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Abstract

The dynamics of quantised vorticity in neutron star interiors is at the heart of most pulsar glitch models. However, the
large number of vortices (up to ≈1013) involved in a glitch and the huge disparity in scales between the femtometre scale
of vortex cores and the kilometre scale of the star makes quantum dynamical simulations of the problem computationally
intractable. In this paper, we take a first step towards developing a mean field prescription to include the dynamics of
vortices in large-scale hydrodynamical simulations of superfluid neutron stars. We consider a one-dimensional setup and
show that vortex accumulation and differential rotation in the neutron superfluid lead to propagating waves, or ‘avalanches’,
as solutions for the equations of motion for the superfluid velocities. We introduce an additional variable, the fraction of
free vortices, and test different prescriptions for its advection with the superfluid flow. We find that the new terms lead to
solutions with a linear component in the rise of a glitch, and that, in specific setups, they can give rise to glitch precursors
and even to decreases in frequency, or ‘anti-glitches’.
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1 INTRODUCTION

Pulsar glitches are sudden increases in the rotational fre-
quency of pulsars (predominantly observed in radio, but also
seen in X-rays and gamma-rays), that are instantaneous to the
accuracy of the data [with the best upper limits constraining
the rise time to be less than approximately 1 min (Dodson,
McCulloch, & Lewis 2002)] and are thought to be due to
the presence of a large-scale superfluid component in the
neutron star. Mature neutron stars are, in fact, cold enough
for neutrons to be superfluid and protons superconducting
(Migdal 1959; Baym, Pethick, & Pines 1969) [see Haskell
& Sedrakian (2017) for a recent review]. Superfluidity has
a strong impact on the dynamics of the stellar interior, as a
superfluid rotates by forming an array of quantised vortices
which carry the circulation and mediate angular momentum
exchange between the superfluid neutrons and the normal
component of the star, which is tracked by the electromag-
netic emission.

If vortices are strongly attracted, or ‘pinned’ to ions in the
crust or flux tubes in the core of the star they cannot move
out, and the superfluid cannot spin-down with the normal
component, thus storing angular momentum. Sudden recou-
pling of the components leads to rapid angular momentum
exchange and a glitch (Anderson & Itoh 1975). Realistic

models of pinning forces (Seveso et al. 2016; Wlazłowski
et al. 2016) and effective masses (Chamel 2012, 2017; Watan-
abe & Pethick 2017) in the neutron star crusts can be used
to calculate the amount of angular momentum transferred
during a glitch (Pizzochero 2011; Haskell, Pizzochero, &
Sidery 2012; Seveso, Pizzochero, & Haskell 2012; Anders-
son et al. 2012; Chamel 2013) and compared to observations
to constrain the mass of a glitching pulsar and its equation
of state (Newton, Berger, & Haskell 2015; Ho et al. 2015;
Pizzochero et al. 2017). Nevertheless, the trigger mechanism
for glitches is still unknown [see Haskell & Melatos (2015)
for a recent review]. The main mechanisms that have been
proposed are crust quakes (Ruderman 1969), hydrodynami-
cal instabilities (Mastrano & Melatos 2005; Glampedakis &
Andersson 2009), and vortex avalanches (Cheng et al. 1988;
Warszawski & Melatos 2013).

In this paper, we will focus on this last mechanism, vor-
tex avalanches. In this model, local, fast, interactions between
neighbouring vortices release stresses built up gradually over
time as the star spins down. This is the hall mark of Self
Organised Criticality (SOC), and in fact quantum mechani-
cal simulations of vortices in a spinning-down trap confirm
that the spin-down of the superfluid occurs via discrete vor-
tex avalanches, and that the distribution of glitch sizes is a
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power-law, and the distribution of waiting times an exponen-
tial (Warszawski & Melatos 2011). This is consistent with the
size and waiting time distributions of most pulsars, except for
Vela and J0537-6910 (Melatos, Peralta, & Wyithe 2008), for
which an excess of large avalanches appears, with a preferred
size and waiting time. Furthermore, in J0537-6910, there is
a correlation between waiting times and the size of the pre-
vious glitch (Middleditch et al. 2006; Antonopoulou et al.
2018), which some have suggested may be due to crust quakes
(Middleditch et al. 2006), but may also be the consequence
of rapid driving preventing the system from self-organising,
and leading to the whole pinned vorticity being expelled once
the maximum of the pinning force is reached, as is the case in
the ‘snowplow’ model for giant glitches (Pizzochero 2011).
An excess of large avalanches may also indicate a departure
of the system from SOC behaviour, and the onset of a self-
organised bistable state (di Santo et al. 2016).

Quantum mechanical simulations, however, suffer from
numerical limitations that do not allow to simulate the full
neutron star system, or to model the difference in scales in
a neutron star, where vortices with a coherence length ξ c

≈ 10 fm are separated by a distance dv ≈ 10−3 cm. Recent
work has, however, shown that even in a realistic neutron star,
vortices can always move, on average, far enough to knock
on neighbouring vortices without repinning, provided the rel-
ative velocity between the normal fluid and the superfluid W
is close to critical velocity for unpinning, Wcr, and in partic-
ular, W � 0.95 Wcr for standard superfluid drag parameters
(Haskell & Melatos 2016).

