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Abstract

In this paper we consider a projective connection as defined by the nth-order Adler-Gelfand-
Dikii (AGD) operator on the circle. It is well-known that the Korteweg-de Vries (KdV)
equation is the archetypal example of a scalar Lax equation defined by a Lax pair of
scalar nth-order differential (AGD) operators. In this paper we derive (formally) the KdV
equation as an evolution equation of the AGD operator (at least for n < 4) under the action
of Vect(S'). The solutions of the AGD operator define an immersion R —>• DSP""1 in
homogeneous coordinates. In this paper we derive the Schwarzian KdV equation as an
evolution of the solution curve associated with A(n), for n < 4.

1. Introduction

The space of linear differential operators on a manifold M considered as a module over
the group of diffeomorphisms is a well-known classical text. This space has various
algebraic structures, for example, the structure of an associative algebra and of a Lie
algebra [8]. In the one-dimensional case, this has been studied by E. Wilczynski [28]
and E. Cartan [7].

The space of nth-order differential operators or Adler-Gelfand-Dikii (AGD) space
[1, 9] is connected to the gl(n, R) current algebra. Gelfand and Dikii [9] established
the relation between the dual spaces of Kac-Moody algebras on the circle and the
AGD space. The latter is a Poisson subspace of the former [6]. This space has an
interesting structure, and this has been studied from a number of different angles. In
this paper we will focus mainly from the point of view of projective connections on
the circle. Projective connections on the circle have been classified from a geometric
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point of view by Kuiper [18]. Lazutkin and Pankratova [19] were the first to formulate
this analytically.

The connection between the geodesic flow on the Virasoro-Bott group and the
periodic KdV equation follows from the work of Arnold [4], Kirillov [15, 16, 17],
Segal [26, 27], Ovsienko and Khesin [24] and Witten [31]. The connection between
the C. Neumann system and the Bott-Virasoro group has been studied in [11, 12].

It is well-known that the KdV equation is the canonical example of a scalar Lax
equation, which is an equation denned by a Lax pair of scalar differential operators

where
d" d"'1

A = —- + «n_2-—— H (-%
dx" dx"~2

Here P is a differential operator whose coefficients are differential polynomials in
the variables, essentially determined by the requirement that [P, A] be an operator of
order less than n.

Physicists have studied the AGD operators and their connection to extended clas-
sical conformal algebras [5, 21]. Pierre Mathieu [21] has listed several extended
conformal operators. These are denoted by A(n), and some of the members of this
family are:

A(0) = l, AW = 3X, A(2) = 32 + M,

A(4) = d* + 9u2 + 3M" + lOu'dx

and so forth.
These operators define the Poisson (Gelfand-Dikii) bracket of the spin-it field [5].

All these scalar differential operators are covariant operators, or in other words, they
transform covariantly under the coadjoint action of Diff(S'). As shown by Mathieu
at least for n < 4, these operators A(n) depend only on u and its derivatives.

We will take a slightly different route [11]. We will analyse the evolution equation
defined by the action of a vector field Vect(S') on a scalar differential operator.
This gives rise to a KdV flow again. The solution of A(n) defines an immersion in
homogeneous coordinates [10, 25]. In this paper we establish a connection between
this KdV flow and an evolution of a solution curve associated with the immersion.
We know that there exists a projective action of SL(n, R) on RP"~\ induced by the
action of SL{n, R) on R". We will see that the evolution of the solution curve of A is
invariant under the SL(n, R) action. Earlier, Mari Beffa et al. [10] found an explicit
formula for the most general vector evolution of curves on RP"~l. Our approach
is different; it gives an elegant presentation of the Schwarzian KdV [23] (5L(2, R)
invariant KdV) equation, also called Ur-KdV [22, 29,30], as an evolution equation of
the space curve connected to the operator A(n).
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Organization of the paper This paper is organized as follows. In the next section,
we present a brief description of the AGD space and the smooth orientation preserving
immersion given by the solution of the equation involved. Section 3 is devoted to
projective connections on the circle. We will describe the action of Diff(S') on the
AGD manifold in Section 4. In Section 5 we will derive the KdV equation, which is an
evolution equation defined by the action of Vect(S') on the space of nth-order linear
differential operators. We derive the evolution of the solution curve in Section 6.

Results of the paper In this paper we argue that the action of Vect(S') on the AGD
manifold, [3?v, A

(n)] = jgfu o A(n) - A(n) o <£v, (this notation will be explained later)
can be considered as a coadjoint action.

