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Abstract

A system of new integral equations is presented. They are derived from Maxwell’s equations
and describe radio-frequency (RF) current densities on a two-dimensional flat plate. The
equations are generalisations of Pocklington’s integral equation showing phase-retardation
in two dimensions. These singular equations are solved, numerically, for the case of one-
dimensional geometry. The solutions are shown to display effects which correspond to
damped resonance when the wavelength of the current matches aspects of the geometry of
the conductor.

1. Introduction

In magnetic resonance imaging (MRI), the standard RF coil consists of conducting
rungs placed axially along the surface of a circular cylinder, and connected at the ends
by appropriate circuitry. Some designs are given in [3] and [10]. A detailed analysis
of this geometry, including the effects of shielding, has been presented recently by
Forbes et al. [7]. In addition, elliptical coil forms have also been considered by [6] in
an attempt to gain better filling factors for whole-body medical imaging. In this work
the mathematical techniques necessary for analysing particular types of RF coils as
used in these imaging processes, and other RF applications, are developed.

Recent work [14] has indicated that bi-planar coil designs may have advantages
in whole-body imaging. In a bi-planar RF coil design the primary rungs lie on two
parallel planes, and the currents in the conductors on one of these planes run in the

I'The Brain-Body Institute, St. Joseph’s Healthcare, Hamilton L8N 4A6, Canada; e-mail:

Daniel. Bulte@utoronto.ca.

2School of Mathematics and Physics, University of Tasmania, TAS 7001, Australia; e-mail:
Larry.Forbes@utas.edu.au.

3School of Information Technology and Electrical Engineering, University of Queensland, Qld 4072,
Australia; e-mail: stuart@itee.uq.edu.au.

© Australian Mathematical Society 2004, Serial-fee code 1446-1811/04

495

https://doi.org/10.1017/51446181100013523 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013523

496 D. P. Bulte, L. K. Forbes and S. Crozier 2]

opposite direction to the currents in the other plane. Shielding is achieved by rungs
placed on an additional set of parallel planes. The analysis and optimisation of these
devices is therefore of value; however, it has become evident that in order to do this
a difficult problem must be overcome. This arises from the fact that a large coil
experiences fully three-dimensional field effects, due to the retardation of the signal
along the coil’s length. The length of the coil is comparable to the wavelength of the
RF signal, which consequently goes out of phase along the coil’s axis.

The accurate mathematical modelling of RF coils, and their careful construction
and testing, is an engineering problem of great significance in producing high-quality
images of the type needed in medical applications, for example. Such imaging tools
allow detailed and precise information to be developed about the internal structure of
a sample, without the need for invasive techniques. It has also become important in
scientific research, where it is used to image the progress of chemical reactions [9].

A method for analysing shielded bi-planar coils in the absence of retardation effects
[8] has already been developed, as well as a technique for treating phase retardation
effects in narrow wires [12]. Ultimately, however, the full three-dimensional retarda-
tion problem must be confronted. The present paper therefore considers the general
model of radio frequency current densities in a flat conductor through the mechanism
of the governing integral equations. The model is subsequently simplified to the
one-dimensional case and solved to produce results which display phase-retardation
effects.

2. Reduced fields for a general radiating body

When current flows in a flat plate, it is necessary to deal with the two components
of the current density vector, written here as j = ¢''(j, j_y), and the induced surface
charge density 0 = €“'G [4]. The bar above the indicated variables represents the
steady-state or reduced part of the quantity, after the time-harmonic part of the field
has been factored out. Here, it is assumed that a sinusoidal time dependence exists
throughout the region, with angular frequency w (radians per second).

The reduced forms of Maxwell’s equations are

V.D =7, Q.1
V.B =0, (2.2)
V x E =-iwB, (2.3)
VxH=J]+ioD, (24)

in which D and E are the displacement field and the electric field, and B and H are
respectively the induction and magnetic fields. The current density per area is denoted |
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J, while the current per length is j. Charge density per volume is represented by the
symbol p. These may be found in the text by Ramo, Whinnery and van Duzer [13].
Now we choose to make the Lorentz gauge, and set

V. -A=—iwued. (2.5)

Scalar and vector Helmholtz equations for the scalar potential ® and the vector
potential A may be determined. These equations are

— — 1
V0 4+ 0*ued = —-p
£
and

VA + o’ucd = ~uJ.