In this paper, we take a first step towards including the
microphysics of vortex avalanches in larger scale hydrody-
namical simulations. The situation is complex, as for a hy-
drodynamical treatment, one has to average over several vor-
tices to define a coarse-grained momentum for the superfluid
condensate, thus losing information on the dynamics of in-
dividual vortex unpinning and knock-on events. Large-scale
hydrodynamical coupling, however, can have a strong impact
on the dynamics of the system, and it is well known since the
pioneering work on vortex creep of Alpar et al. (1984a) that
thermal unpinning of vortices can lead to non-linear terms in
the hydrodynamical equations of motion for the superfluid
velocities, and affect the post-glitch relaxation (Akbal et al.
2017).

Recently, Haskell (2016) showed that random unpinning
events, drawn from microphysically motivated power-law
distributions, can be included in simulations. The resulting
glitch distribution, however, differs from the original distri-
bution of vortex unpinning events, and has a cut-off at small
sizes, which can explain the observed deviation from a power-
law of the distribution of glitches in the Crab pulsar for small
sizes (Espinoza et al. 2014). Furthermore, such an approach
can also explain the different kinds of relaxation observed
after glitches, also in the same star (Haskell & Antonopoulou
2014). Here we will follow this approach, but take a step
forward in modelling the non-linear propagation of a vortex
unpinning front during an avalanche.

2 SUPERFLUID HYDRODYNAMICS

We take as our starting point a hydrodynamical description
of the superfluid interior of the star, in which we do not deal
with the dynamics of individual vortices directly, but rather
deal with averaged large-scale degrees of freedom that de-
scribe superfluid neutron velocities and densities, and those
of a charge neutral fluid of protons and electrons. For the pur-
pose of investigating the timescales associated with glitches,
we will consider protons and electrons to be locked by elec-
tromagnetic interactions and flow as a single fluid (Mendell
1991). Following Andersson & Comer (2006), we can write
conservation laws for each species:

∂tρx + ∇i(ρxv
i
x ) = 0, (1)

where the constituent index x labels either protons (p) or neu-
trons (n), v i

x is the velocity, and ρx is a density of respective
constituent x. Note also that summation over repeated in-
dices is implied (with the exclusion of constituent indices).
The Euler equations are

(∂t + v j
x∇ j )(v

x
i + εxw

yx
i ) + ∇i(μ̃x + �) j

+εxw
j
yx∇iv

x
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where w
yx
i = v

y
i − vx

i and μ̃x = μx/mx are the chemical po-
tential per unit mass (in the following, we take mp = mn).
The gravitational potential is � and εx is the entrainment
coefficient which can account for the reduced mobility of
neutrons, especially in the crust (Prix 2004; Chamel 2017).
The terms on the right-hand side are the contribution to the
vortex-mediated mutual friction due to pinned vortices f px

i
and to free vortices, f x

i , which, for straight vortices and lam-
inar flows, takes the form

f x
i = κnvρnB′

εi jk	̂
i
nw

k
xy + κnvρnBεi jk	̂

j
nε

klm	̂n
l w

xy
m , (3)

where 	
j
n is the angular velocity of the neutrons (a hat repre-

sents a unit vector), κ = h/2mn is the quantum of circulation,
nv is the vortex density per unit area, and εijk is the Levi Civita
symbol. Finally, the Feynman relations link vortex density
at a cylindrical radius ϖ to the rotation rate of a superfluid
element:

κnv(
 ) = 2	̃n + 

∂	̃n

∂

, (4)

with

	̃n = [
	n + εn(	p − 	n )

]
. (5)

The parameters B and B′
in the expression for the mutual

friction in (3) can be expressed in terms of a dimensionless
drag parameter R, related to the standard drag parameter γ d

as

R = γd

κρn
, (6)

and are defined as

B = R
1 + R2

and B′ = R2

1 + R2
. (7)
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The parameterR encodes the microphysics of the dissipation
processes that take place in the stellar interior, and its value
is highly uncertain. Nevertheless, the exact value of R is not
crucial for the following discussion, and we will in general
assume that R � 1, and indicate the values we use explicitly
in the examples provided.

Following Sidery, Passamonti, & Andersson (2010), we
can simplify the problem by considering the evolution of the
angular velocity of two axially symmetric rotating compo-
nents. The evolution equations for the angular velocities thus
take the form

	̇n(
 ) = Q(
 )

ρn

1

1 − εn − εp
+ εn

(1 − εn )
	̇ext + Fp(
 ), (8)

	̇p(
 ) = −Q(
 )

ρp

1

1 − εn − εp
− 	̇ext − ρn

ρp
Fp(
 ), (9)

where

Q(
 ) = ρnγ κnvB(	p − 	n ), (10)

and γ = nf/nv is the fraction of vortices which are not pinned
(with nf the surface density of free vortices), while 	̇ext is
the contribution from the external spin-down torque. Fp is the
contribution from the pinning force. While recent progress
has been made on determining the maximum value of the
pinning force from microphysical calculations (Seveso et al.
2016; Wlazłowski et al. 2016), its exact form is not known.
This does not, however, hinder our discussion, for which the
exact form for Fp is not necessary. It will be sufficient to
assume that Fp balances the contribution to the mutual friction
from the (1 − γ )nv pinned vortices, below a critical threshold
for the lag �	C. Above �	C, all vortices are free and Fp =
0 [see, e.g., Seveso et al. (2016) for realistic estimates of the
maximum lag the pinning force can sustain]. In the following,
we will thus not explicitly consider the pinning force, but
simply assume a value of the critical lag �	C.