The action of Vect(S') = Te Diff+(5') on the AGD operator A(n) (for n < 4) yields
an evolution equation

3A(n)

—— + [J£, A(n)] = 0.
at

This generates a nonlinear evolution equation for periodic functions u

THEOREM 1.1. The Euler-Arnold equation gives the KdV equation; it is a Hamilto-
nian flow on the "coadjoint orbits" in A(n) for the Hamiltonian function H (M) = u2/2.

THEOREM 1.2. The solutions of an operator A(n) define an immersion R -
in homogeneous coordinates. The evolution equation of the solution curve is a
Hamiltonian flow, and it is given by the Schwarzian KdV equation.

2. AGD space

In the late seventies, Adler [1] defined a family of second Hamiltonian structures
with respect to which the generalized KdV equation can be written as a Hamiltonian
system. The AGD brackets are defined on the space of nth-order scalar differential
operators of the form

f dn

[dxn

*"-' d"~2 d
(1)' 7 T T + "»-27T7 • 1 "13dx"~l dxn~2 dx

where the coefficients M, e C°°(5') are smooth and periodic. This space of differential
operators is called the Adler-Gelfand-Dikii (AGD) manifold. It is known that the
extended classical conformal algebras, that is, n > 2 spin algebras, may be obtained
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from the second Hamiltonian structure of Lax equations for a Lax operator of type

(D-
We realize (the regular part of) the dual space to y as follows:

and the pairing y <8> y* -*• R is given by the formula

(2)

where Res(X) is the coefficient of 3~' in a pseudodifferential operator X.
In the AGD formalism, we assign a vector field Vx on y to every regular linear

functional X. Its value at a point A(n) e 5? is

VXf(A
M) = A(n)(X/A

(n))+ - AM(Xf)+Aw, (3)

the positive sign denoting the projection to the differential part.
Thus we define a Lie-Poisson bracket on the space of smooth functions on y-.

>, ty,4W (A( n ))) . (4)

This bracket is called the Gelfand-Dikii bracket.

2.1. Immersion and solution curve At first we will consider the n = 2 case. In
this case, y is the space of Hill's operators of the form ^ + u(x).

LEMMA 2.1. There is a one to one correspondence between

(1) the Hill's equation on Sl

Af = ir" +uxl/=0,

where u € C°°(Sl) and \// is the unknown Junction; and

(2) smooth orientation preserving immersions g : Sl -> RPl, modulo the equiva-
lence up to PSL(2,R).

This proof is very easy, it says that if we choose two independent solutions \jrt and
\j/2, then

x » (Mx), ifcC*)) (5)

defines an immersion R -*• KP1 in homogeneous coordinates. This defines a curve
in the projective line R/'1. Since the Wronskian of the solution curve is constant up

https://doi.org/10.1017/S1446181100008026 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008026


[5] Diffeomorphisms on S1 173

to multiplication by a matrix in SL(2, R), then the Wronskian V̂ 'V̂  — ^1^2 °f a n v

immersion can be written in the form of (5) and is equal to one.
This picture can be easily extended to the case of an nth-order scalar differential

operator. The AGD manifold is an infinite-dimensional Frechet manifold of scalar
differential operators with smooth and periodic coefficients. Associating with the
equation At/f = 0we define n independent solutions (^i,rj/2,... ,rfrn). The map

x »—• (iM*), M * ) , • • • , iM*)) (6)

defines an immersion g : R -> RP""1 in homogeneous coordinates. Thus we obtain
a solution curve associated to L; once again the Wronskian of the components equals
one. Since coefficients are periodic, if ijf(x) is a solution then \J/(x + 2JT) is also a
solution. This implies

where M$ = i}r(2n)\lr(0)~l is a monodromy matrix. This matrix preserves the skew
form given by the Wronskian, so det(M^,) = 1, that is, M^, e SL(n, R). If one
chooses a different solution curve then the new monodromy matrix will appear; this
will be the conjugate of M$ by an element of SL(n, R). This means that for each
Lax operator we can associate with it a projective curve whose monodromy will be an
element of the conjugacy class [M$]. This curve is unique up to the projective action
of SL(n, R).