In [12] these Helmholtz equations were solved in retarded potential form, and give

rise to
_ _i e—iaR__ , ,
A =+ /// —JT()av., (2.6)
\
) = —— e NdV' Q.7
’)_4na/// g _Prav, 7
v

where o = w,/it€ and R = [r’ — r|. By making use of (2.6) the magnetic induction
field may now be expressed by means of the formula

— e 1 -
B(r) = 21% ff/ e ek (% + F) ' —r)yx JrHdV'. 2.8)
\'4

In (2.6)—(2.8), the position vector of the field point external to the conductor is denoted
r, and the symbol 7’ represents the position of a source point within the conducting
volume V.

3. Application to flat plate geometry

3.1. The magnetic induction vector In this section, the general formula (2.8)
for the magnetic induction vector is written in approximate form, appropriate to the
case when the radiating body is a flat plate of negligible thickness with length L and
width W. A definition sketch of the plate is given in Figure 1. The plate is assumed
to be rectangular, occupying the portion —L/2 < x < L/2, -W/2 <y < W/2 of
the x — y plane as shown. In addition, a radio-frequency current of peak density j,
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w/2

—L/2 _S §- L/2

—W/2

FIGURE 1. A definition sketch of the flat-plate RF radiator of length L and width W. Radio-frequency
current is injected at x = —¢ and extracted at x = § as indicated.

is injected at the points (££, 0) indicated in Figure 1. (An approximate method for
accounting for this current injection is described later, in Section 6.)

The boundary conditions on the surface of a perfect conductor are given, for
example, in [2]. They may be written

nxE=0, (3.1
n-B=0, (3.2)
n-D=g, (3.3)

nxH=7]. (3.4)

Because the current density vector j has the same direction on each side of the flat
plate, it follows that H must be tangential to the plate, but have opposite directions on
each side of it. This conclusion follows from (3.4), since the normals n are in opposite
directions on each side of the plate.

If the plate has (small) thickness dh’, then the volume element in the generalised
Biot-Savart law (2.8) becomes d V' = dA’dh’, where dA’ is an element of area on the
plate. It follows that

T
J =2 W (3.5)
and thus
JrdV =25(r')dA’. (3.6)
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The factor of two in (3.5) and (3.6) represents the fact that current flows on both sides
of the plate. With these approximations, the induction field in (2.8) may be shown to
have Cartesian components:

5.0 =4 [[ e (5 + 5 ) raa a7
B,(r) = f / "“R(RZ R})z],(r)dA' (3.8)

B.(r) = /f '""R( )[(x ~x)j, () = (¢ = Y)j(r)1dA". (3.9)
Allowing z — 0, where (z > 0), it can be shown that

B.(x,y,0%) = puj,(x,5,0),
-E;(X, Yy, 0+) = _M’.-]T(xv Yy, 0)»
B,(x,y,0")=0

So condition (3.4) is satisfied identically.

3.2. The electric field vector If we now consider the electric field vector and
include the solutions given in (2.6) and (2.7), then after some manipulation it can be
shown that E may be expressed as

—mR
E()—*lw—“fff THdv
—iaR i P — ,
" 4ne //f (Rz R3>(' ryp(rdv. (3.10)

This expression (3.10) is appropriate to the reduced electric field produced by a body
of arbitrary volume V. Once again, we now assume that V is a plate of differentially
small thickness d/’, from which it follows that

pdV =20dA’. @G.1D

As before, the factor of two in (3.11) represents the fact that charge density &
{Coulombs per square metre) is present on both sides of the plate, and dA’ is the
element of area. The plate itself lies on the plane z’ = 0, and the three Cartesian
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components of (3.10) therefore become