We can further simplify the problem by assuming, as in
Haskell et al. (2012) and Haskell (2016), that the proton com-
ponent, consisting of the elastic crust and tightly coupled
protons and electrons in the core, is rigidly rotating. This is
likely to be a good approximation on timescales longer than
the elastic and Alfven timescales in the crust, and simplifies
our problem considerably [although see van Eysden (2014)
for a discussion of the short-timescale dynamics that is ne-
glected with this approximation]. In this approximation, the
equation of motion for the protons can be obtained from (9)
and is the following:

	̇p = −	̇∞ −
∫


 2

Ip

[
Q(
 )

1 − εn − εp
+ ρnFp(
 )

]
dV, (11)

where Ip is the moment of inertia of the charged component.
Note that the above equations assume that vortices are

straight and the rotation profile of the neutron fluid is ax-
isymmetric. This may not be the case in the presence of
strong density-dependent entrainment, as is expected in the
crust (Chamel 2012). Antonelli & Pizzochero (2017) have
analysed this problem and proposed a formalism that allows

one to treat the problem as axially symmetric. Given that the
equations are formally equivalent, and we do not consider
a density-dependent entrainment profile, we will ignore this
complication in the following and continue working with the
above set of equations which allow for a more transparent
interpretation of the results.

It is also expected that turbulence may develop in neutron
star interiors, leading to a turbulent polarised tangle of vor-
tices and additional non-linear terms in the mutual friction
force (Andersson, Sidery, & Comer 2007). The importance
of turbulence can be assessed by examining the evolution
equation for the vorticity:

∂ξ k
n

∂t
= (1 − B′

)εkim∇m(εi jlv
j
nξ

l
n )

+Bεkim∇m(ξ n
i ξ̂ n

j v
j
n − ξ̂ n

j ξ
j

n v i
n ) , (12)

with ξ n
i = εi jk∇ jv

n
k , and where ξ̂i is a unit vector along ξ i.

The first term on the right-hand side represents transfer
of energy to small length scales, while the second leads to
damping that stabilises the flow. The relative importance of
two effects is determined by a parameter:

q = B
1 − B′ . (13)

It was shown by Finne et al. (2003) that turbulence sets in for
q � 1.3. At high densities in the stellar interior B′ ≈ B2 � 1
so that q � 1 and a superfluid neutron core is expected to
be extremely susceptible to becoming turbulent, while the
importance of turbulence in the crustal region is more uncer-
tain, given the large uncertainties on B and B′

. To take into
account the influence of turbulence and vortex curvature on
the mutual friction force, one may rewrite

fi
m f = ρnLR(B′

εi jkk jwnp
k + Bεi jkε

klmκ̂ jκlw
np
m

− ν̃[B′
κ̂ j∇ jκi + Bεi jkκ

j κ̂ l ]∇l κ̂
k ) + 2LT

3
ρnkBwpn

i , (14)

where the last term represents polarised turbulence while the
third and fourth describe the influence of an isotropic turbu-
lent tangle. Here,

ν̃ = 1

1 − εn − εp
ν , (15)

with LR is the vortex length due to the rotation, such that
|∇ × �vn| = 2	 = LRκ , and LT = L − LR, with L the total
length of vortex. The vector κ i defines the orientation of vor-
tex and ν is a parameter that determines the tension of the
vortex [see Andersson et al. (2007) for a detailed description
of the problem].

For polarised turbulence, the straight vortex term thus leads
to the shortest timescales. In our work, we study the short-
timescale dynamics of avalanches and ignore longer post-
glitch timescale, for which additional physics regarding cou-
pling timescales at different densities would, anyway, have to
be included [see, e.g., Haskell et al. (2012) and Newton et al.
(2015)]. Hence, turbulence is unlikely to make a qualitative
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difference to our results, and for computational simplicity,
we ignore it in the following.

3 VORTEX PINNING AND UNPINNING

To solve the system of equations in the previous section, we
still require inputs from microphysics. Apart from the fraction
of neutrons, the mutual friction parameters B are required. In
the outer core of the neutron star, the main contribution to
mutual friction is expected to come from electrons scattering
on vortex cores, which leads to B ≈ 10−4 (Alpar, Langer, &
Sauls 1984b; Andersson, Sidery, & Comer 2006). In the crust,
the situation is much more uncertain, as phonon scattering
will lead to weak damping, with mutual friction parameters
as low as B ≈ 10−10, but if vortices move rapidly past pin-
ning sites, Kelvin waves may be excited leading to B ≈ 10−2

(Jones 1990, 1992; Epstein & Baym 1992). Given this level
of uncertainty, and the small scales we consider, we will take
B as a constant, free parameter, and study how our results
depend on it.

