for some i ∈ {1, . . . , a}, the
claim follows since ci has an (Si, r)-barrier and r� �′. Since V(M)⊆V ′, we now only need to
consider v ∈ S2i for some i ∈ {1, . . . , a}. Observe that V(M) is not contained in S2i , as it is not
contained in V(Gi), thus there must exist some u ∈V(M) \ S2i ; since V(M)⊆V ′, this means that
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u ∈V(G̃i)∪N1
i . Because u, v are both inM, there exists a monochromatic r-path P from v ∈ S2i to

u ∈V(G̃i)∪N1
i inG of the same colour. Observe that Pmust contain a vertex in S1i ; see Fig. 1. Let x

be the first (in the order of the sequence of P) such vertex in S1i ∩ P; observe that every vertex before
x must be in S2i . Thus, the r-subpath P′ of P from v to x is an r-path contained in S1i ∪ S2i ⊆N2

i .
Since ci has an (Si, r)-barrier, there must be an s ∈ Si ∩Nr

G(x)⊆V(G0) with the same colour as x.
Hence, v and s have the same colour, and there is an r-path contained in N2

i from v to s obtained
by appending s to the end of P′. Since Si is a (k, �)-centred set in G, N2

i is a (k, � + 2r)-centred
set in G. Thus, we can apply Corollary 8 to find that distG(v, s)� (k+ 1)(2r + 2(2r + �))= �′, as
desired. �

Therefore, we may define a map ι :V(M)→ S that sends v ∈V(M) to some s ∈V(G0)∩N�′
G (v)

with the same colour as v. Now, for any two vertices x, y in V(M), we know that there exists a
monochromatic r-path P from x to y in G whose vertices are contained in V(M). Thus, every
r-subpath of P −V(M) has weak diameter in G at most 0. By applying Proposition 7, we obtain
a monochromatic (0+ 2r + 2�′)= r′-path P′ in G of the same colour as P but whose interior is
contained in V(G0). As G0 is an isometric subgraph, Int(P′) is a monochromatic r′-path in G0
under c0, and thus has weak diameter in G0 and G at most d. Hence, P has weak diameter in G at
most d + 2r′; in particular distG(x, y)� d + 2r′ �D, as desired. �

3. Colourings on tree-decompositions
Given graphs G,H, an H-decomposition of G is a collection (Bx : x ∈V(H)) of subsets of V(G)
such that (a) for each v ∈V(G), the subgraph of H induced by the vertices x ∈V(H) with v ∈ Bx
is nonempty and connected; and (b) for each uv ∈ E(G), there exists x ∈V(H) such that u, v ∈ Bx.
The subsets Bx, x ∈V(H), are called bags. The width of an H-decomposition is maxx∈V(H) (|Bx| −
1). The adhesion of an H-decomposition is maxxy∈E(H) (|Bx ∩ By|). If V(H)⊆V(G), (Bx : x ∈
V(H)) is rooted if for each x ∈V(H), x ∈ Bx. An H-decomposition of G is a tree-decomposition
of G if H is a tree T; the treewidth of G is then the minimum width of a tree-decomposition of G.
Note that every graph of treewidth at most k has a tree-decomposition of width and adhesion at
most k.

Given a tree-decomposition (Bt : t ∈V(T)) of a graph G and a vertex t ∈V(T), the torso of G
at t with respect to (Bt : t ∈V(T)), denoted G〈Bt〉, is the graph obtained from G[Bt] by adding an
edge uv whenever there exists t′ ∈V(T) adjacent to t such that u, v ∈ Bt ∩ Bt′ , provided uv does
not already exist in G[Bt]. This is a standard definition, which we now extend. If G is a weighted
graph, we define theweighted torso ofG at t with respect to (Bt : t ∈V(T)), denotedG〈B̂t〉, to be the
weighted graph obtained by imbuing G〈Bt〉 with the weighting w defined by w(uv) := distG(u, v)
for each uv ∈ E(G〈Bt〉). We emphasise that the weight of uv is determined by the distance between
u and v in the whole graph G, not merely in G[Bt], and that even when G is unweighted, the
weighted torso is usually distinct from the torso, with edge weights other than 1.

For any subtree T′ of T, consider ĜT′ := ⋃
t∈V(T′) G〈B̂t〉; note that this is a well-defined

weighted graph, as the weightings on different weighted torsos agree. Observe that shortest
paths in G can only exit V(ĜT′) via a vertex in Bt ∩ Bt′ for some tt′ ∈ E(T) with t ∈V(T′),
t′ ∈V(T) \V(T′), and must also reenter V(ĜT′) via another vertex in Bt ∩ Bt′ ; at this point, the
extra edges added to G[Bt] to form G〈B̂t〉 provide a shortcut of the same length in ĜT′ . It follows
that ĜT′ is isometric inG. In particular, takingV(T′) := {t} shows that the weighted torsoG〈B̂t〉 is
isometric in G, this is our main motivation for considering weighted torsos. Furthermore, we call
ĜT the completion of G with respect to (Bt : t ∈V(T)), and denote it simply as Ĝ. By the previous
observation, Ĝ is isometric inG; in particular, distG = distĜ. As all edges of Ĝ had weight distG, this
means that the weighting on Ĝ is distĜ. Also notice that (Bt : t ∈V(T)) is still a tree-decomposition
for Ĝ, and that for each t ∈V(T), Ĝ〈Bt〉 = unweighted(Ĝ[Bt])=G〈Bt〉; because the weighting on
Ĝ is distĜ, this gives Ĝ〈B̂t〉 = Ĝ[Bt]=G〈B̂t〉. It follows that (̂Ĝ)= Ĝ, hence the name “completion”.
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We also know that for each subtree T′ of T, (̂Ĝ)T′ = ⋃
t∈V(T′) Ĝ[Bt]= ĜT′ is isometric in G and

hence also Ĝ; this is critical to later proofs.
For an integer k� 0 and a class of weighted graphsH, we say that a tree-decomposition (Bt : t ∈

V(T)) of a weighted graph G is a (k,H)-construction of G if it has adhesion at most k and, for each
t ∈V(T), G〈B̂t〉 ∈H. If G admits a (k,H)-construction, we say that G is (k,H)-constructable.

A partition P of a weighted graph G is a collection of nonempty pairwise disjoint subsets of
V(G) such that

⋃
P∈P P =V(G) and each P ∈P induces a connected subgraph of G. The subsets

P ∈P are called the parts of P ; for a vertex v ∈V(G), we use PartP (v) to denote the unique part
P ∈P for which v ∈ P, and for a set S⊆V(G), we use PartsP (S) to denote the set of all parts P ∈P
for which S∩ P 
= ∅. The quotient of P in G, denoted G/P , is the graph with vertex set P and an
edge between two parts if the subgraphs of G they induce are adjacent in G; note that G/P is a
minor ofG. For a real number �� 0,P is �-shallow if, for each part P ∈P ,G[P] has radius at most
�. If, for an integer k� 0, G/P also has treewidth at most k, then we say that P is a (k, �)-partition
of G.

The main results of this section are as follows.

Theorem 11. Let k� 0 be an integer, let H be a class of weighted graphs, and let G be a hereditary
class of weighted graphs that are all (k,H)-constructable. Then ANdim(G)�max (ANdim(H), 1)

Theorem 12. For every integer k� 0, there exists a dilation fk such that for every real number
�� 0, fk is an �-almost 1-dimensional control function for every weighted graph that admits a (k, �)-
partition.

For any graph G of treewidth at most k, the partition into singletons is a (k, 0)-partition of G;
this gives the following as an easy application of Theorem 12.

Theorem 13. For any integer k� 0, any class of weighted graphs of treewidth at most k has
Assouad–Nagata dimension at most 1.

Theorems 11 and 12 are both special cases of a more general result, Theorem 14, which we
work towards stating now.

For any weighted graph G, partition P of G, and tree-decomposition (Bt : t ∈V(T)) of G/P ,
observe that (

⋃
P∈Bt P:t ∈V(T)) is a tree-decomposition of G. For an integer k� 0, a real number

�� 0, and a class of weighted graphs H, we say that the pair (P , (Bt : t ∈V(T))) is a (k, �,H)-
strong-construction for G if:

(a) For each t ∈V(T) and Pt ⊆ Bt , G〈⋃̂P∈Bt P〉[⋃P∈Pt P] ∈H;
(b) P is �-shallow; and
(b) (Bt : t ∈V(T)) has adhesion at most k.

We say that G is (k, �,H)-strongly constructable if it admits a (k, �,H)-strong-construction.

Theorem 14. For every integer k� 0, and function f :R+ →R+, there exists a function fk:R+ →
R+ such that the following holds. Let n� 0 be an integer, let �� 0 be a real number, and let H be
a class of graphs that admits f as an �-almost n-dimensional control function. Set n′ := max (n, 1),
then for every weighted graph G that admits a (k, �,H)-strong-construction, fk is an �-almost n′-
dimensional control function for G. Further, if f is a dilation, then so is fk.