—uxR
E()——ﬂfff YT

" 2ne /f - (R2 R3) &' =)y dA’, (3.12)

E,(r) = _ﬂf/
—iaR ,

 2nme /_/ ( )(y —y)o(r'ydA’, (3.13)

—uxR
E()-—ﬂff 7. dA’

= me f/ ik (Rv R3)( 2)o(r'ydA’. (3.14)

Now take the limit z — O for (z > 0) and consider the component E We have
j. =0, andso

L/2 w/2 io
E X, ¥, 2 —uxR
0y, 2) = 27!8 L/ZfW/Z [(X’—x)z-i'(}"")’)z'*'zz

—mR
]y(r YdA’

HCEDT (y -y)?*+ zZ]W] ey )y dx'

Using this result, and (3.12) and (3.13), it may now be shown that, as z — 0,
E.(x,y,0)=0

E (x,y, 0 =0
E.(x,y, 00 =57, y)/e.

It is evident from these results that boundary condition (3.3) is satisfied identically.

4. The integral equations for a flat plate

The retarded-potential solutions in Sections 3.1 and 3.2 satisfy the field equations
(2.1)—(2.4), but it remains to satisfy boundary conditions (3.1)—(3.4) completely. We
show in this section that this leads to a system of three integral equations for the two
components j, and j_y of the current density vector, and the charge density &, on the
plate.
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Boundary conditions (3.2) and (3.4) are satisfied if the condition
L2 w2 1 _ .
f f e~k ( 7@) [ = x)j,(r") = O = »)j (r)]ldy’ dx’ =0 (4.1)
L J-wp 0

is obeyed. Similarly, the full satisfaction of boundary conditions (3.1) and (3.3)
requires that

L/2 w/2 —szo
iwpe f f j.(r"dy' dx’

—12d-wp Ro

L2 pwp2
+/ f e ok ( ) &' —x)oa(r)dy' dx' =0 “4.2)
L2 d-wp R

L2 (W2 e
iwpe / f jy(r') dy' dx’'

—L/2J~wp2

L2 pwp
N / / _,wxo( >(y _)yE(rydy dx’ =0, 43)
—L)2J-wp2 RO

where Ry = \/(x' —x)2+ (y/ — y)? and @ = w,/[i€.

Equations (4.1) to (4.3) are therefore the integral equations that determine the
current-density components j, and j, and the charge density @. They are evidently
a generalisation of Pocklington’s (and Hallen’s) integral equations as given in Bala-
nis [2].

Experience shows that it is extremely difficult to solve this system numerically,
and numerical experiments suggest that only two of these three equations (4.1)—(4.3)
are actually independent. Thus it appears that one of the three equations is linearly
dependent on the other two, although we have not so far been able to prove this in the
full two-dimensional case. The system is made more difficult to solve by the fact that
the unknown functions are all complex quantities. A simpler, related problem, arising
in airfoil theory, was solved by Tuck [15] using a Galerkin method. However, he dealt
with a single equation of this type, which only involved real quantities.

and

5. Reduction to one-dimensional geometry

In view of the difficulty in solving the full two-dimensional system of equations,
we concentrate here on the simpler problem of seeking a solution in one dimension
only. This yields insights into the structure of the solutions. The reduced current
density components j, and ]_,' and the charge density o are assumed to depend on x
alone, which corresponds to a plate of infinite width (W — 00).
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Under these conditions (4.1), (4.2) and (4.3) reduce to

L/2 _
mxz/ ' = x)j,(VFR(ex’ —x])dx' =0, (5.1
-L/2
L2 __
iope(—mi) / T (YHP (a)x’ — x|) dx’
-L/2
L2
+ ot / &’ = x)T(x)Fi(alx’ —x[)dx' =0 5.2)
L2
and
L/2 _ -
iope(—1i) [ 7, YHP (alx’ — x])dx’' = 0. (5.3)
—L/2

Here Ho(z) (¥) is the Hankel function of order zero, and of .the second kind [11], and it
is convenient to define the auxiliary function

2 [* - i 1
F. — —izcoshy av. 5.4
1@ 1 ,/0 ¢ [zcosh Vv + z2 cosh? w] v 4

Once again, it is found that (5.1) is linearly dependent on (5.2) and (5.3). Equation
(5.3) has only the trivial solution j,(x) = 0, and therefore only (5.2) remains for the
range of non-trivial solutions.