In our description, however, we have also introduced an
extra parameter that rescales the mutual friction coefficients,
i.e., the fraction of unpinned vortices γ . This will depend
specifically on the dynamics of vortices on scales smaller
than the hydrodynamical scale we are discussing.

Before moving on, let us thus address the validity of our
hydrodynamical description. Hydrodynamics is the natural
tool to model macroscopic, observable, phenomena in neu-
tron stars, and the key assumption is that we can track the evo-
lution of fluid elements as they evolve. A fluid element must
be small enough to be considered as a ‘point’ in the macro-
scopical hydrodynamical description, but also large enough
to contain enough particles to allow for meaningful averaged
hydrodynamical quantities and fluxes to be defined.

This is particularly relevant for a superfluid, which is ir-
rotational and rotates by forming an array of quantised vor-
tices which carry the circulation. In practice, this means that
a coarse-grained description must average over several vor-
tices in order to define a superfluid velocity for a fluid element,
leading to a large-scale neutron fluid which is not irrotational.
The minimum scale on which it is meaningful to discuss hy-
drodynamics is thus given by the typical inter-vortex spacing,
which is of the order of

dv = 1 × 10−3

(
P

10 ms

)1/2

cm, (16)

where P is the spin period of the star. Note, however that
dynamics on a smaller inter-vortex scale (on which neutrons
behave as an irrotational fluid, defined by the neutron–neutron
scattering length scale of approximately a micron), is crucial
for determining mutual friction and pinning parameters.

Knock-on effects between vortices are likely to be fun-
damental for the dynamics we observe in pulsar glitches.
Consider a simple model in which such effects are neglected,
and one simply has random, uncorrelated, unpinning of in-
dividual vortices. In this case, the probability of unpinning n

vortices during an observation time �t, is simply a Poissonian
(Warszawski & Melatos 2013):

p(n) = exp(−θ�t )
(θ�t )n

n!
, (17)

where θ is the unpinning rate for a single vortex. The result
in (17) tends to a Gaussian for large �t, suggesting that the
average number of free vortices, and thus the average glitch
size, should also follow a Gaussian distribution. However, this
conflicts with the data in all pulsars except for PSR J0537-
6910 and the Vela pulsar (Melatos et al. 2008). The glitch
size distribution in other pulsars is consistent with a power-
law, with the waiting times being exponentially distributed,
which is in agreement with the results obtained with small-
scale quantum mechanical Gross Pitaevskii simulations of
superfluid vortices in a spinning-down trap (Warszawski &
Melatos 2011). It is clear that we need to understand how to
scale up the dynamics observed in such simulations of ≈102

− 103 vortices, to the larger scale corse-grained hydrodynam-
ical description where individual vortices are not resolved.

On the one side, the kind of vortex avalanches that are ob-
served in simulations over scales of hundreds or thousands
of vortices can lead to vortex depletion and accumulation on
small scales and create sharp gradients in hydrodynamical
simulations. On the other hand, large-scale dynamics can in-
duce differential rotation, and significantly increase the local
density of vortices, leading to knock on effects and unpinning
(Warszawski, Melatos, & Berloff 2012; Haskell & Melatos
2016). For example, if vortex avalanches are free to propagate
outward from high density regions at the base of the crust, to-
wards lower density regions in which the pinning force peaks,
individual vortice will encounter stronger pinning forces than
in the region where they are originally unpinned. This can
lead to vortices accumulating close to the maximum of the
pinning force. A similar situation may occur even if vortices
creep out, but the rate is not fast enough to keep up with
the external driver (the electromagnetic spin-down), leading
to vortex accumulation (Warszawski & Melatos 2013). This
would create a vortex ‘sheet’ such as that suggested by Piz-
zochero (2011), in which the vortex density is significantly
higher than the steady-state density nv = 2	n/κ . Such a vor-
tex sheet will gradually shift out, until the maximum lag that
the pinning force can sustain is exceeded, after which all vor-
tices are free and will rapidly move out transferring angular
momentum catastrophically and giving rise to a ‘giant’ glitch,
such as those observed in the Vela pulsar.

4 VORTEX SHEET

Let us now discuss this scenario in more detail and study,
from a hydrodynamical point of view, how an avalanche can
lead to angular momentum exchange between the superfluid
and the crust.

First of all, let us define the lag between the two compo-
nents:

�	 = 	p − 	n . (18)
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By combining equations (8) and (9), we can obtain the fol-
lowing evolution equation:

∂�	

∂t
= −κnv

γB
xp(1 − εn − εp)

�	 , (19)

where xp = ρp/ρ with ρ = ρp + ρn, and we have assumed
that vortices are free (Fp = 0). We ignore the external torque,
as we will be studying dynamics on much shorter timescales
than those on which the external spin-down is relevant.

In the standard case, one neglects differential rotation and
assumes that κnv ≈ 2	n. Neglecting the small change in
overall frequency, and taking 	n and B to be a constant, the
approximate solution for the lag between the two components
�	, is a damped exponential of the form (Andersson et al.
2006):

�	 ≈ �0 exp −(t/τ ) , (20)

with �0 a constant and

τ = xp(1 − εn − εp)

2	nγB , (21)

with γ taken to be constant. This is the mutual friction
timescale that is usually compared to exponentially relaxing
components of the spin frequency observed after glitches.