3. Projective structures

Let ft denote the cotangent bundle of the circle; this is a trivial real line bundle on S1.
Let ft"1 and ft"1 be the tangent bundle and the m-fold tensor product of ft respectively.
The section of ftm is locally given by s = g(x) dxm, where g(x) = g(x + 2n). There
is a natural action of Diff(S1) on the sections of ftm

Sfvs = (fg' + mf'g)dxm, (7)

where Jfv is the Lie derivative of the vector field v = f £. Suppose w = g£ e ft"1.
Hence we get

Jfvw = [v,w] = (gf'-g'f)^-. (8)

3.1. Projective connection on the circle Let us denote by ft±1/2 the square root of
the tangent and cotangent bundle respectively.
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DEFINITION 3.1 ([12, 14]). A projective connection on the circle is a linear second-
order differential operator A : r(£2"1/2) ->• F(Q3/2) such that

(1) the symbol of A is the identity;
(2) / s , (A*,)*2 = /s, Sl (As2) for all s, 6 r(f i-"2) .

Let us takes = i/(x)dx~l/2 e r(fi~1/2),then As e F(QV2) is locally described by

As = (air" + bit' + ex//) dxV2.

As discussed in [7], any differential equation of the form

defines a projective structure.
From the definition of the projective connection, condition (1) implies a = 1 and

condition (2) implies b = 0, hence projective connection can be identified with the
Hill operator A(2) = A = eP/dx2 + u(x).

Using the equation J?v A
(2) = A(2)jSf«, we obtain the following proposition.

PROPOSITION 3.2. A projective vector field v = f £ e r(£2~') satisfies

f'" + 4f'u + 2fu' = 0.

3.2. Extended projective connections In this section we will explicitly compute
the equations satisfied by projective vector fields for different values of n.

DEFINITION 3.3 (Extended Projective Connection). An extended projective con-
nection on the circle is a class of differential (conformal) operators

A( n ): r(fi-(n-1)/2) -

such that

(1) the symbol of A(n) is the identity;
(2) fs, (A<">*,)52 = fsl s,(A<">52) for all s, e

It is known that the symbol of a nth-order operator from a vector bundle U to V
is a section of Hom(f/, V <g> Sym" T), where U = fi-("-1)/2 and V = n(n+1)/2. Since
T = Q~', we get V <g> Sym" T = U, giving an invariant meaning to the first condition.

If s2 € r(fi-("-1)/2) then Si A(n)s2 € V(Q) is a one form to integrate.
The consequence of the first condition is that all the differential operators are monic,

that is, the coefficient of the highest derivative is always one, and the second condition
says that the term un-\ = 0 .
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The weights — (n — l)/2 and (n + l)/2 related to the space of operator A(n) are
known to physicists and mathematicians [13], but not in relation to extended projective

connections.

DEFINITION 3.4. If A is a projective connection then a vector field is called a
projective vector field (relative to A) if

= A(n) (9)

for all s € r(£r<"-|) /2).

3.3. Invariant property of the Wronskian In Section 2.1, we saw that the Wron-
skian of the solutions of a nth-order differential equation is constant, and that the
solution defines an immersion R —> RP"~l in homogeneous coordinates.

The invariant meaning of the Wronskian can also be easily realized in terms of
projective connections.
Case when n = 2:

lfa,b€ r(£Tl / 2) , then we find ab' - a'b € C^iS1), where a', b' € r(f2^2).
If a, b satisfy d2/dx2+u(x)=0, then the Wronskian is constant, since a=\frldx~l/2,

b = i/r2dx~l/2 satisfy

- 0.

Case when n = 3:
If a, b, c e r(£2~'), then the Wronskian

Wr(a, b, c) =
b
b'
b" c"

is an element of C°°(Sl). Again, if a, b, c satisfy d3/dx3 + Aud/dx + 2M' = 0, then
the Wronskian is constant, since a = \j/\dx~l, b = \jr2dx~l c = if/3dx~l satisfy

= 0.
a
a'
a"

b
b'
b"

c
d
c"

This can be generalized to higher values of n.

4. Diff(S') action on the AGD manifold

In this section, we describe the transformations of the AGD operator under the
action of Diff(S'). This transformation of scalar differential operators has been
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known since last century. The action of Diff(S') induces a change of variable in the
independent parameter x.

DEFINITION 4.1. The Vect(S') action on A" is defined by

fB, A(n)] := _Sf-<"+'>/2 o A(n) - A(n) o jgfK—«/2. (10)

Hence (10) can be considered as some coadjoint action of Vect(S') on some "dual"
space [20].

Suppose A(n) to be a scalar differential operator. The action of Diff(S') transforms
the solutions of A(n)i/f = 0 as densities of degree (n — l)/2.