5.1. The continuity equation Although there are three integral equations (5.1)-

(5.3) for the three unknowns j,, E and @, only two of them are independent, and
so some extra information is needed. This is provided by means of the continuity
equation [2], which may be written

// —dV +ﬂ]-nd$’=0. (5.5)

Equation (5.5) can be written in a form appropriate to a flat plate, using (3.5), (3.6)
and (3.11). The result [10] is
99  YUx Yy

=0. 5.6
at dx  dy (5.6)

In the present one-dimensional case j, = 0 and in reduced variables (5.6) becomes

3.
1w0+-—j-x-—0
dx

Combining this result with (5.2) produces

L/Z_ a
/ j,(x')Héz)(alx’—xl) dx’ + if ]x,( "—x)YF(alx' —x])dx' =0. (5.7)
-L2 -2 9x

L2
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This is a singular, integrodifferential equation for j,(x). Obviously, one solution is
the trivial case j; = 0. This is as expected, since if there is no input/output current,
then only the trivial case is relevant. However, we are concermned with the non-trivial
case, and so input and output voltage terms must be included explicitly.

6. The numerical method

This section presents a numerical method for obtaining solutions to the governing
integral equation (5.7), in the one-dimensional approximation. In this case, the
injected RF current is accounted for by means of an overall (reduced) current density
of magnitude j, inserted at the point x = — and extracted at the point x = & . This
is a width-averaged approximation to the situation shown in Figure 1, appropriate to
the one-dimensional case considered here.

As indicated in Sections 4 and 5, extensive numerical experience has shown that
the governing system of equations is highly ill-conditioned (this has been confirmed
both in the one-dimensional and two-dimensional cases). Accordingly, the numerical
solution technique we have chosen in this paper avoids excessive sophistication, and
opts instead for the robustness of a straightforward low-order method. A solution was
selected in a basis-function expansion of the form

N
) =) A, —L/2<x<-& E<x<L[2,

n=1

N
@) =Jo+ ) Aua(kx),  —&<x<§,

n=1

and so it follows that
%=ZN:A ¥l (x) —L/2<x<L/2 ©.1)
x I ) '

The basis functions were required to be symmetrical about the origin (the centre of
the plate), and free to take any value at the edges of the plate, and therefore the
chosen functions were ¥, = cos(nrx/L). Now the integrodifferential equation (5.7)

becomes
§E__ N L/2
[ TP = xdx + oA [ )P @l - x
—£ n=1 -L2
N L/2
+iZA,,/ ¥ (x)x’ — x)Fy(alx’ — x|)dx' ~ 0.
n=1 ~Ls2
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We now set up a mesh of N numerical grid points at
xy=k—-1DAx, (k=1,2,...,N),

over half of the plate (0 < x < L/2), with equal point spacing given by

A L
X = ——
2(IN-1)

Evaluating the integral equation at the (N —1) interior mesh points x, (k=1, ..., N—1)
produces the system

N .

Y TwAr~R., (*=12...,N-1, (6.2)

n=1
where

L2 )
Ten = f dx'{Ya(xVH? (@|x" — xi]) + iy, (x') (x' — x) Fi(alx’ — xi]))
L2

and

_ £
Re = —Js f HP (@lx’ — xil) dx.
-§

6.1. Dealing with singularities Difficulties arise in evaluating the terms 7;, and R,
in (6.2) because these involve singular integrals. The integrals involving the Hankel
functions may be rendered non-singular by using the identity

M
/ f GYHP (a|x"— x;]) dx’
-M

M 2
= j [f(x’)Héz’(aIx’—xkl)——.f (xmn(alx'—xkl)] dx’

-M Tl

2f (xi)

+ ;
i

RM(na — 1)+ (M —x) In M — xi] + (M + x) In M + x,]].