Note that if G is (k,H)-constructable and H is hereditary, then G is (k, 0,H)-strongly con-
structable using the partition into singletons; Theorem 11 then follows. Separately, if H is the
class of weighted graphs H such that V(H) is a (k+ 1, �)-centred set in H, then any weighted
graph G that admits a (k, �)-partition is (k, �,H)-strongly constructable. Using Corollary 8, we
find that, for any r� � and anyH ∈H, any r-path inH has weak diameter inH at most 4(k+ 2)r;
it follows any 1-colouring of H is a (1, r, 4(k+ 2)r)-colouring. Thus, r �→ 4(k+ 2)r is a dilation
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that is an �-almost 0-dimensional control function forH; Theorem 12 follows. The remainder of
this section is therefore dedicated to the proof of Theorem 14.

Theorem 14 itself follows from the following, more technical, lemma.

Lemma 15. For every integer k� 0 and function f :R+ →R+, there exists a function fk:R+ →R+
such that the following holds. Let n� 0 be an integer, let �� 0 be a real number, let H be a class of
graphs for which f is an �-almost n-dimensional control function, and let G be a weighted graph
with a (k, �,H)-strong-construction (P , (Bt : t ∈V(T))). Set n′ := max (n, 1), let r > 0 be a real
number with r� �, let q ∈V(T), and let SP ⊆ Bq be of size at most k. Set S := ⋃

P∈SP P, ZP :=
PartsP (N3r

G (S)), and let cZ be an (n′ + 1)-colouring of Z := ⋃
P∈ZP P with colours {1, . . . , n′ + 1}.

Then cZ can be extended to an (n′ + 1, r, fk(r))-colouring c of Gwith colours {1, . . . , n′ + 1}. Further,
if f is a dilation, then so is fk.

Proof. Let f0 := f , and for every integer k� 1 and real number r > 0, let:

g′
k(r) := 8(k+ 1)r,

g∗
k (r) := 2g′

k(r)+ 2r,
f ∗k (r) := fk−1(g∗

k (r)),
f #k (r) := (k+ 1)(f ∗k (r)+ 4g∗

k (r)+ 12r), and
fk(r) := f #k (r)+ 2g∗

k (r).

Observe that if f is a dilation, then for every integer k� 0, g′
k, g

∗
k , f

∗
k , f

#
k , and fi are all dilations.

Also, note that for every integer k� 0 and real number r > 0 with r� �, g∗
k (r)� r� �.

Now, let r be defined as in the statement of Lemma 15; we need to show that G admits an
(n′ + 1, r, fk(r))-colouring with colours {1, . . . , n′ + 1} that extends cZ . We do this via induction,
primarily on k and secondarily on |V(G)|.

The base case occurs when k= 0; in this case, for each connected component C of G,
V(C)⊆ ⋃

P∈Bt P for some t ∈V(T). Furthermore, for this t, C is isometric in G〈⋃̂P∈Bt P〉.
Since G〈⋃̂P∈Bt P〉 ∈H and r� �, G〈⋃̂P∈Bt P〉 admits an (n′ + 1, r, f (r))-colouring, which we may
assume is with colours {1, . . . , n′ + 1}; the restriction of this colouring to V(C) then gives an
(n′ + 1, r, f (r))-colouring of C with colours {1, . . . , n′ + 1}. As this holds for every connected
component of G, taking the union of these colourings gives an (n′ + 1, r, f (r))-colouring of G
with colours {1, . . . , n′ + 1}. Since f (r)= f0(r) and Z = ∅ as |S| = 0, this is the desired colouring.
So we may now assume that k� 1, and that the lemma holds for all smaller values of k and when
k is the same but |V(G)| is smaller.

We begin by making a few assumptions. Notice that (
⋃

P∈Bt P:t ∈V(T)) is a tree-
decomposition of G; let Ĝ be the corresponding completion of G. We may assume that G=
Ĝ. Otherwise, observe that P is still a partition of Ĝ, and that (Bt : t ∈V(T)) is still a tree-
decomposition for Ĝ/P of adhesion at most k, since the extra edges added to G/P to make
Ĝ/P only go between parts that share a bag. Furthermore, note that edges of G have weight
in Ĝ no larger than their weight in G; since no vertices or edges are deleted going from
G to Ĝ, this means for any P ∈P , rad(Ĝ[P])� rad(G[P])� �. Thus, P is also an �-shallow
partition for Ĝ. Additionally, observe that (

⋃
P∈Bt P:t ∈V(T)) is still a tree-decomposition

of Ĝ, and that the completion of Ĝ with respect to (
⋃

P∈Bt P:t ∈V(T)) is still Ĝ. Also, for
each t ∈V(T), observe that Ĝ〈⋃̂P∈Bt P〉 = Ĝ[

⋃
P∈Bt P]=G〈⋃̂P∈Bt P〉 ∈H; thus for each Pt ⊆

Bt , Ĝ〈⋃̂P∈Bt P〉[⋃P∈Pt P]= Ĝ[
⋃

P∈Pt P]=G〈⋃̂P∈Bt P〉[⋃P∈Pt P] ∈H. So (P , (Bt : t ∈V(T))) is
still a (k, �,H)-strong-construction for Ĝ. Finally, as observed when we first defined the comple-
tion, we have distG = distĜ, hence N3r

Ĝ (S)=N3r
G (S), and any (n′ + 1, r, fk(r))-colouring of Ĝ is an

(n′ + 1, r, fk(r))-colouring of G. Thus, we can proceed by setting G := Ĝ.
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We may also assume that SP is nonempty. Otherwise, if G is empty, we are clearly done, and if
G is nonempty, pick any part P′ of P and pick some vertex q′ ∈V(T) with P′ ∈ Bq′ . Let S′P := {P},
let S′ := ⋃

P∈S′P P = P′, let ZP ′ be the set of parts that intersect N3r
G (S′), and let cZ′ be an arbitrary

(n′ + 1)-colouring of Z′ := ⋃
P∈ZP ′ V(P) with colours {1, . . . , n′ + 1}. Observe that Z must be

empty, thus any colouring that extends cZ′ also extends cZ . Therefore, since |S′P | = 1� k, we may
proceed by setting SP := S′P , S := S′, ZP := Z′P , Z := Z′ and cZ := cZ′ . Observe also that since
parts are nonempty, SP being nonempty implies that S and hence Z are nonempty.

Henceforth, we can now assume that SP , and consequently Z, are nonempty, and that G= Ĝ.
We use the latter assumption implicitly throughout the remainder of the proof. Note that this
gives, as mentioned when we argued that we could take G= Ĝ, that for each t ∈V(T) and each
Pt ⊆ Bt , G[

⋃
P∈Pt P] ∈H.

For each e= tt′ ∈ E(T), let SPe := Bt ∩ Bt′ and let Se := ⋃
P∈SPe P. Note that |SPe |� k; conse-

quently, Se is a (k, r)-centred set in G, as �� r.
For each P ∈ SP , let TP be the subgraph of T induced by the vertices t ∈V(T) such that

Bt ∩ PartsP (N3r
G (P)) 
= ∅. Since P induces a nonempty connected subgraph of G, N3r

G (P) also
induces a nonempty connected subgraph of G, and thus PartsP (N3r

G (P)) induces a nonempty
connected subgraph of G/P . Hence, TP is nonempty and connected, and for each tt′ ∈ E(TP),
Bt ∩ Bt′ ∩ PartsP (N3r

G (P)) 
= ∅. Additionally, TP contains q as a vertex, as P ∈ SP ⊆ Bq.
Let T′ := ⋃

P∈SP TP. Notice that T′ is connected, as each TP, P ∈ SP , is connected and contains
q, and nonempty, as |SP | > 0. Further, notice that t ∈V(T) is in V(T′) if and only if Bt ∩ ZP 
=
∅, and that Bt ∩ Bt′ ∩ ZP 
= ∅ for any tt′ ∈ E(T′). Let G′ := ⋃

t∈V(T′) G[
⋃

P∈Bt P]. Since T′ is a
subtree of T, by a prior observation we made when we first defined the completion, G′ is isometric
in G. Also, notice that for any part P ∈P , G[P] is either a subgraph of G′, or P is disjoint from
V(G′); let P ′ := PartsP (V(G′)), we thus have that P ′ is an �-shallow partition for G′. Finally,
notice that Z ⊆V(G′).

Next, let E′ denote the set of edges between T′ and T −V(T′). For each e ∈ E′, let Te be the
connected component of T −V(T′) incident to e; note that e is the only edge between Te and
T −V(Te). Thus, Te is disjoint from Te′ , e′ ∈ E′ \ {e}, and there is a unique vertex qe ∈V(Te)
adjacent to T −V(Te); in particular qe is adjacent to T′ and e is incident with qe. Additionally,
notice that V(T′)∪ ⋃

e∈E′ V(Te)=V(T); in particular, for each e ∈ E′, V(T) \V(Te)=V(T′)∪⋃
e′∈E′\{e} V(Te′). Finally, notice that because V(Te)⊆V(T) \V(T′), for each t ∈V(Te), Bt ∩

ZP = ∅.
Now, for each e ∈ E′, letGe := ⋃

t∈V(Te) G[
⋃

P∈Bt P], and let G̃e := ⋃
t∈V(T)\V(Te) G[

⋃
P∈Bt P].