We intend to investigate a different situation here. We con-
tinue to consider the γ =constant case, and follow Cheng
et al. (1988), thus considering a vortex accumulation region
in which a large number of vortices (compared to the steady-
state number present in the region) has repinned, i.e., such
that

κnv ≈ 

∂

∂

[	n + εn(	p − 	n )] , (22)

where the steady-state contribution κnv ≈ 2	n is neglected
and ϖ = rsinθ is the cylindrical radius.

In this situation, it is likely that strong pinning will force
vortices to repin immediately and they will not be able to ad-
just to the lattice-equilibrium position that would be needed
for this large increase in density. By the time the approxima-
tion ϖ∂	n∂ϖ > 2	n is satisfied, one has a change in vortex
density of order unity, corresponding to a similar change in
vortex spacing lv ≈ √

nv . This leads to a large change in Mag-
nus force as vortices get closer to each other, and the vortex
sheet is thus very likely to unpin (Warszawski & Melatos
2013; Haskell 2016).

In the presence of significant differential rotation, the equa-
tion of motion for the lag �	 takes the following form:

∂�	(
, t )

∂t
= 


γB(1 − εn )

xp(1 − εn − εp)
�	(
, t )

∂�	(
, t )

∂

,

(23)
where we have assumed that, at least locally, the proton fluid
(possibly the crust in this case) is rigidly rotating so that ∂ϖ	p

= 0 and thus ∂ϖ�	 = −∂ϖ	n. If we make the further ap-
proximation that in the crust the amount by which the vortices
move is small compared to ϖs ≈ 106 cm, and thus consider

ϖ = ϖs constant, the equation above becomes

∂�	(
, t )

∂t
= −β�	(
, t )

∂�	(
, t )

∂

, (24)

with

β = 
s
γB

xp(1 − εn − εp)
(εn − 1). (25)

Finally, with the substitution �* = β�	, we obtain as a
general form of equation

∂�∗(
, t )

∂t
= −�∗(
, t )

∂�∗(
, t )

∂

. (26)

This is a Burgers equation, and allows travelling waves as
solutions. In particular, let us consider the following initial
conditions, corresponding to a large number of vortices ac-
cumulated close to the maximum of the pinning force, such
that the lag is negligible prior to the vortex accumulation re-
gion, and approximately the maximum value �	M after an
infinitesimally thin accumulation region located at ϖ0:

�	(t = 0) = �	M�(
 − 
0 ) , (27)

corresponding to (given that we take β to be a constant)

�∗(t = 0) = �∗
M�(
 − 
0) , (28)

where �(x) is the Heaviside step function. A solution to this
equation which conserves the total number of vortices (in the
approximation ϖs = constant) is a fan wave:

�∗(t,
 ) = 
 − 
0

t
for 
 < 
F , (29)

�∗(t,
 ) = �∗
M for 
 ≥ 
F , (30)

withϖF = vFt, with vF = �∗
M . For our physical variable, �	

this corresponds to

�	(t,
 ) = 
 − 
0

βt
for 
 < 
F , (31)

�	(t,
 ) = �	M for 
 ≥ 
F , (32)

where the position of the front ϖF moves at a speed vF =
β�	M = −�	M
s

γB
xp(1−εn−εp ) (1 − εn) (keeping in mind

that in a pulsar the lag �	 is negative). After the wave
has travelled a distance d ≈ 102 cm, our approximation
(
 ∂

∂


[
	n + εn(	p − 	n)

]
> 2	n) breaks down and one

has once again κnv ≈ 2	. Furthermore, as the lag is below
the critical value, one can expect repinning. However, the
above analysis shows vortex accumulation can lead to rapid
outward motion of vortices, on length scales much larger that
the inter vortex motion, that may drive further avalanches as
it travels through the medium.

The number of vortices in the front is (assuming ϖ con-
stant)

Nv =
∫

nv

κ
dS ≈ 2π

∫

 2

s

κ

∂�	

∂

dr

= 
 2
s

κ
�	

∣∣∣∣∣

F


0

≈ �	M

κ
, (33)

which is conserved by the solution.
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6 Khomenko and Haskell

Let us now consider the region upstream from the vortex
accumulation region. Here, there must be a depletion region
in which the lag has to change from its equilibrium value
�	e to 0 over a short lengthscale. This can be determined by
imposing that vortex density vanish, i.e.

κnv = 2	n + 

∂	n

∂

= 0 , (34)

which gives, close to a point ϖd

	n = 	0

(
d




)2
. (35)

Expanding around ϖd in δr = (ϖ − ϖ0), we see that the lag
decreases as

�	 = �	0 − 2	0
δr


0
. (36)

For typical parameters, this gives a decrease in lag over a
lengthscale δr ≈ 10–100 cm, which is the same lengthscale
over which our approximation is valid.

