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Abstract

A minimal (1,3; v) covering occurs when we have a family of proper subsets selected from v elements
with the property that every triple occurs exactly once in the family and no family of smaller
cardinality possesses this property. Woodall developed a lower bound W for the quantity g^k\l, 3; v)
which represents the cardinality of a minimal family with longest block of length k. The Woodall
bound is only accurate in the region when k > v/2. We develop an expression for the excess of the
true value over the Woodall bound and apply this to show that, when k > v/2, the value of
g(l, 3; v) = W+\ when k is even and W + 1 + ("f *) when k is odd.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30.

1. Introduction

A minimal (A, t; v) covering occurs when we have a family of proper subsets
selected from v elements with the property that every r-set occurs exactly A times
in the family and no family of smaller cardinality possesses this property.
Occasionally, this covering can be achieved by using a family of A:-sets; in this
case, the covering is called a Steiner System Sx(t, k, v). However, Steiner systems
are rare, and the sets of a (A, t; v) covering are usually of unequal sizes; we use
g(X, t; v) to denote the cardinality of a minimal covering.

In [8], we introduced g(A:)(A, t; v); this was the covering number under the
restriction that there was a block of size k but no block of size greater than k.
Clearly,

g(\,t;v)= min gw(X,t;v).
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It thus appears that the behaviour of gw(X, t; v) is more fundamental than that
of g(A, t; v). In [8], [4], and [15], we have studied gw(l, 2; v); this function
decreases as k goes from 2 to a value in the vicinity of v1/2, and then increases to
a maximum in the neighbourhood of k = 2v/3>. Thereafter the function decreases
to v for k = v — 1 and becomes unity for k = v.

We thus see that the value of g(l, 2; v) is almost an accident; it depends on
whether the minimum in the neighbourhood of k = v1/2 is less than the func-
tional value for k = v — 1. For a complete discussion, including a diagram, we
refer to [6]. Of course, the Erdos-de Bruijn Theorem g(l,2; v)> v, proved in [1],
can be easily deduced from the behaviour of g(fc)(l,2; v); cf. [10], [11].

2. The behaviour of g(l, 3; v) for large k

Three general bounds for g(l, 3; v) are known (see [11] and [6]). These are as
follows (in any case that a bound is non-integral, we must take the next integer
above).

The Combinatorial Bound is

(21) v(v-l)(v-2)
1 J k(k - l)(k - 2) •

The Stanton-Kalbfleisch Bound (cf. [13] and [11]) is

(2.2) SK-1+ill*

The Woodall Bound (cf. [17] and [11]) is

(2,) „_> + ( . _*

It is useful to write W in the form

(2.4) y - l + < p

Just as in the case t = 2, the bound C predominates for small k. Then the SK
bound takes over, and finally the W bound predominates. We give a table for the
case v = 16 (this is a value of v large enough to be typical).

In addition, there is a bound due to D. R. Stinson which improves (2.3). For
this bound, one needs to determine 5 = [(v — 2)/(k — 1)]. The bound then takes
the form (cf. [16])
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TABLE I: Lower bounds for g<*> (1 ,3 ; 16)

k C SK W S

3
4
5
6
7
8
9
10
11
12
13
14
15
16

560
140
56
2g

27
55
g2
113

16
64
113
159
196
221
229
216
176
106
1

28
56
85
113

It is easy to deduce from (2.3) and (2.4) that W > SK so long as

v/2 < k < v - 1
(the equality occurs if and only if v/2 = k or k = v - 1). In this paper, we show
that, with the exception of small perturbations, g(k)(l, 3; v) is equal to the bound
W in this range; a more precise statement will be given later.

3. An improvement on the bound W

We first note that there are three trivial cases in which the bound W is exact.
(a) Clearly, if k = v, then W = 1 and the bound is exact (usually we exclude

k = v as a possibility).
(b) If k = v - 1, then

But, if k = v - 1, then we need this single long block plus all triples
made up of the remaining element taken with every pair from the long
block. So the value is

(c) If k = v — 2, and ifv is even, then
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We need to take the single long block and make quadruples consisting of the
two elements not in the long block together with a set of disjoint pairs from the
long block; we also need triples consisting of an element not from the long block
together with all pairs from the long block not previously used. Thus we have

g^l\l,3; v) = 1 + ̂  + 2V-^~{v - 4),

where we employ the well known fact that the elements of the long block have
(u - 3) 1-factors. Simplifying, we find that, in this case,

,3; v) = 1 + ̂ (2v -1)=W.