Since the only edge between Te and T −V(Te) was e, whose endpoints are qe and some vertex of
T′, note that V(Ge ∩ G̃e)= Se ⊆V(G′) and that SPe ⊆ Bqe . Additionally, using the same reasoning
as with G′, notice that Ge is an isometric subgraph of G, and that Pe := PartsP (V(Ge)) is an �-
shallow partition of Ge. Finally, notice that Z ∩V(Ge)= ∅, as ZP ∩ Bt = ∅ for each t ∈V(Te)⊆
V(T) \V(T′).

We now seek to apply Lemma 10 on G, using G′ as G0 and (Ge:e ∈ E′) as G1, . . . ,Ga. We use r
as both r and �, n′ + 1 for m, {1, . . . , n′ + 1} for C, k as itself, f #k (r) for d, and fk(r) for D. Notice
that �′ is g′

k(r) and r′ is g∗
k (r), hence D= fk(r)� d + 2r′ = f #k (r)+ 2g∗

k (r), as required.
To begin, notice that each vertex or edge of G is contained in G[

⋃
P∈Bt P] for some t ∈V(T).

Since V(T′)∪ ⋃
e∈E′ V(Te)=V(T), for each t ∈V(T), G[

⋃
P∈Bt P] is a subgraph of either G′, or

Ge for some e ∈ E′. Thus, G=G′ ∪ ⋃
e∈E′ Ge, and we have satisfied Lemma 10 (a).

Next, for each e ∈ E′, recall that Se =V(Ge ∩ G̃e)⊆V(G′) and that Se is a (k, r)-centred set in
G. Since V(T) \V(Te)=V(T′)∪ ⋃

e′∈E′\{e} V(Te′), we have G̃e =G′ ∪ ⋃
e′∈E′\{e} Ge′ . Thus, the G̃e

[resp. the Se], e ∈ E′, are the G̃i [resp. the Si], i ∈ {1, . . . , a}, in the statement of Lemma 10, so we
have satisfied Lemma 10 (b).
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Now, consider Lemma 10 (c). Notice that P ′ \ ZP is an �-shallow partition of G′ − Z,
and that (Bt \ ZP :t ∈V(T′)) is tree-decomposition for (G′ − Z)/P ′; since Bt ∩ Bt′ ∩ ZP 
= ∅
for each tt′ ∈ E(T′), we find that (Bt \ ZP :t ∈V(T′)) has adhesion at most k− 1. Also, notice
that (

⋃
P∈Bt\ZP P:t ∈V(T′)) is a tree-decomposition of G′ − Z; fix t ∈V(T′) and consider

(G′ − Z)〈 ̂
⋃

P∈Bt\ZP P〉. For any t′ ∈V(T′) adjacent to t and any u, v ∈ ⋃
P∈(Bt∩Bt′ )\ZP P, observe

that uv ∈ E(G) and hence uv ∈ E(G′ − Z). Additionally, notice that for each uv ∈ E(G′ − Z), uv
has weight distG(u, v) in both G and G′ − Z; this forces distG(u, v)= distG′−Z(u, v). It follows
that (G′ − Z)〈 ̂

⋃
P∈Bt\ZP P〉 = (G′ − Z)[

⋃
P∈Bt\ZP P]=G[

⋃
P∈Bt\ZP P]. Thus, for any Pt ⊆ Bt \

ZP ⊆ Bt , (G′ − Z)〈 ̂
⋃

P∈Bt\ZP P〉[⋃P∈Pt P]=G[
⋃

P∈Pt P] ∈H. Therefore, (P ′ \ ZP , (Bt \ ZP :t ∈
V(T′)) is a (k− 1, �,H)-strong-construction for G′ − Z.

Thus, using g∗
k (r)� � as r and recalling that fk−1(g∗

k (r))= f ∗k (r), we may apply the induction
hypothesis, keeping q unchanged and letting SP be empty, to find an (n′ + 1, g∗

k (r), f
∗
k (r))-

colouring c′ of G′ − Z with colours {1, . . . , n′ + 1}. Now, recall that P ′ is an �-shallow partition
for G′; thus, for each P ∈P ′, wdiamG′(P)� 2�� 2r. Also, as N3r

G (S)⊆ Z ⊆V(G′) notice that
every v ∈N3r

G (S) is still a distance at most 3r from S in G′. Let S∗ be a set containing, for each
P ∈ SP , exactly one vertex v which is at distance at most �� r from every other vertex in G′[P]
(which exists, since P is �-shallow). Then for any z ∈ Z, distG′(z,N3r

G (S))� 2r, distG′(z, S)� 5r,
and distG′(z, S∗)� 6r. Since |SP |� k, |S∗|� k, and thus Z is (k, 6r)-centred set in G′. Since
(k+ 1)(f ∗k (r)+ 4g∗

k (r)+ 12r)= f #k (r), we thus have that the colouring c′′ := c′ ∪ cZ of G′ is an
(n′ + 1, g∗

k (r), f
#
k (r))-colouring with colours {1, . . . , n′ + 1} via Corollary 9. So Lemma 10 (c) is

satisfied with c′′ as c0. Finally, note that c′′ also extends cZ , by definition.
Now, for each e ∈ E′, define cSe := c′′

∣∣
V(Se). Let Z

P
e := PartsP (N3r

Ge
(Se)) and Ze := ⋃

P∈ZP
e
P,

we can find a colouring cZe of Ze with colours {1, . . . , n′ + 1} that extends cSe and has an (Se, r)-
barrier in Ge. Recall that Pe is an �-shallow partition of Ge, and notice that (Bt : t ∈V(Te)) is
a tree-decomposition for Ge/Pe of adhesion at most k, and that (

⋃
P∈Bt P:t ∈V(Te)) is a tree-

decomposition for Ge. For any t ∈V(Te), a similar argument to the one used for the weighted
torsos of G′ − Z shows that Ge〈⋃̂P∈Bt P〉 =Ge[

⋃
P∈Bt P]=G[

⋃
P∈Bt P]; thus, for any Pt ⊆ Bt ,

Ge〈⋃̂P∈Bt P〉[⋃P∈Pt P]=G[
⋃

P∈Pt P] ∈H. It follows that (Pe, (Bt : t ∈V(Te))) is a (k, �,H)-
strong-construction for Ge. Finally, note that |V(Ge)|� |V(G)− Z| < |V(G)|, as Z ∩V(Ge)= ∅
and Z is nonempty. Hence, we can apply induction on Ge, using r as itself, qe as q, SPe ⊆ Bqe as SP ,
and cZe as cZ . This allows us to extend cZe to an (n′ + 1, r, fk(r))-colouring ce of Ge with colours
{1, . . . , n′ + 1}. Note that since ce extends cZe , ce has an (Se, r)-barrier in Ge, and that ce = c′′ on Si,
by definition of cSe . Hence, Lemma 10 (d) is satisfied with the various ce, e ∈ E′, acting as c1, . . . , ca.

Thus, we can now apply Lemma 10 with the parameters specified earlier. This gives us that
c := c′′ ∪ ⋃

e∈E′ ce is an (n′ + 1, r, fk(r))-colouring with colours {1, . . . , n′ + 1}. Since c extends c′′,
which extends cZ , c also extends cZ . Thus, c is the desired colouring. �

4. Colourings on proper minor-closed classes
A landmark result by Robertson and Seymour [21] known as the “Graph Minor Structure
Theorem” gives a structural description of H-minor-free graphs. We now build towards stating
this result.

The Euler genus of a surface with h handles and c cross-caps is 2h+ c. The Euler genus of a
graph G is the minimum Euler genus of a surface � such that G can be embedded into � without
crossings.

Given a graph G0 embedded in some surface � without crossings, a closed disc D in � is said
to be G0-clean if the interior of D does not intersect the embedding of G0, and the boundary of
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D intersects the embedding of G0 only at vertices of G0. Observe that D must sit inside a face of
G0; if the vertices of G0 that D intersects are precisely the vertices of this face, we say that D is
snug in G0. There is a natural cyclic ordering of the vertices of G0 that D intersects by following
the boundary of D; let v1, . . . , vn denote these vertices in this order. Observe that if D is snug, this
ordering is the same as the cyclic ordering of the corresponding face. A D-vortex of G0 is then a
graph H such that V(G0 ∩H)= {v1, . . . , vn}. If Pn denotes the path on n vertices, then a vortex-
decomposition of a D-vortexH of G0 is a Pn-decomposition (B1, . . . , Bn) ofH such that vi ∈ Bi for
each i ∈ {1, . . . , n}. The width of a vortex-decomposition is the width of the Pn-decomposition,
and the width of a D-vortex H of G0 is the minimum width of a vortex-decomposition of H. Note
that the treewidth of H is at most the width of H.