This result comes from subtraction of the singular part of the Hankel function (see
[1]). The integrals involving the F; terms have Cauchy-type singularities in the one-
dimensional case. Therefore employing the Cauchy principal value interpretation
(avoiding the case where x’ = x,) produces the non-singular form

M
CPV / £ OO — x) Frl@lx’ - xil) dx’
-M

M ’ ’ ’ 2 1 ’
=/ [f(X)(x —x)Filalx’ — xel) — —=f o) ]dx
- T X' — X

M

+ 2 feol (M‘x‘)
—— X n .
rar’ Ok M + x,;
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FIGURE 2. Current waveform along plate, £ = 0.1m, w = 1.0 x 10°rads™! and L = 1.0m. Here
N =201.

-0.5 ~0.25 -§ 0 g 025 x 0.5

FIGURE 3. Current waveform along plate £ = 0.11m, w = 4.0 x 10°rad.s~! and L = 1.0m. Here
N =201. '

These integrals may now be evaluated using almost any quadrature rule, and we
employ the trapezoidal rule, typically using ~ 200 points to preserve numerical
accuracy. The exact derivation of these equations is shown in Appendix A.

7. The current solutions

The one-dimensional model in Section 5 was first solved for frequencies close to
those which have applications in MRI, as this was the situation which provided the
impetus for the investigation. Figure 2 shows the solution waveform of j, along the
plate at a frequency of @ = 1.0 x 10°rad.s™!. The solution shown is a snap shot
at time ¢ = 0. The discontinuity at +£ is caused by the insertion and extraction
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-5 4

~10}F

-15F

205 0125 -& [) £ 0.25 0.5

FIGURE 4. Solution at a configuration which produces resonance. Horizontal axis: position on plate,
Vertical axis: current amplitude, £ = 0.14m, @ = 4.0 x 10°rad.s™! and L = 1.0m. Here N = 305.

205 025 -¢ [) B3 025 0.5

FIGURE 5. Waveform showing inversion: £ = 0.15m, w = 4.0 x 10°rad.s™ and L = 1.0m. Here
N =201.

of the current on the plate at those two points. In Figure 3 the frequency w is
4.0 x 10°rad.s™', the length of the plate is 1 m and the distance from the origin to
the current insertion/extraction is 0.11 m. The amplitude of the current density jq is
arbitrarily set at 1 Am~'.

The wavelength of radiation appropriate to this frequency is approximately 0.47 m.
This is consistent with the result shown in Figure 3, since the separation of the two
troughs in this diagram has about this value. This confirms the reliability of the
numerical scheme outlined in Section 6.

7.1. Damped resonance Numerical experiments were carried out, in which the
length L of the plate was fixed, but the separation distance 2£ between the current in-

https://doi.org/10.1017/51446181100013523 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013523

[13] Phase-retardation effects at radio frequencies in flat-plate conductors 507

jection/extraction points was varied (at constant angular frequency w). It was observed
that, for £ larger than a certain value, the waveform “inverted”, so that the solution
profile gave the appearance of having been multiplied by some negative constant. The
behaviour is consistent with resonance, since the amplitude of the waveform increased
as the critical separation length § was approached, and the waveform inverted at values
of £ larger than this critical value. However, the resonance behaviour is damped, since
arbitrarily large amplitudes could not be observed in the wave profiles, and there was
a continuous transition between a solution and its “inverted” form, in a narrow band
of values of & near the resonant value. An example of an inverted waveform is given
in Figure 5. Figures 3-5 show this continuous transition.

It is evident that this phenomenon is associated with resonance, since the critical
separation distance 2£ at which it occurs is close to half the free wavelength of radiation
at the given frequency. This value depends on the plate length L and the frequency w.