Nevertheless, to continue our initial analysis, we will make
the simplifying assumption that in this region the drop in lag
can be approximated as a steep drop of the form

�	 = �	M�(
d − 
 ) , (37)

but one should keep in mind that this is at the limit of validity
for using equation (24), given the estimate in (36) In this
case, as vortex unpinning causes a perturbation in Magnus
force due to the lack of vortices in their equilibrium positions,
there will be a backward propagating unpinning avalanche.
The solution corresponds to a forward moving shock that
describes vortices moving out to fill the void, of the form

�	 = �	M�(
d − 
 ) , (38)

where the position of the shock is determined by ϖd = vSt,
with vS = β�	M/2.

5 UNPINNING VORTEX WAVES

In the previous section, we showed how, by solving analyti-
cally equation (19), we can describe an unpinning wave that
travels as a shock in the fluid. In doing so, however, we have
had to make the assumption that γ , the fraction of unpinned
vortices, is a constant, and neglect the steady-state contribu-
tion to the vortex number density κnv ≈ 2	n. In practice, this
allows us to only evolve the equations of motion as long as
ϖ∂ϖ	n � 2	.

To go beyond this approximation, we have to provide an
evolution equation for the unpinned fraction γ . This is a com-
plex problem, given that the microphysics that governs vortex
pinning acts on scales much smaller than the hydrodynam-
ical scale. Attempts have been made in this direction in the
context of superfluid turbulence, in which case an additional
equation is included to model the evolution of the vortex
length (Mongiovì, Russo, & Sciacca 2017). Here, however,
we will not derive a full mean-field description of vortex un-
pinning, but rather focus on how different prescriptions for
short-timescale movement of vortices during an avalanche

can affect astrophysical observables. Another approach to
constructing global models was taken in Fulgenzi, Melatos,
& Hughes (2017), where the angular velocity lag between the
pulsars’s superfluid interior and a rigid crust is considered as
fluctuating according to a state-dependent Poisson process.
In this case, local vortex motion and knock-on effects are not
taken into account in the hydrodynamics.

In analogy with mean-field approaches to the study of sand
piles and of self-organised critical systems more generally,
we can assume that one has a time evolution equation for γ ,
with local terms which depend only on powers of γ itself,
that govern the long-scale relaxation of the system close to
equilibrium, due to random unpinning and repinning. The
evolution equations for γ thus take the form

∂γ

∂t
=

∑
n

αnγ
n + ξ f (γ , ∂rγ ) , (39)

where αn and ξ are coefficients, and f(γ , ∂rγ ) is a function
of γ and its spatial derivatives that models transport of vor-
tices. In standard SOC models, f would simply be a diffusion
term of the form f = ∇2γ . In our case, the Magnus force sets
a preferred direction for vortex motion, so we will consider
different forms of advection terms rather than diffusion. The
terms �nαnγ

n model the competition between unpinning and
repinning on the microscopic level, and set the steady-state
equilibrium of the system. The addition of noise to (39) can
then lead to departures from equilibrium and avalanches. This
is, however, a complex problem, well beyond the scope of the
current analysis. Here, we intend to take a first step towards
the analysis of the propagation of avalanches; therefore, we
will neglect the terms �nαnγ

n, that set the background equi-
librium on timescales longer that those of an avalanche and
simply analyse how a large perturbation propagates by con-
sidering an evolution equation of the form:

∂γ

∂t
= ξ f (γ , ∂rγ ). (40)

5.1. Vortex advection

Let us consider different setups to describe the evolution of
the unpinned fraction γ , neglecting the entrainment for sim-
plicity. Given the phenomenological nature of this investiga-
tion, we consider three setups.

In the first setup, we consider a non-linear problem with
non-constant coefficient in the advection term so that we al-
low vortices to advect with the velocity that is equal to the
velocity of the shock wave. This is done to synchronise the
repining process and angular momentum exchange, and ac-
count for vortex unpinning in the front. We explicitly take into
account the steady-state contribution κnv ≈ 2	n in equation
(22), but assume that all vortices are unpinned in the front (γ
= 1) in order to decouple the advection term in the lag from
the equations of motion for γ . Our first setup (case I) thus
takes the following form for �	:

∂�	

∂t
= B

xp

s�	

∂�	

∂ω
− 2	�	

γB
xp

, (41)
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and the equation for γ is

∂γ

∂t
= B

2xp

s�	

∂γ

∂ω
. (42)

Equations (41) and (42) form a system to solve for two inde-
pendent variables, γ and �	. An extension to this setup has
been made by reducing B by a factor 10 in the first term on
the right-hand side of equation (41), thus obtaining

∂�	

∂t
= B

10xp

s�	

∂�	

∂ω
− 2	�	

γB
xp

, (43)

which corresponds to slowing down the velocity of free vor-
tices and longer term evolution of the lag, while leaving unal-
tered the short-term dynamics leading to the glitch rise. This
allows us to mimic the physical situation in which a fast rise
is followed by an unpinning wave in which not all vortices are
unpinned in the front, but still retain the numerical advantage
of decoupling the advection terms in (43) and (42). Essen-
tially, the velocity of the unpinning wave is reduced while
that of the initial exponential rise is not.