For integers g, p, k, a� 0, a graph G is said to be (g, p, k, a)-almost embeddable if there exists a
set A⊆V(G) of size at most a and subgraphs G0, . . . ,Gs of G for some s ∈ {0, . . . , p} such that:

(a) G−A= ⋃s
i=0 Gi;

(b) G1, . . . ,Gs are pairwise disjoint;
(c) G0 is embedded into a surface � of Euler genus at most g;
(d) there exist pairwise disjoint G0-clean discs D1, . . . ,Ds in �; and
(e) Gi is a Di-vortex of G0 of width at most k for each i ∈ {1, . . . , s}.
Additionally, if all the discsD1, . . . ,Ds are snug in G0, we say that G is snugly (g, p, k, a)-almost

embeddable.
Refer to the set A as the apex vertices of G, the subgraph G0 as the embedded subgraph of G, the

G0-clean closed discs D1, . . . ,Ds as the discs of G, and the subgraphs G1, . . . ,Gs as the vortices of
G; for each i ∈ {1, . . . , s}, Gi is the vortex at Di. Also, callH := ⋃s

i=1 Gi the vortex-union subgraph
of G. Next, for i ∈ {1, . . . , s}, refer to the vertices Si of G0 ∩Gi, ordered by the natural cyclic order-
ing from the boundary of Di, as the boundary vertices of Di. The set S := ⋃s

i=1 Si is referred to as
the boundary of G.

We take the chance to note some properties of snugly (g, p, k, a)-almost embeddable graphs.
For each i ∈ {1, . . . , s}, let (Bi,1, . . . , Bi,ni) be a vortex-decomposition of Gi of width at most k,
and let Si = vi,1, . . . , vi,ni be the cyclic ordering of the boundary vertices of Di; as Di is snug
vi,1, . . . , vi,ni is precisely the vertex set of the face Fi that Di sits inside, in the cyclic order induced
by Fi. Thus, for any interval a, . . . , b of the path Pni , vi,a, . . . , vi,b induces a connected subgraph
of G0[Si]. It follows that (Bi,j:vi,j ∈ Si) is a rooted G0[Si]-decomposition of Gi of width at most k.
As the vortices (including the boundary vertices) as pairwise disjoint, we find that (Bi,j:vi,j ∈ S) is
a rooted G0[S]-decomposition of H of width at most k. Additionally, since for each i ∈ {1, . . . , s},
Si is the vertex set of Fi, S is the vertex set of the union of the faces F1, . . . , Fs. Finally, observe that
(G0,H) forms a separation of G−A with separator V(G0 ∩H)= S.

We can now state the Graph Minor Structure Theorem of Robertson and Seymour [21].

Theorem 16. (Graph Minor Structure Theorem [21]). For every graph H, there exists an integer
k� 0 such that every H-minor-free graph G admits a tree-decomposition of adhesion at most k such
that every torso is (k, k, k, k)-almost embeddable.

Observe that if G as above is a weighted graph, every weighted torso is also (k, k, k, k)-almost
embeddable. Thus, if H is the class of all (k, k, k, k)-almost embeddable weighted graphs, G is
(k,H)-constructable. However, since induced subgraphs of (k, k, k, k)-almost embeddable graphs
are not necessarily (k, k, k, k)-almost embeddable, H is not hereditary, and we consequently
cannot make use of Theorem 11. Instead, consider the class H′ of all induced subgraphs of
(k, k, k, k)-almost embeddable weighted graphs; note that H′ is hereditary and G is also (k,H′)-
constructable. Thus, if we could bound the Assouad–Nagata dimension of H′, we could apply
Theorem 11 to get a bound on the Assouad–Nagata dimension of any H-minor-free class. Since
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proper minor-closed classes areH-minor-free for some graphH, to prove Theorem 3 (a) it suffices
to show that ANdim(H′)� 2.

We now focus on finding a dilation f that is a 2-dimensional control function for every
weighted graph that is an induced subgraph of a (g, p, k, a)-almost embeddable weighted graph.
We show that every such weighted graph is isometric in a snugly (g, p, k, a)-almost embeddable
weighted graph; see Proposition 22. Thus, it suffices to show that f is a 2-dimensional control
function for every snugly (g, p, k, a)-almost embeddable weighted graph G. We notice that if we
can find a control function for G−A=G0 ∪H, we can then apply Corollary 9 to find f as A is
a (a, 0)-centred set. So we just need to focus on the union G0 ∪H. Individually, G0 and H admit
2-dimensional control functions, as the former has bounded Euler genus, so Theorem 2 applies,
and the latter has bounded treewidth, so Theorem 13 applies. However, taking the union creates
issues, as it no longer has bounded treewidth nor Euler genus. Indeed, we have no direct way of
dealing with this union; trying to colour the two halves of the separation independently fails, as
by jumping back and forth between G0 and H we can find short paths in the union that exist in
neither half individually. However, we can recognise that the problem occurs “close” to where the
two subgraphs meet, the boundary S of G, and that “far away” from the boundary, naively colour-
ing as either a graph of bounded Euler genus or as a graph of bounded treewidth suffices. So we
just need to deal with the part of the graph “close” to the boundary. We formalise this idea in the
following proposition.

Proposition 17. Let n� 0 be an integer, let f , g:R+ →R+, let G be a weighted graph, and let (A, B)
be a separation of G with separator S such that:

(a) f is an n-dimensional control function for both A and B; and
(b) for any real number �� 0, g is an �-almost n-dimensional control function for G[N�

G(S)].

Then the function r �→ g(f (r)+ 4r)+ 2(f (r)+ 4r) is an n-dimensional control function for G.

Proof. Fix a real number r > 0, set r′ := f (r)+ 4r and d′ := g(r′). We need to show thatG admits
an (n+ 1, r, d′ + 2r′)-colouring. Let cA and cB be (n+ 1, r, f (r))-colourings ofA, B respectively, set
Z := Nr

G(S) and Z′ := Nr′
G(S), and let cZ′ be an (n+ 1, r′, d′)-colouring ofG[Z′]. Let ι:Z → S be the

identity on S, and for x ∈ Z \ S, let ι(x) be a vertex in S∩Nr
G(x). Now, define a colouring c of G via,

for each x ∈V(G):

c(x) :=

⎧⎪⎨
⎪⎩
cA(x) if x ∈V(A) \ Z,
cB(x) if x ∈V(B) \ Z,
cZ′(ι(x)) otherwise.

Observe that for any x, y ∈V(A) \ Z at distance at most r in G and any shortest path Q from x
to y in G, Q cannot intersect S as otherwise we would have x, y ∈Nr

G(S)= Z. Since Q induces a
connected subgraph of G, this implies that Q⊆V(A)− S. Noting that every edge of G between
vertices in V(A)− S is an edge of A, Q is therefore also a path of length at most r in A, and
distA(x, y)� r. Consequently, any r-path in G whose vertices are contained in V(A) \ Z is also an
r-path in A. A symmetric argument shows that any r-path in G whose vertices are contained in
V(B) \ Z is also an r-path in B.

Now, notice that for any x ∈V(A) and y ∈V(B), if distG(x, y)� r, then x, y ∈Nr
G(S)= Z, as the

shortest path between them must intersect S. Consider an r-path P′ in G that is disjoint from Z;
we claim that P′ must be contained in either V(A) \ Z or V(B) \ Z. Otherwise, somewhere on P′,
we would have consecutive vertices x ∈V(A), y ∈V(B); the previous observation then tells us that
x, y ∈ Z, a contradiction. Therefore, for any monochromatic r-path P from u ∈V(G) to v ∈V(G)
in G under c, any r-subpath P′ of P − Z must be contained in either V(A) \ Z, or in V(B) \ Z. The
observation from the previous paragraph then tells us that P′ is an r-path in either A, or in B,
respectively. Since c is cA on V(A) \ Z [resp. cB on V(B) \ Z], P′ is also monochromatic in either
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A under cA, or in B under cB, respectively. Thus, P′ has weak diameter at most f (r) in either A, or
in B, respectively, and consequently in G as well.

Therefore, we can apply Proposition 7 to find that there exists a f (r)+ 2r + 2r = r′-walk P′′
from u to v in G whose interior consists of vertices of the form ι(x) with x ∈ P ∩ Z. Observe that
for x ∈ P ∩ Z, c(x)= cZ′(ι(x))= cZ′(ι(ι(x)))= c(ι(x)), as ι(ι(x))= ι(x) since ι is the identity on S.
Therefore, P′′ is also monochromatic.

Now, for any x, y ∈ S at distance at most r′ in G and any shortest path Q from x to y in
G, observe that Q is contained in Nr′

G(S)= Z′. Thus, Q is also a path of length at most r′ in
G[Z′], and distG[Z′](x, y)� r′. Since Int(P′′) is contained in S, Int(P′′) is also a (possibly empty)
r′-path in G[Z′]. Further, since c is cZ′ on S, as ι is the identity map on S, we also have that
Int(P′′) is monochromatic under cZ′ . Hence, Int(P′′) has weak diameter at most d′ in both G[Z′]
and G. Thus, P′′ has weak diameter at most d′ + 2r′ in G; in particular, distG(u, v)� d′ + 2r′,
as desired. �

So we just need to find a dilation that is an �-almost 2-dimensional control function for (G−
A)[N�

G−A(S)]. In fact, we find �-almost 1-dimensional control function for (G−A)[N�
G−A(S)]. We

do this by showing (G−A)[N�
G−A(S)] admits a (w, �)-partition, across multiple steps; Theorem 12

then gives the desired dilation. The first step is to find a “natural” �-shallow partition of
G0[N�

G0
(S)].