Henceforth, we exclude cases (a), (b), and (c). We now refer to [11] and quote the
result

proved there in Theorem 1 (the kt are the various block lengths). By placing
\ = 1, writing x = t — 1 and x = t — 2, and combining the equations, it was
shown there that

( , _ ! ) £ ( * , - f + ! ) ( * , - * - 2 ) | £ lk,-t +
A(t-\) 2 A(t-2)\ 2

Here T.A(n) denotes the summation over all blocks which meet the longest block in
n elements. This equation can be written as

,3.!) ( , - ! ,£ (*,-'•")(*,-'-»)
A(t-X)

Now put t = 3 to give

(3.2) 2
,4(2) L .4(1)

The first term can be written as

(3.3) f ( ) )
A(2) V l I A(2) 1 A(2)
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where we write a, to denote the number of blocks which meet the long block in i
elements.

Also, since W is a bound, we can write

(3.4) g^(l,3;v) = l + ao + a1 + a2=W+e,

where e denotes the excess over the bound W. When we substitute (3.3) and (3.4)
into (3.2), we obtain

(3-5) 2 E f *' ~ 3 ) " 2«2 + I (*' ~ 1) + 2(«0 + a, + a2 - «) = 0.
A(2)

Divide by 2 and simplify to obtain

(3.6) e = « 0 + « 1 + E
A(2)

We might remark that analogous formulae hold for t = 2 and t = 4. For
reference, we record these as

and

( : 4(3.8) . = « 0 + « x + « 2 + ( )

Now, suppose that there are 3 or more elements not in the long block; they must
occur in a block, and it will meet the long block in 0,1, or 2 elements. If it meets
the long block in 0 elements, then a0 > 0; if it meets the long block in 1 element,
then «*! > 0; if it meets the long block 2 elements, then kt = 5 and E/,(2)(*'2"

3) > 0.
In any case, we have e > 0.

If there are 2 elements not in the long block and if k = v — 2 is odd, then there
must be a triple which meets the long block in exactly one element; again ô  > 0,
and so e > 0.

On conclusions can be stated as

THEOREM 1. Forg(k)(l, 3; v), we have

.4(2) V l I ,4(1)

Furthermore, ifk = v ork = v — 1 or k — v — 2(v even), then

g^(l,3;v)=W.

In all other cases, we have e > 0 andg^k\\, 3; v) > W + 1.
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We shall see that this result cannot be sharpened, since the bound W + 1 is
attained in many cases.

4. The case of a long block of even length

We first recall the well known fact that a graph K2a possesses (2a - 1) disjoint
1-factors (cf., for example, [12]). Thus the pairs from K6 can be split into K2's as
follows.

12, 34, 56 13, 25, 46
16, 23, 45 15, 24, 36
14, 26, 35

This splitting is called a 1-factorization. It is useful to consider l-factorizations of
K2a_1 as well. In this case, a 1-factor consists of K2's and a single Kx; no Kt can
be repeated. Thus, K2a_x has (2a - 1) 1-factors (again, cf. [12]); for example, the
splitting for Ks is simply

12,34,5 13,25,4 23,45,1
15, 24, 3 14, 35, 2

These results on 1-factors will be useful in our next constructions.
First consider the case that k is even. The remaining points form a set of v - k

elements. Suppose first that v — k is also even. Form a block of length v — k
which is disjoint from the long block (clearly, v — k < k, that is, k < v/2 for this
to be possible). We also take v — k > 2, by virtue of the result of Theorem 1
when v — k = 2.

Form quadruples by taking the Cartesian product of all one-factors from the
(v — k) points with (v — k — 1) 1-factors from the k points. The number of
these is

k v - k , s

Now form triples by taking the elements from the set of (v — k) points with the
remaining (k — 1) — (v — k — 1) 1-factors from the k points. The number of
these is

(vk)

All triples have now been accounted for, and the number of blocks is
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Since, by Theorem 1, we cannot do better, we obtain

THEOREM 2. Ifv/2 < k < v - 2, and ifk and v - kare even, then

(4.1)

COROLLARY 2.1. 7%e bound W + 1 ca/i on(y Z>e achieved in the way indicated
{v — k elements in a single disjoint block).