In a second setup (case II), we allow advection of γ with
a constant velocity equal to the initial velocity of the shock
wave in �	. In this case, the equation describing the evolu-
tion of γ and �	 are

∂�	

∂t
= B

xp

s�	

∂�	

∂ω
− 2	�	

γB
xp

, (44)

∂γ

∂t
= B

2xp

s	init

∂γ

∂ω
, (45)

where 	init is initial angular velocity. This case is interesting
because here γ advects with a constant velocity that does not
depend on spatial changes in lag. Decoupling these processes
means that the exchange of angular momentum between nor-
mal and superfluid component does not affect the propagation
of free vortices. Both in cases I and II, we provide as initial
conditions a pulse in γ and a flat profile in �	, as shown in
Figure 1. As we shall see the linear terms in the equations of
motion for �	, in the presence of an increase in γ lead to an
exponential rise and rapidly lead to a step in �	.

The third setup (case III) is closely related to case II with
constant advection, but now the parameter γ is explicitly in-
cluded in the equation for the lag �	, which is thus coupled
to the evolution of γ . In order to make the problem numeri-
cally tractable, the linear term is also excluded and we have
an equation in the same form as (24). The initial conditions
differ from the previous ones, as the absence of a linear term
mean that we cannot trigger a glitch simply with an increase
in γ . Rather, we provide an initial step profile for γ and �	,
meaning that the lag is already formed and we force vortices
to move as a result of a previous, unspecified, and unpinning
event. Examples of these initial conditions are also shown in
Figure 1. The equations to solve are

∂�	

∂t
= B

xp

sγ�	

∂�	

∂ω
, (46)

∂γ

∂t
= B

2xp

s	init

∂γ

∂ω
. (47)

Figure 1. Examples of initial conditions for step profiles both in �	 and γ

(top), as used in case III simulations, and those with a flat profile in �	 and
step in γ , used in case I and II to initiate a glitch (bottom).

The three setups are summarised in Table 1.
These pairs of equations for the evolution of the lag and the

fraction of unpinned vortices for the considered setups have
been solved using the Dedalus spectral code (K. J. Burns,
G. M. Vasil, J. S. Oishi, D. Lecoanet, B. P. Brown, and E.
Quataert, in preparation) as well as with a two-order Godunov
finite difference code. Tests of the numerical solution’s accu-
racy have also been implemented for both codes by means of
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8 Khomenko and Haskell

Table 1. Summary of the three different prescriptions that are used
to couple vortex motion (evolution of the unpinned vortex fraction
γ ) and angular momentum exchange (evolution of the lag �	).

Case I:
∂�	
∂t = B

xp

s�	 ∂�	

∂ω
− 2	�	

γB
xp

∂γ
∂t = B

2xp

s�	

∂γ
∂ω

Case II:
∂�	
∂t = B

xp

s�	 ∂�	

∂ω
− 2	�	

γB
xp

∂γ
∂t = B

2xp

s	init

∂γ
∂ω

Case III:
∂�	
∂t = B

xp

sγ�	 ∂�	

∂ω

∂γ
∂t = B

2xp

s	init

∂γ
∂ω

Figure 2. Evolution of γ for case I with step initial condition, as described
in the text and seen in Figure 1. The fraction of unpinned vortices decreases,
thus approximating a repining process.

direct measurements of the velocity of a shock wave in test
problems.

We assume a constant mutual friction parameter B and
assume that the distance travelled by vortices is small com-
pared to the radius ϖs, which we take constant. In a realistic
case, mutual friction will depend on density and composi-
tion, thus on ϖs, and will be due to different processes in the
crust and core, thus depending strongly on the location of our
simulation box in the star.

A typical evolution of �	 is shown in Figure 2 for the
synchronised velocity case (case I), while the evolution of γ is
shown in Figure 3 . The pattern of the process is as follows: an
initially flat profile creates a difference in angular velocities,
due to the exchange of angular momentum between a normal
and a superfluid component, and creates large gradients in
�	. The decrease in lag then spreads out. The typical time
for the rise in frequency is less than a second in our setup,

Figure 3. Evolution of �	 for case I with step initial condition, as described
in the text and seen in Figure 1.

but strongly depends on the poorly known mutual friction
parameter B.

The evolution of the fraction of unpinned vortices is char-
acterised by a decrease with time, which mimics vortex re-
pining. Note that, in order to solve the equations numerically,
artificial dissipation has been introduced.

Let us now turn our attention to the (internal) torque act-
ing on the protons, i.e., on the ‘normal’ component of the star
that is coupled to the magnetic field and thus to the observ-
able electromagnetic emission. Locally, the proton angular
velocity evolves as

	p = 	n − �	 . (48)

The equation for the proton component for cases I and II in
Table 1 is

	p = 	n −
∫ ( B

xp

s�	

∂�	

∂ω
− 2	�	

γB
xp

)
dt . (49)

And for case III is

	p = 	n −
∫ B

xp

sγ�	

∂�	

∂ω
dt . (50)

In order to consider the motion of a rigid crust, we will aver-
age over the interval by integrating between [ϖ1 , ϖ2] that in
our case represent the boundaries of our computational do-
main, i.e., minimum and maximum radial distance in a star
at which the evolution of a system is simulated. This leads
to