Proposition 18. Let r� 0 be a real number, let G be a weighted graph, and let S⊆V(G). Then
G′ := G[Nr

G(S)] admits an r-shallow partition P such that each part of P contains exactly one
vertex of S.

Proof. Let � be an arbitrary ordering of the vertices of S. For v ∈Nr
G(S), let ι(v) be the smallest,

with respect to �, s ∈ S such that distG(v, S)= distG(v, s). Then, for each s ∈ S, define Ps := {v ∈
Nr
G(S):ι(v)= s}, and finally, define P := {Ps:s ∈ S}. We argue that P is the desired partition of G′.
Each vertex of G′ is in exactly one part of P , as � acts as a tiebreaker. Additionally, for each s ∈

S, s ∈ Ps as distG(s, s)= 0 and distG(s, s′)> 0 for s′ ∈ S \ {s}; it follows that each part is nonempty
and contains exactly one vertex of S. So it remains only to show that each part Ps, s ∈ S, induces a
connected subgraph of radius at most r; it suffices to show that for each v ∈ Ps, there exists a path
from v to s in G′[Ps] of length at most r.

Let Q be a shortest path from v to s in G; by definition of Ps, Qmust have length distG(v, S)� r.
Thus,Q⊆Nr

G(S)=V(G′), as each vertex ofQ is at least as close to s as v is. Consequently, each ver-
tex ofQ lies in some part ofP ; assume, for a contradiction, that some u ∈Q is not in Ps, and instead
lies in Ps′ for some s′ ∈ S \ {s}. Since Q is a shortest path, distG(s, v)= distG(s, u)+ distG(u, v),
and since u ∈ Ps′ , v ∈ Ps, distG(s, u)� distG(s′, u) and distG(s′, v)� distG(s, v). If distG(s, u)>
distG(s′, u), then distG(s, v)> distG(s′, u)+ distG(u, v)� distG(s′, v), a contradiction. So we must
have that distG(s, u)= distG(s′, u) and distG(s, v)= distG(s′, u)+ distG(u, v)� distG(s′, v); this
forces distG(s, v)= distG(s′, v). If s′ ≺ s, since distG(s′, v)= distG(s, v)= distG(v, S), � would put
v in Ps′ over Ps, contradicting the fact that v ∈ Ps. By contrast, if s′ � s, since distG(s, u)=
distG(s′, u)= distG(u, S), u would have been placed in Ps over Ps′ , another contradiction. Thus,
we must conclude that our assumption was false. This gives Q⊆ Ps, so Q is also a path from v to
s in G′[Ps], and is of the same length in G′[Ps] as in G. Since Q had length at most r in G, Q is
therefore the desired path. �

We need the following lemma from Dujmović, Morin, and Wood [4]; see [7] for an earlier
O(gr) bound.

Lemma 19. For all integers g, r� 0, every unweighted graph of radius at most r with Euler genus at
most g has treewidth at most (2g + 3)r.

We now show that the partition of G0[N�
G0
(S)] we obtain from Proposition 18 is actually a

(w, �)-partition.
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Proposition 20. Let g � 0, p� 0 be integers, let r� 0 be a real number, and let G be a weighted
graph embedded in a surface � of Euler genus at most g without crossings. Let F1, . . . , Fs, s� p, be
faces of G, let S be the vertex set of the union of F1, . . . , Fs, set G′ := G[Nr

G(S)], and let P be an
r-shallow partition of G′ such that each part contains exactly one vertex in S. Then P is a (2g +
4p+ 3, r)-partition of G′.
Proof. We must show that G/P has treewidth at most 2g + 4p+ 3. For each i ∈ {2, . . . , s}, add
a handle connecting the interior of F1 to the interior of Fi; this gives an embedding of G′ into a
surface �′ of Euler genus at most g + 2( max (s− 1, 0))� g + 2p such that all the vertices in S are
in a common face. Thus, by viewingG′/P as contracting each part down to the unique vertex in S,
we can see that G′/P can be embedded in �′ so that every vertex lies on a common face. We can
then add a new vertex toG′/P adjacent to every existing vertex within the interior of the common
face to create a new unweighted graphH of radius at most 1 embedded in�′. Thus, by Lemma 19,
H has treewidth at most 2(g + 2p)+ 3= 2g + 4p+ 3. Since G′/P ⊆H, G′/P also has treewidth
at most 2g + 4p+ 3, as desired. �

Finally, we extend the (w, �)-partition ofG0[N�
G0
(S)] to a (w′, �)-partition of (G−A)[N�

G−A(S)].

Proposition 21. Let t,w� 0 be integers, let r� 0 be a real number, and let G′ be a graph that
admits a separation (G,H) with separator S such that:

(a) G admits a (t, r)-partition P such that each part contains exactly one vertex in S; and
(b) H admits a rooted G[S]-decomposition of width at most w.

Then P ′ := P ∪ ⋃
v∈V(H)\S{{v}} is a ((t + 1)(w+ 1)− 1, r)-partition of G′.

Proof. It is immediate that P ′ is an r-shallow partition of G′, so we only need to show that the
treewidth of G′/P ′ is at most (t + 1)(w+ 1)− 1.

Let (Bt : t ∈V(T)) be a tree-decomposition of G/P of width at most t, and let (Js:s ∈ S) be a
rooted G[S]-decomposition of H of width at most w. For each t ∈V(T), let St := ⋃

P∈Bt P ∩ S;
observe that |St|� t + 1 as (Bt : t ∈V(T)) has width at most t and each P ∈ Bt contains only one
vertex in S. For each t ∈V(T), letKt := ⋃

s∈St PartsP ′(Js). Note that for each P ∈ Bt , there exists s ∈
P ∩ St ; since s ∈ Js, this gives P = PartP ′(s) ∈Kt . Thus, Bt ⊆Kt . We now argue that (Kt : t ∈V(T))
is the desired tree-decomposition of G′/P ′.

First, we show that (Kt : t ∈V(T)) is a tree-decomposition of G′/P ′. Consider any h ∈V(H),
the vertices s ∈ S such that h ∈ Js induce an nonempty connected subgraph Ch of G[S]. Let CP

h =
G/P[PartsP (V(Ch))] note that CP

h must also be nonempty and connected. Thus, the vertices t ∈
V(T) such that Bt ∩V(CP

h ) 
= ∅ induce a nonempty subtree Th of T. Also, observe that for each
s ∈ S, PartP (s) ∈V(CP

s ), as (Js:s ∈ S) is rooted. Now, for each P ∈P ′, let T′
P be the subgraph of

T induced by the vertices t ∈V(T) such that P ∈Kt ; we need to show that T′
P is nonempty and

connected. Note that there is exactly one vertex hP in P ∩V(H); either the unique s in P ∩ S if
P ∈P , or the h such that P = {hP} for P ∈P ′ \P . We argue that T′

P = ThP ; since ThP is nonempty
and connected, this gives the desired result. Note that it suffices to show that V(T′

P)=V(ThP ), as
both subgraphs are induced.

For a given P ∈P ′, if t ∈V(T) is in V(T′
P), then P ∈ PartsP ′(Js) for some s ∈ St . However, since

P ∩V(H)= {hP} and Js ⊆V(H), this forces hP ∈ Js. This gives s ∈V(ChP ), and PartP (s) ∈V(CP
hP ).

By definition of St , PartP (s) ∈ Bt , and thus V(CP
hP )∩ Bt 
= ∅. Therefore, t ∈V(ThP ). By contrast,

for each t ∈V(ThP ), there exists P′ ∈ Bt ∩V(CP
hP ); this part P

′ must contain a s ∈V(ChP )⊆ S. By
definition of ChP , we have hP ∈ Js, so P = PartP ′(hP) ∈ PartsP ′(Js). However, we also know that
s ∈ P′ ∩ S⊆ St , as P′ ∈ Bt , so P ∈ ⋃

s∈St PartsP ′(Js)=Kt . Therefore, t ∈V(T′
P); this combined with

the other direction above gives V(T′
P)=V(Th), as desired.
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To complete our proof that (Kt : t ∈V(T)) is a tree-decomposition of G′/P ′, it remains only
to show that for any P1P2 ∈ E(G′/P ′), P1, P2 ∈Kt for some t ∈V(T). We know that there is some
uv ∈ E(G′) such that u ∈ P1, v ∈ P2, which must be an edge in either G or H. In the former case,
P1, P2 are both parts in P and P1P2 is also an edge of E(G/P); thus, there is some t ∈V(T) for
which P1, P2 ∈ Bt ⊆Kt . Otherwise, there exists s ∈ S with u, v ∈ Js, and thus P1 = PartP ′(u), P2 =
PartP ′(v) ∈Kt for some t ∈V(T) for which PartP (s) ∈ Bt .

Lastly, we just need to consider the width of our tree-decomposition. Observe that for each
t ∈V(T), |Kt|�∑

s∈St |Js|� |St|(w+ 1)� (t + 1)(w+ 1), as desired. �
All that is left is to prove that any induced subgraph of a (g, p, k, a)-almost embeddable

weighted graph is isometric in a snugly (g, p, k, a)-almost-embeddable weighted graph.

Proposition 22. Let g, p, a, k� 0 be integers, and let H be an induced subgraph of a (g, p, k, a)-
almost embeddable weighted graph. Then H is an isometric subgraph of a snugly (g, p, k, a)-almost
embeddable weighted graph.