Let us consider the action of Diff(51):

Diff(S') XAGD-+AGD
(x, A(n)) i — ( )

where o(x) A(n) is the unique scalar operator of the form A(n) having wn_i = 0 . If fi
and £ are the solutions of o(x) A(n) and A(n), then their solutions are connected by

In the case of n = 2, this coincides with the action of the Virasoro group on the
space of Hill operators, the dual space of Virasoro algebra.

It should be noted that the operators A(n) do not preserve their form under the action
of Diff(S'), x i-> o(x), due to the appearance of the (n — l)th term

n(n - 1)

Hence we should think of the operators as acting on densities of weight —l/2(n — 1)
rather than on scalar functions; in this case we can always find «n_i = 0 as a
reparametrization invariant. Therefore the action of Diff(S') on A" is given by

a; + «n_2(x)3;-2 + • • • + «„(*) -> a'-(n+1)/2o; + «n_23;-2 + . . . + K0K~(n~I)/2,

where«n_2 = <r'Hn_2(o-(;c))+(l/12)rt(n-l)(n+l)S(;c). HereS(;t)istheSchwarzian.
In particular, for « = 3we find

uo(x) = o'3u0(a(x))+(r'a"ul(a(x))
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For n = 4we obtain

2a'o"u2((j(x)) + 5S'(x),

uo(x) = CT'V l 1ooUl(o(x)) + <

5. The Euler-Arnold equation and the KdV equation

We want to investigate the analogous equation for the extended projective connec-
tion on the circle, that is,

3 A(«)
+ [jSf,, A(n)] = 0, (11)

ot

where [Jifv, A
(n)] is given in (10). It should be noted that one single equation appears

here, this has been considered in various places in different contexts [2, 3].

PROPOSITION 5.1. Equation (11) with n < 5 generates only one single equation

— = - / ' " + 2/ 'u+fu'. (12)

PROOF. We prove this by direct computation.

For a special choice of / = u we obtain the KdV equation. Geometrically this
follows from the argument below.

We have argued that the action [Jfv, A(n)] can be considered as a coadjoint action
of Vect(S') on A(n). Using (12) we know

u = i / w + 2/ '«+/«'= (jdl + 2ud.

The operator (|3*+2«9,+ux) is called the symplectic operator. The Euler equation
is the Hamiltonian flow on the coadjoint orbits in Q& generated by the Hamiltonian
H(u) = u2(x)/2, given by

d
—«(r) = -ad*u(t)u{t).

Thus by applying the Euler-Arnold equation we prove Theorem 1.1.
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6. Flows on the curve space

In Section 2.1, we saw how an immersion associated with A(n) yields a curve
•ft : R —> RP"~l in the projective space.

Let us write x(r in terms of inhomogeneous coordinates. We lift \}r to a curve on
R". This we may denote by ̂  = r)(x)(l, rj/). We choose the factor r)(x) SO that the
Wronskian of the components of the new curve equals 1.

It turns out that there is a unique choice of t)(x) with such a property, and this is
given by ijfct) = Wr(^ \ . . . , VCi)~l/":

In particular, for the case when n = 2,

rlr = (rfruf2)=(r~1/2,r~l/2^) (13)

is the solution curve [10]. It retains the unitarity of the Wronskian.

LEMMA 6.1. The equation f" + 2M'/ + 4M/ ' = 0 traces out a three-dimensional
space of solutions.

PROOF. If ^i and ̂ 2 are the solutions of

= (d2/dx2 + u)yff = 0, (14)

then it is easy to see that VvV) e r(fi~') satisfies the above equation. Hence the
solution space is spanned by rfr2, ty\ and

Substituting (13) in to (d2/dx2 + M)^, = 0 (for / = 1, 2), we obtain

The right-hand side is invariant under the PSL(2, R)(= SL(2, R /± l ) group. If
we substitute this expression into the Euler-Arnold equation, we obtain the evolution
equation of the solution curve on the projective space

This equation is called the Schwarzian KdV (or Ur KdV by the Wilson school [22, 29,
30]). One can check directly that this equation is SL(2, R) invariant. Thus we obtain
Theorem 1.2.

The Schwarzian KdV has a bihamiltonian structure [29]

/ / , = 4 M , Di = -2\/fx-
ldifx-

1,

H2 = M2, D2 = -\+*-2tf - 3*airx-
3d2
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