PROOF. This is immediate from (2.10), since ax must be zero (otherwise
a i + 2^/4(i)(*'i1) > 1)' an<i a2 m u s t be z e r o (otherwise, since v - k > 4, kt> 6
and we would have E^(2)(*'2"3) > 1)- Then a0 = 1, and we have our result.

We now consider the case that k is even and v — k is odd, and we employ a
similar construction. The number of quadruples formed by taking all 1-factors
from the (u - k) points with (v - k) 1-factors from the k points is

k v — k + 1, l N
2 ^ ("-*)•

The number of triples formed by taking elements from the (v — k) points with
the remaining (k - 1) - (v - k) = 2k - v - 11-factors is

| ( o - Jfc)(2Jfc - v - 1).

So the total number of blocks is

= W+ 1.
This gives us

THEOREM 3. Ifv/2 < k < v - 2, and ifk is even and v - kis odd, then

g<*>(l,3;o)- W+l.

COROLLARY 3.1. The bound W+l can only be achieved by placing all v — k
elements not in the long block in a single disjoint block.

PROOF. This follows as for Corollary 2.1.

5. The case of a long Mock of odd length

The situation when k is odd is somewhat different in that, whereas e = 1 for k
even, we find that e > 1 for k odd. This basically stems from the result of the
following lemma.
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LEMMA 5.1. If AB represents any pair of points from the v — k points not in the
long block and if k is odd, then there is at least one block containing AB that
intersects the long block in a single point.

PROOF. AB must occur with each element from the long block; the intersec-
tions of blocks containing AB with the long block can contain only 1 element or
2 elements; and the intersections cannot all contain 2 elements, since k is odd.

Now let us illustrate what happens in a couple of cases. Suppose that v — k = 3.
If the pairs AB, AC, BC, all appear in separate blocks (triples), then they
contribute e = 3(1.5) = 4.5. On the other hand, if there is a single block ABC
meeting the long block in a point, then e = 1 + 1.5 = 2.5.

As a more complicated illustration, let v — k = 10 and suppose that the blocks
ABCD, AEFG, AHKL, BEH, CFK, DGL, DEK, BFL, CGH, CEL, DFH,
BGH, all meet the long block in single points. Their contribution to e is

as opposed to 45 + 45/2 = 135/2 if the pairs had all been in separate blocks.
However, one block ABCDEFGHKL only contributes 1 + 45/2 = 47/2 to the
excess. We are thus led to

LEMMA 5.2. The minimal contribution to the excess from the fact that every pair of
points not in the long block must occur in a block meeting the long bock in a single
point is 1 + \(V2k).

PROOF. AS in the last example, let the v - k points be pair-covered by a set of
blocks of lengths mt, m2,..., mr. Then

v-k
2

Each block of length m, extends to a block of length w, + 1 by meeting the long
block in a single point; so the total contribution to the excess is

r + \)

On the other hand, if all v — k points are put in a block of length (v — k + 1),
then the contribution to the excess is only

1 + 7:
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Clearly, this is the best we can do. Also, we need v — k + 1 < k, that is,
k > (o + l ) /2 . Lemma 5.2 immediately gives us

THEOREM 4. / / (o + l ) /2 < k < v — 2, and if k is odd, then

COROLLARY 4.1. Under these conditions,

, 3 ; , ) < 2 + (»

We shall now show that this bound is actually attained for k odd in the range
(o + l ) /2 < k < v - 2.

First, let k be odd and let v — k be even. In addition to the two blocks of
lengths k and v — k + 1, we require the following.

(a) (fc - l)(o - k) triples containing the point A which lies on both blocks
and also containing one point from each block.

(b) \{v - k)\(k - IXi> - k - 1) quadruples formed by taking the Cartesian
product of all one-factors from the (v - k) elements with (v - k - 1)
1-factors from the (k - 1) points (less A) in the long block.

.(c) (v — k)j(k — l)(2k — o — l) triples formed by combining the v — k
points.not in the long block with the remaining 1-factors of the (k - 1)
points (less A) in the long block.