Proof. We show that H is an isometric subgraph of a (g, p, k, a)-almost embeddable weighted
graph G, and that G is an isometric subgraph of a snugly (g, p, k, a)-almost embeddable weighted
graphG′. The result follows since being isometric is a transitive property.We start with the former
statement.

By definition ofH,H is an induced subgraph of a (g, p, k, a)-almost embeddable weighted graph
G#. Let wH be the weighting function of H, and let wG:E(G)→R+ ∪ {∞} be defined by setting
wG(e) := wH(e) for each e ∈ E(H) and setting wG(e) := ∞ otherwise. Let G be the result of imbu-
ing unweighted(G#) withwG; observe thatG is still (g, p, k, a)-almost embeddable, and thatH ⊆G
as wH =wG

∣∣
E(H). It remains to show that H is isometric in G.

Observe that every path in G is either a path in H, in which case it has the same length in G as
in H as all the edges have the same weight in G as H, or has an edge in E(G) \ E(H) and hence has
length ∞. Since H ⊆G, it follows that H is isometric in G, as desired. So we now tackle the latter
statement.

Let G0 be the embedded subgraph of G, which is embedded in some surface � of Euler genus
at most g, and let D1, . . . ,Ds be the discs of G. For each i ∈ {1, . . . , s}, let Vi := {vi,1, . . . , vi,ni}
represent the boundary vertices ofDi, where vi,1, . . . , vi,ni is ordered according to the natural cyclic
ordering obtained from following the boundary of Di. Note that we may assume ni � 3 for each
i ∈ {1, . . . , s}; otherwise add isolated vertices vi,ni+1, . . . , vi,3 toG,Gi andG0 along the boundary of
Di between vi,ni and vi,1 (if they exist) in that order, and update the vortex-decomposition of Gi by
adding the bags Bj := vj for j ∈ {ni+1, . . . , 3}. G is isometric in this updated graph G∗, so whatever
G∗ is isometric in G will be isometric in as well; thus we may proceed by setting G := G∗.

Create G′
0 from G0 by, for each pair i ∈ {1, . . . , s} and j ∈ {1, . . . , ni}, adding the edge vi,jvi,j+1

if it doesn’t already exist. If vi,jvi,j+1 ∈ E(G), we give vi,jvi,j+1 the same weight in G′
0 as its weight in

G, otherwise we give it weight ∞. We then create G′ from G by adding all of the above edges that
didn’t already exist in G, which will all have weight ∞.

Define an embedding of G′
0 in some surface of Euler genus at most g as follows. Starting from

the embedding of G0, for each pair i ∈ {1, . . . , s} and j ∈ {1, . . . , ni}, we embed vi,jvi,j+1 by trac-
ing just outside the boundary of Di; if vi,jvi,j+1 ∈ E(G0), this overrides the existing embedding
of vi,jvi,j+1 used for G0. Provided that the edges cling sufficiently tightly to the boundaries of the
discs, the resulting embedding has no crossings. These edges also form a cycle aroundDi as ni � 3.
Thus, for each i ∈ {1, . . . , s},Di isG′

0-clean, the vertices ofG
′
0 thatDi intersects isVi, and the cyclic

ordering from following the boundary of Di is just the cyclic ordering of Vi. Additionally, Di is
nested inside a face Fi whose vertices are Vi and whose induced cyclic ordering is the cyclic order-
ing of Vi. Thus, Di is snug, and if Gi is the vortex of G at Di, then Gi is also a Di-vortex of G′

0,
and any vortex-decomposition of Gi as a Di-vortex of G0 is still a vortex-decomposition of Gi as a
Di-vortex of G′

0. Thus, the width of Gi as a Di-vortex of G′
0 is still at most k.
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Therefore, if A denotes the set of apex vertices of G, then G′ −A=G′
0
⋃s

i=1 Gi, where
G1, . . . ,Gs are pairwise disjoint, G′

0 is embedded onto a surface of genus at most g, and each
Gi, i ∈ {1, . . . , s}, is a Di-vortex of G′

0 of width at most k+ 1, where the Di, i ∈ {1, . . . , s} are pair-
wise disjoint G′

0-clean snug discs. Since |A|� a, this shows that G′ is snugly (g, p, k, a)-almost
embeddable, as desired.

So it remains only to show that G is isometric in G′. However, since G⊆G′, each e ∈ E(G)
has the same weight in G′, and each e ∈ E(G′) \ E(G)= ⋃s

i=1 E′
i has weight ∞, an argument

identical to that we used to show that H was isometric in G can be used to show that G is
isometric in G′. �

We are finally in a position to show that the class of all induced subgraphs of (g, p, k, a)-almost
embeddable weighted graphs has Assouad–Nagata dimension 2.

Proposition 23. Let g, p, a, k� 0 be integers. Let G be the class of all (g, p, k, a)-almost embeddable
weighted graphs, and letH be the class of all induced subgraphs of graphs in G. ThenH is hereditary
and ANdim(H)� 2.

Proof. The fact that H is hereditary is immediate, so we only need to show the existence of a
dilation f that is a 2-dimensional control function forH. By Theorem 2, there exists a dilation f #1
that is a 2-dimensional control function for the class of weighted graphs of Euler genus at most
g, and by Theorem 13, there exists a dilation f #2 that is a 1-dimensional control function for the
class of weighted graphs of treewidth at most k. Let f # := max (f #1 , f

#
2 ); note that f # must also be a

dilation. By Theorem 12, there exists a dilation f ′ such that for every real number �� 0, f ′ is an
�-almost 1-dimensional control function for every weighted graph G that admits a ((2g + 4p+
4)(k+ 1)− 1, �)-partition. Let f ∗(r) := f ′(f #(r)+ 4r)+ 2(f #(r)+ 4r) for any real number r > 0;
note that f ∗ is also a dilation as both f #, f ′ are. Finally, let f (r) := (a+ 1)(f ∗(r)+ 4r) for any real
number r > 0; note that f is also a dilation. We show that f is the desired 2-dimensional control
function forH.

Consider anyH# ∈H, using Proposition 22 we know thatH# is an isometric subgraph of some
G ∈ G that is snugly (g, p, k, a)-almost embeddable. Let A be the apex vertices of G, let G0 denote
the embedded subgraph of G, let H denote the vortex-union subgraph of G, and let S denote the
boundary of G. As observed when we discussed some properties of snugly almost embeddable
graphs, S is the vertex set of the union of the faces F1, . . . , Fs for which the discs D1, . . . ,Ds,
s� p, of G are snug in, (G0,H) is a separation of G−A with separator S, and H admits a G0[S]-
decomposition of width at most k. We seek to apply Proposition 17 using G−A as G, (G0,H)
as (A, B), f # as f and f ′ as g. Proposition 17 (a) is immediately satisfied by definition of f #, as
G0 has Euler genus at most g and H has treewidth at most k. Therefore, we only need to show
Proposition 17 (b); that for any �� 0, f ′ is an �-almost 2-dimensional control function for (G−
A)[N�

G−A(S)]. We show that (G−A)[N�
G−A(S)] admits a ((2g + 4p+ 4)(k+ 1)− 1, �)-partition;

the desired result then follows by definition of f ′.
Let �� 0 be a real number, and set S� := N�

G−A(S), S
�
G0

:= S� ∩V(G0) and S�
H := S� ∩V(H).

Note that S�
G0

=N�
G0
(S), and that S�

H =N�
H(S); we use these facts implicitly in the remainder of this

proof. By Proposition 18, G0[S�
G0
] admits an �-shallow partition P such that each part contains

exactly one vertex of S. Since G0 is embedded on a surface of Euler genus at most g and S is
the vertex set of the union of the faces F1, . . . , Fs, with s� p, by Proposition 20, P is (2g + 4p+
3, �)-partition.

Now, notice that (G0[S�
G0
],H[S�

H]) is a separation of (G−A)[S�] with separator S, and that
H[S�

H] also admits a rooted G0[S]= (G0[S�
G0
])[S]-decomposition of width at most k. Thus,

by Proposition 21, P ′ := P ∪ ⋃
v∈S�

H\S{{v}} is a ((2g + 4p+ 4)(k+ 1)− 1, �)-partition of (G−
A)[S�], as desired.
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Thus, we can apply Proposition 17 with the parameters specified above to find that f ′(f #(r)+
4r)+ 2(f #(r)+ 4r)= f ∗(r) is a 2-dimensional control function for G−A. Observing that A is
a (a, 0)-centred set in G, by Corollary 9, (a+ 1)(f ∗(r)+ 4r)= f (r) is a 2-dimensional control
function for G. Since H# is isometric in G, f is also a 2-dimensional control function for H#,
as desired. �

We can now bound the Assouad–Nagata dimension of H-minor-free classes of weighted
graphs.

Theorem 24. For any graph H and any H-minor-free class of weighted graphs G,
(a) ANdim(G)� 2; and
(b) ANdim(G)� 1 if G has bounded treewidth.