8. Conclusions

New integral equations (2.6) and (2.7) have been derived from Maxwell’s equations
which describe in full the electric field and induction vectors for radio frequency signals
emitted from a flat plate. This system of equations was reduced to one dimension and
solved for a number of different configurations to demonstrate its robustness. The
solution for the full two-dimensional system will be presented in a future article.

The solutions presented show the significance of phase-retardation effects in these
circumstances. In an MRI full-body scan the RF coils can include rungs up to 1 m
in length and carry currents at comparable frequencies to those dealt with here. The
differences between current densities and fields calculated without considering phase
retardation can be significant.

It has been shown in this work that damped resonance behaviour can occur, and
this is an extreme case of the effects of phase retardation in these systems. Although
these resonances have been revealed only from the numerical solution of a difficult
mathematical equation, they can nevertheless be understood in terms of the physics
of the situation. The resonances occur when the separation distance 2€ is roughly
comparable to half the free wavelength of radiation at this frequency, but they are
damped because the flat plate radiates energy away to infinity. As is standard for
damped resonances, the precise resonant frequency is altered somewhat by the strength
of the effective damping term, but this is difficult to determine in this complicated
system.

The more difficult case of radiation from a fully two-dimensional plate, for which
the integral equations are presented in Section 4, has not been discussed in this paper.
It clearly could involve much more complicated resonant behaviour, and will be
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discussed in a future article.
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Appendix A.

In order to render the integrals in (6.2) non-singular the singular part is removed by
subtraction, and integrated explicitly. In the case of the Hankel function Héz) (alx’ —
x:|), there is a a logarithmic singularity as x” — x; [1]. Thus

7 2 I
HP @' —x]) = = In(alx’ — x;)),

as x’ — x;. Therefore, to evaluate integrals of the form

M
/ fYHP (@lx’ — xi]) dx’

M

using numerical quadrature, we express them as

M 2

f [f CNHP @Ix” — xi]) — f () — In(erlx’ — xkl)] dx’

-M me
M

+f(xk)£./ In(ar|x" — xil) dx’
i

-M

M 2
= f [f(x')Hé”(au'—xkl)—;f (xx) ln(alx’—xkl)] dx’

M
2f (xx)

— RM(na -1+ M —x)In|M — x|+ M +x) In|M + x|}

+

The term in the integral in this last expression is zero if x’ = x;; thus the integral is
now non-singular and may be integrated quite simply.
For integrals of the form

M
/ fONE —x)Filalx’ — x)dx’, (A.D)
-M
it is necessary to consider F)(k) in the limit k — 0. From (5.4), this function may be
written
2 Sl ik 1
Fik) = — —ikcoshy + d
1(6) wk? J, ¢ [cosh ¥  cosh’y v
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Allowing k — 0 in the integrand of this expression gives
F 2 1-0
1(k) = 7-r~k_2—[ - 0]

It follows that

2 1
& = x)Fi(alx’ —x ) > — . asx’ = xp.

watx’ — x;

Therefore the integral in (A.1) has a Cauchy-type singularity (in one dimension). Thus
the integral may be interpreted in the Cauchy principal value sense, and so

M
CPV / F ) — x)Fi(alx’ —xel) dx’
-M

M 2
= / [f (N = x) Fr(alx’ — xel) _f(xk)__z_,_] dx’'
~ mwol(x' — xg)

M

2 Mo gy
+—2f(xk)CPV/ X
Ta

mX =Xk

However,

Mo dx M -~
CPV / - ln( x") :
M x' — Xk M + Xi
Thus the Cauchy principal value interpretation gives

M
CPV/ O —x) Fi(alx’ — x| dx’
-M

M 14 ? ’ 2 1 ’
=f [f(x)(x — x) Fialx’ — xl) — ——f (x)— ]dx
- To X — X

M

2 M—XL-
= In{ ——=*
+ ﬂdzf(Xk) n<M+xk)’

which is non-singular and so may be integrated easily, avoiding the case where x’ = x;.
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