The total number of these blocks, which cover all triples on the v points, is

2 + (" ~ *)(* ~ 1) {4 + ( p _ k _ ^ + ( 4 ) t _ 2v - 2)}

(o - k)(k - l)(3fc - o + l)
4

Since this is the bound in Corollary 4.1, we can do no better and thus have shown
that the bound is attained.

The construction for k odd and v - k odd is similar, although the counts
differ. We have two blocks intersecting in (A), together with the following blocks:

(a) (k - l)(o - k) triples as before.
(b) \{v - k - \)\{k - IX*> ~ k) blocks (some are quadruples and some are

triples) formed by taking the Cartesian product of 1-factors.
(c) (o — k\k2l)Qk — v — 2) triples formed by taking single elements with

1-factors from the k — 1 points different from A on the long block.
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The total number of blocks then is given by

[10]

2 ( 2 k - v -

2 +
(v - k)(k - l)(3k - o + l)

as before. These two calculations establish

THEOREM 5. If (v + l ) /2 < k < v - 2, and ifk is odd, then

(5.1) g(*)(i> 3;0) = 2 + ^

COROLLARY 5.1. For the minimal configuration giving

we must have two blocks of lengths k and v — k + 1 intersecting in a single point,
the other blocks are triples or quadruples.

PROOF. Any other configuration would give (by Lemma 5.2) a contribution to
the excess that would push the value over the stated lower bound.

6. Table for small values of v

In this section, we make use of the results obtained to tabulate g(fc)(l, 3; v) for
v up to 12. In forming Table II, we have used the obvious fact that, for k = 4, we
take .0(3,4, v) quadruples plus as many triples as are needed. Since the packing
number Z>(3,4, v) is known for all v in our table (cf. [14], [2], [5]), the second row
is merely

V

k

3
4
5
6
7
8
9
10
11
12

3

1

4

4
1

TABLE II.

5

10
7
1

g (

6

20
11
11
1

1,3; v

7

35
14
20
16
1

) for 3 *

8

56
14
26
28
22
1

; v < 12.

9

84
30
30
38
41
29
1

10

120
30
42*
44
56
53
37
1

11

165
35
*
47
68
74
87
46
1

12

220
51
*
47
77
90
98
86
56
1
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This fact, with the results of the earlier sections, gives all entries except the three
marked with an asterisk.

LEMMA 6.1. g(5)(l, 3; 10) = 42.

PROOF. Clearly 42 is a lower bound since we can take two disjoint blocks of
length 5. Each has five 1-factors, and the Cartesian product of the 1-factors
contains 3(3) - 1 = 8 blocks (drop the block of length 2). Thus

g<5>(l,3;10)<2 + 5(8) = 42.

Now let the long block be 12345 and the other points be A, B, C, D, E. We
must cover A, B, C, D, E, by 10 blocks, 7 blocks, or 1 block (see the table). We
have already dealt with one block ABCDE (it must be disjoint).

If the cover is 10 triples of the form ABC, they meet the long block in 0,1, or 2
elements. An intersection of 0 or 2 contributes 1 to the value of E, whereas an
intersection of 1 contributes 2.5. However, Lemma 5.1 and the fact that a
pair-covering of 5 elements contains at least 4 triples (such as ABC, ADE, BDE,
CDE) guarantee that E is at least 6(1) + 4(2.5) = 16. Hence, since W = 26, we
cannot obtain a value less than 42 in this way.

If the cover is ABCD, EAB, EAC, EAD, EBC, EBD, ECD, and if the
pair-covering is made up of the six triples, then these contribute a minimum of
6(2.5), and ABCD contributes a minimum of 1. Again, we cannot get a value less
than 42.

Finally, let the cover be ABCD, EAB, EAC, EAD, EBC, EBD, ECD, and
suppose the pair covering is ABCD, EAB, ECD. Then these blocks contribute to
E an amount at least 4 + 2(2.5) + 4(1) = 13. However, Lemma 5.1 guarantees
that AB and CD meet the long block in an odd number of unit intersections;
hence there are two triples ABX and CDX at least, and they contribute another
2(1.5) = 3 units to E. Hence, again, in this case, we can do no better than 42. This
completes the demonstration of the lemma.

We leave the values of g(5)(l,3; 11) and g(5)(l,3; 12) to another paper, since
they are longer and are closely connected with a difficult problem (cf. [13], [10],
[7], [9], [3]). However, the same sort of arguments apply.
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