Proof. Theorem 24 (b) follows from Theorem 13, so we focus on Theorem 24 (a).
By Theorem 16, there exists an integer k� 0 such that every H-minor-free graph has a tree-

decomposition of adhesion at most k such that every torso is (k, k, k, k)-almost embeddable. LetH
be the class of weighted graphs that are an induced subgraph of a (k, k, k, k)-almost embeddable
weighted graph; by Proposition 23H is hereditary and ANdim(H)� 2. Observe that if every torso
of a weighted graph G is (k, k, k, k)-almost embeddable, then so is every weighted torso. Thus,
every G ∈ G is (k,H)-constructable. By Theorem 11, ANdim(G)�max (ANdim(H), 1)� 2. �

Theorem 3 then follows as a consequence of Theorem 24 and Theorem 1 (b), as the
Assouad–Nagata dimension is at least the asymptotic dimension. We remark that the converse
of Theorem 24 (b) is not true; for example, take the class G of 2-dimensional grids (which is K5
and K3,3-minor-free as all 2-dimensional grids are planar), and for each G ∈ G, fix r ∈V(G), and
weight each uv ∈ E(G) by 2distG(r,{u,v}). It can be seen that any �-path in the weighted graph is either
contained in 2�-neighbourhood of r, or consists of only a single vertex. It follows that � �→ 4� is a
0-dimensional control function for the corresponding class of weighted graphs G′, despite G′ also
having unbounded treewidth [20].

5. Assouad–Nagata dimension of non-minor-closed classes
We close this paper by looking at classes of weighted graphs that admit every graph as a minor. In
particular, we establish some necessary conditions for such a class to have bounded asymptotic or
Assouad–Nagata dimension, which leads to a proof of Theorem 4. We achieve this by migrating
a control function for a graph G in the class to a control function for any minor of G, achieved by
reweighting edges appropriately.

We require the following observation.

Observation 25. Let n� 0 be an integer, let G,H be weighted graphs, and let f be an n-dimensional
control function for G. If there exist real numbers α, β > 0 and a map ι:V(H)→V(G) such
that for all u, v ∈V(H), βdistH(u, v)� distG(ι(u), ι(v))� αdistH(u, v), then r �→ 1

β
f (αr) is an

n-dimensional control function for H.

Proof. Fix a real number r > 0, let cG be an (n+ 1, αr, f (αr))-colouring of G. Define a colour-
ing cH of H via cH(v) := cG(ι(v)) for each v ∈V(H). Since distG(ι(u), ι(v))� αdistH(u, v), for
any monochromatic r-path v0, v1, . . . , vm in H under cH , ι(v0), ι(v1), . . . , ι(vm) is a monochro-
matic αr-walk in G under cG, and thus distG(ι(v0), ι(vn))� f (αr). Since βdistH(v0, vn)�
distG(ι(v0), ι(vn)), we have that distH(v0, vn)� 1

β
f (αr). It follows that cH is an (n+ 1, r, 1

β
f (αr))-

colouring of H. �
Notice that the fact that being isometric preserves control functions is a special case of

Observation 25, using α = β := 1 and the identity map for ι.
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We also make use of the following characterisation of minors. Amodel of a graphH in a graph
G is a partition P := (Px : x ∈V(H)) of some subgraph A of G such that A/P is isomorphic to H.
Such a model exists if and only if H �G.

We first show that for any graphs G,H with H connected and H �G, there is a G′ obtained
from imbuing G with rational edge weights whose control functions translate to control functions
for H.

Proposition 26. Let ε > 0 be a real number, let G be a graph, and let H be a connected unweighted
graph that is a minor of G. Then there exists a function w:E(G)→R+ such that the following holds.
For any integer n� 0, if f :R+ →R+ is an n-dimensional control function for the weighted graph
G′ obtained from imbuing G with w, then the function r �→ f ((1+ ε)r) is an n-dimensional control
function for H. Furthermore, if ε is rational, then w is a rational-valued function.

Proof. Let P := (Px : x ∈V(H)) be a model of H in G, which exists as H �G. By definition, P is
a partition of some subgraph H′ of G such that H′/P is isomorphic to H.

Let E be the set of edges uv ∈ E(H′) such that u, v belong to different parts of P , let E′ be the set
of edges uv ∈ E(H′) such that u, v belong to the same part of P , and let E′′ := E(G) \ E(H′). Define
ι:V(H)→V(G) via setting, for each x ∈V(H), ι(x) ∈ Px. Set p := max (|E′|, 1) and d := diam(H);
note that d < ∞ since H is connected. Define w via

w(e) :=

⎧⎪⎨
⎪⎩
1 if v ∈ E,
ε
p if v ∈ E′,
(1+ ε)d + 1 otherwise.

Note that if ε is rational, then w is rational-valued, as d and p are integers; the former
being because H is unweighted. We show that w is the desired weighting via showing that
distH(u, v)� distG′(ι(u), ι(v))� (1+ ε)distH(u, v) for any u, v ∈V(H); the desired result then fol-
lows from Observation 25. This is clearly true when u= v, so assume they are distinct, and set
� := distH(u, v), �′ := distG′(ι(u), ι(v)); note that �� 1 asH is unweighted. Let P be a shortest path
from u to v in H, observe that P corresponds to a path PG in G′ from ι(u) to ι(v) that uses exactly
� edges in E and no edges in E′′. Thus, the length of PG is at most � + |E′| ε

p � � + p ε
p � (1+ ε)�

as �� 1. Thus, �′ � (1+ ε)�. Next, since d = diam(H), by the prior observation �′ � (1+ ε)d.
Therefore, if P′ is a shortest path from ι(u) to ι(v) in G′, then P′ does not use any edges in E′′, as
they all have weight larger than �′. Thus, P′ corresponds to a path in H of length at most �′. This
gives �� �′, as desired. �

We now show that there is a G′′ obtained from imbuing G with integer edge weights such that
control functions for G′′ translate to control functions for G′.
Proposition 27. For every dilation f , there exists a dilation f ′ such that the following holds. Let G be
a graph, and let H be the result of imbuing G with some rational-valued weighting function w. Then
there exists a function w′:E(G)→N such that for any integer n� 0, if f is an n-dimensional control
function for the weighted graph G′ that is the result of imbuing G with w′, then f ′ is an n-dimensional
control function for H.

Proof. Since f is a dilation, there exists a real number α > 0 such that f (r)� αr for every real
number r > 0; set f ′(r) := αr for every real number r > 0. We claim that f ′ is the desired function.

Since w is rational-valued and |E(G)| < ∞, there exists some integer k> 0 such that kw
is integer-valued; set w′ := kw. Observe that for every u, v ∈V(H)=V(G′), kdistH(u, v)=
distG′(u, v). Thus, if f is an n-dimensional control function for G, by Observation 25 the function
r �→ 1

k f (kr) is an n-dimensional control function for H. Since f (r)� αr for every real num-
ber r > 0, 1

k f (kr)�
1
kα(kr)= αr = f ′(r). Thus, f ′ is an n-dimensional control function for H, as

desired. �
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The last step is to find a G′′′ ∈ G whose control functions translate to control functions for G′′,
this is achieved by subdividing G according to the weights of G′′. Before we put all this together
formally, we introduce one more piece of terminology. Given a set S⊆R+, the S-weights comple-
tion of a class of graphs G, denoted GS, is the class of weighted graphs G such that all edge weights
of G are in S and unweighted(G) ∈ G.
Theorem 28. For every class of graphs G that admits every graph as a minor,

(a) asdim(GR+)= ∞;
(b) ANdim(GN)= ∞; and
(c) if G is closed under subdivision, then ANdim(G)= ∞.

Proof. Let H be any class of connected unweighted graphs with infinite asymptotic (and
Assouad–Nagata) dimension, such as the class of all grids of all dimensions [12]. Fix any inte-
ger n� 0 and any function f :R+ →R+. We show that if f is an n-dimensional control function
for GR+ , then there is an n-dimensional control function for H, a contradiction by choice of H;
Theorem 28 (a) follows. Additionally, we show that if f is a dilation and an n-dimensional control
function for GN, we again have that there is an n-dimensional control function forH, another con-
tradiction; Theorem 28 (b) follows. Finally, we show that if G is closed under subdivision, and f is a
dilation and an n-dimensional control function for G, then f is a dilation that is an n-dimensional
control function for GN, contradicting Theorem 28 (b); Theorem 28 (c) follows.

We start with the first claims. Presume that f is an n-dimensional control function for GR+ , and
fix a rational number ε > 0. Now, for every H ∈H, there exists G ∈ G that contains H as minor.
By Proposition 26, there exists a rational-valued function w:E(G)→R+ such that if f is an n-
dimensional control function for the weighted graph G′ obtained by imbuing G with w, then the
function r �→ f ((1+ ε)r) is an n-dimensional control function forH. Observe that G′ ∈ GR+ , thus
f is an n-dimensional function forG′ and r �→ f ((1+ ε)r) is an n-dimensional control function for
H. Since this holds for every H ∈H, this would make r �→ f ((1+ ε)r) an n-dimensional control
function forH, as claimed. This completes the proof of Theorem 28 (a).

Now, we tackle the second claim. Presume that f is a dilation, and that f is an n-dimensional
control function for GN. Since f is a dilation, we can apply Proposition 27, let f ′ be the func-
tion we obtain. For every H ∈H, let G and G′ be defined as in the previous paragraph; note
that if f ′ is an n-dimensional control function for G′, then the function r �→ f ′((1+ ε)r) is an n-
dimensional control function forH. So we aim to show that f ′ is indeed an n-dimensional control
function for G′.

Since G′ is the result of imbuing G by the rational-valued weighting function w, by
Proposition 27 (using G′ as H), there exists a function w′:E(G)→N such that if f is an n-
dimensional control function for the weighted graph G′′ obtained from imbuing G with w′, then
f ′ is an n-dimensional control function for G′. Observe that G′′ ∈ GN, thus f is an n-dimensional
control function for G′′, f ′ is an n-dimensional control function for G′, and r �→ f ′((1+ ε)r) is
an n-dimensional control function for H. Since this holds for every H ∈H, this implies that
r �→ f ′((1+ ε)r) would be an n-dimensional control function for H, as claimed. This completes
the proof of Theorem 28 (b).

We now proceed to the final caim. Presume that G is closed under subdivision, that f is a
dilation, and that f is an n-dimensional control function for G. For every G ∈ GN, let w be the
weighting of G. Then, let G′ be the graph obtained from unweighted(G) by subdividing each e ∈
E(unweighted(G))= E(G) w(e)− 1 times. By definition of GN, unweighted(G) ∈ G, and because G
is closed under subdivision, G′ is also in G. Thus, f is an n-dimensional control function for G′.
Now, notice that G is isometric in G′; this follows from the fact that for any e ∈ E(G), e has been
split into a path of length exactly w(e) in G′, and because no new paths have been created. Thus,
f is also an n-dimensional control function for G. Since this holds for every G ∈ G, this implies
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that f would be a n-dimensional control function for G, as claimed. This completes the proof of
Theorem 28 (c), and the overall proof of Theorem 28. �

Theorem 4 follows directly from Theorem 24 and Theorem 28 (c).
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A. Proof of Proposition 5

We recall Proposition 5 for convenience.

Proposition 5. Let n� 0 be an integer, and let G be a weighted graph. Then f :R+ →R+ is an n-
dimensional control function for G if and only if, for every real number r > 0, G admits an (n+
1, r, f (r))-colouring.

This method of this proof is essentially identical to the proof of Proposition 1.17 in Bonamy,
Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [2], which shows implicitly that if f (r) is an
n-dimensional control function for G, then G admits an (n+ 1, r, rf (r))-colouring for every real
number r > 0. Our improvement to an (n+ 1, r, f (r))-colouring comes not from any new idea, but
rather due to only measuring distances in G rather than both G and Gr, and avoiding a conversion
overestimate in the process. This improvement is significant as it gives an equivalent definition
for control functions (and thus Assouad–Nagata dimension), as opposed to just an equivalent
definition for asymptotic dimension.

We now begin the proof of Proposition 5.

Proof. First, assume that f (r) is an n-dimensional control function for G. Fix a real number r > 0,
by definition of f there exist collections C1, . . . , Cn+1 such that:

(a)
⋃n+1

i=1
⋃

S∈Ci S=V(G);
(b) Ci is r-disjoint for each i ∈ {1, . . . , n+ 1}; and
(c) wdiamG(S)� f (r) for each i ∈ {1, . . . , n+ 1} and S ∈ Ci.

Let c:V(G)→ {1, . . . , n+ 1} be defined such that v ∈ ⋃
S∈Cc(v) S; note that this is possible by

property (a), but not necessarily unique. Observe that for any i ∈ {1, . . . , n+ 1}, if u, v ∈V(G) are
both coloured i under c and are at distance at most r in G, then u, v both belong to the same set
of Ci by property (b). It follows that any i-monochromatic r-path in G under c is contained in
some set of Ci, and thus has weak diameter in G at most f (r), by property (c). Therefore, c is an
(n+ 1, r, f (r))-colouring, as desired.

For the reverse direction, fix a real number r > 0, and let c be a given (n+ 1, r, f (r))-colouring
of G, which we may assume is with colours {1, . . . , n+ 1}. For each i ∈ {1, . . . , n+ 1}, let Ci be
the set {V(M):M an i-monochromatic r-component under c}. Observe that for any colour i, any
two distinct i-monochromatic r-componentsM1,M2 of G under cmust be r-disjoint. Otherwise,
M1 ∪M2 would be connected in Gr ; since V(M1 ∪M2) is i-monochromatic andM1,M2 are strict
subgraphs of M1 ∪M2, this contradicts the maximality of M1 and M2. Thus, Ci is r-disjoint. By
definition of c, for any monochromatic r-component M of G under c, V(M) has weak diameter
at most f (r) in G. Additionally, each v ∈V(G) must be in some monochromatic r-component of
G (of the same colour as v), so

⋃n+1
i=1

⋃
V(M)∈Ci V(M)=V(G). Therefore, C1, . . . , Cn+1 are the

desired collections. The result follows. �

B. Proof of Proposition 6

We recall Proposition 6 for ease of reference.

Proposition 6. Let n� 0 be an integer and let G be an infinite weighted graph. Let A be the class
of all finite induced subgraphs of G, and let f be an n-dimensional control function for A. Then for
any real number ε > 0, r �→ f ((1+ ε)r) is an n-dimensional control function for G.

This theorem is very similar to that Theorem A.2 of Bonamy, Bousquet, Esperet, Groenland,
Liu, Pirot, and Scott [3]. The difference is that we obtain the control function r �→ f ((1+ ε)r)
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for G, whereas Theorem A.2 of Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [3]
gives the control function r �→ f (r + 1). This difference is significant, as if f is a dilation, then so
is r �→ f ((1+ ε)r); however r �→ f (r + 1) need not be a dilation. This allows us to give an upper
bound on the Assouad–Nagata dimension instead of just the asymptotic dimension.

Before proceeding to the proof of Proposition 6, we observe a key difference between infinite
and finite graphs. In a finite graph, a shortest path between any two vertices always exists, since
there are only finitely many paths. However, this is not true in an infinite graph. Consequently,
in an infinite graph, the distance between two vertices is instead the infimum across all lengths
of paths between the vertices. However, we remark that most other ideas translate to the infinite
case without issue; importantly, objects such as r-paths and monochromatic r-components can be
defined identically. Additionally, while not explicitly stated, Proposition 5 holds even when G is
infinite, using an identical proof.

The proof for Proposition 6 is essentially identical to the proof of Theorem A.2 of Bonamy,
Bousquet, Esperet, Groenland, Liu, Pirot, and Scott [3]. The improved control function for G
comes from a slight tweak in the error of the length of a path that is very close to the infimum.

We require a technical lemma that is a special case of Gottschalk [11].

Lemma 29. Let C, I be sets, let S be the set of all finite subsets of I, and for each S ∈ S , let cS:S→ C.
Then there exists a map c:I → C such that for every S ∈ S , there exists S′ ∈ S with S⊆ S′ such that
cS′ = c

∣∣
S′ .

We now begin the proof of Proposition 6.

Proof. For any real number r > 0, let f ′(r) := f ((1+ ε)r); we must find an (n+ 1, r, f ′(r)) of G.
Set C := {1, . . . , n+ 1}, and let S be the set of all finite subsets of I := V(G). For each S ∈ S , let cS
be an (n+ 1, (1+ ε)r, f ′(r))-colouring of G[S], which we may assume is with colours C. We can
now apply Lemma 29 to obtain a map c:V(G)→ C such that for each S ∈ S , there exists S′ ∈ S
with cS′ = c

∣∣
S′ . We show that c is an (n+ 1, r, f ′(r))-colouring of G.

Let P be any monochromatic r-path inG under c. Since consecutive vertices in P are at distance
at most r in G, we can find a path of length at most (1+ ε)r between them in G. Stringing these
paths together gives us a walk P′ containing P such that consecutive vertices of P are at distance at
most (1+ ε)r in G[P′]. Let S′ ∈ S be such that P′ ⊆ S′ and cS′ = c

∣∣
S′ . Since G[P′]⊆G[S′], consec-

utive vertices of P are also at distance at most (1+ ε)r in G[S′], and since P is monochromatic in
G under c and cS′ = c

∣∣
S′ , P is also monochromatic in G[S′] under cS′ . Hence, P forms a monochro-

matic ((1+ ε)r)-path in G[S′] under cS′ , and thus it has weak diameter in G[S′] and G is at most
f ′(r), as desired. �

It follows from Proposition 6 that the Assouad–Nagata dimension of an infinite weighted graph
G is at most the Assouad–Nagata dimension of the class of all finite induced subgraphs of G. We
remark that the converse is not true; for example, take the disjoint union of all graphs in any
class of finite unweighted graphs with infinite Assouad–Nagata dimension, such as the class of of
all grids of all dimensions [12], and then add a single vertex adjacent to every other vertex. This
infinite graph G has Assouad–Nagata dimension 0 as wdiamG(V(G))� 2, but the class of induced
subgraphs ofG contains a class with infinite Assouad–Nagata dimension, and thus also has infinite
Assouad–Nagata dimension. We also remark that an analogous argument can be used to show
that the converse is not true even when Assouad–Nagata dimension is replaced by asymptotic
dimension.
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