〈
	̇p

〉 = 〈
	̇n

〉 − 1


1 − 
2

∫ 
2


1

(

sB

xp
�	

∂�	

∂ω

− 2	�	
γB
xp

)
dω , (51)

and
〈
	̇p

〉 = 〈
	̇n

〉 − 1

ω1 − ω2

∫ ω2

ω1

B
xp


sγ�	
∂�	

∂ω
dω . (52)
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Figure 4. Comparison of the charged component evolution for the different
setups. (a) Synchronised velocity setup (case I): [(41), (42)] with an initially
flat profile for �	 and step in γ ; (b) Constant advection setup (case III)
[(46), (47)] with initial step profiles in both �	 and γ ; (c) Synchronised
velocity (case I) with artificially decreased speed of free vortex propagation
(B reduced as described in the text).

Figure 5. Comparison of the charged component evolution for two setups
with the constant advection term. (a) Constant advection (case II) ([(44),
(45)]; (b) Constant advection of knocked on vortices (case III) [(46), (47)].

In this initial calculation, we neglect
〈
	̇n

〉
, in the assumption

that the proton fluid has a smaller moment of inertia and
thus the background average neutron rotation rate does not
change very much compared to the proton rotation rate, i.e.,
| 〈	̇p

〉 | >> | 〈	̇n
〉 |. This is not always the case, however, and

a more realistic calculation should retain both terms (Haskell
et al. 2012).

Using the previously obtained results for the lags �	, we
average over the computational domain for each setup and
show the results in Figure 4. The comparison of the related
scenarios for constant advection are shown in Figure 5.

Generally, for the reference value B = 10−3 as well as
for the lower value B = 10−4, the behaviour of the ‘normal’

Figure 6. Initial condition for the lag with a sequence of steps, physically
corresponding to different pinning strengths.

component is characterised by a rapid exponential rise, on
timescales of seconds, followed by a slower, apparently lin-
ear, increase in frequency on timescales of a minute. This
behaviour is, in fact, suggestive of what was observed for the
1989 glitch of the Crab pulsar, in which a fast and unresolved
rise was followed by a slower component (Lyne, Smith, &
Pritchard 1992).

As can be seen from Figures 4 and 5, the rise time for
the three major setups is almost the same, while there are
differences in the linear responses. However, the differences
in frequency and frequency derivative are still small, and of
order of 30% for the frequency derivative, indicating that in
the study of the short-term rise and post-glitch behaviour, the
choice of setup does not strongly influence the conclusions.

5.2. Glitch precursors

We now discuss how differences in pinning strengths in the
neutron star crust can influence the evolution of the frequency,
and in particular whether unpinning in lower strength pinning
regions can trigger unpinning and glitches in regions with
stronger pinning and thus larger lags. In other words, we are
interested in examining whether smaller unpinning events,
that may show up simply as changes in spin-down rate, rather
than steps in frequency, could be glitch precursors, as ob-
served, for example, in the pulsar J0537–6910 (Middleditch
et al. 2006).

To do this, let us consider the evolution of a system with the
lag between the normal and the superfluid component that is
not simply a step but a sequence of steps. Initial conditions for
this case are shown in Figure 6. Different lags �	 correspond
to a different pinning strength, as stronger pinning leads to a
larger critical lag.

To study the evolution, we use the equations from case III,
i.e., [(46), (47)], with initial conditions for γ being a step
located at the same distance and with the same width as in
Figure 1. Note that the lag in the second region is twice that
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10 Khomenko and Haskell

Figure 7. Evolution of the lag �	 for the initial conditions in Figure 6.

Figure 8. Evolution of the parameter γ for the initial conditions in Figure 6.

in the first (i.e., the pinning is twice as strong). Larger differ-
ences can be expected in neutron star crusts, but cannot be
treated in our current numerical setup. The results of solving
(46) and (47) are in Figure 7 for the evolution of the lag �	,
and in Figure 8 for the evolution γ .

A propagating wave begins to travel due to the unpinned
vortices. When reaching the region with a higher lag, the
transfer of angular momentum is much more effective and this
results in increase of rotational rate as seen in the evolution of
the charged component. Due to the presence of regions with
a non-uniform distribution of pinning forces, and thus of lag
between the normal and the superfluid component, in real
NSs a more complex pattern is likely to appear. The fraction
of free vortices, in turn, goes through two transitions. The first
transition occurs when free vortices reach the region with a
higher lag, where the amount of free vortices that are able
to continue moving further decreases. The second transition

Figure 9. Evolution of the lag �	 for initial conditions in Figure 6. The
difference in critical lags leads to an initial slower rise, followed by a faster
increase in frequency when the unpinning front reaches the stronger pinning
region. Even larger differences in critical lag (and equivalently pinning force)
could lead to a faster and larger glitch after the initial precursor, but are
numerically intractable in our setup.

occurs when vortices pass this region. Their amount then
decreases with a constant rate.

The evolution of the charged component is shown in
Figure 9. Unlike the other setups now, the initial rise time
is much longer. When free vortices reach the region with a
higher lag, the slope increases and decreases again after pass-
ing the region. This means that amplification of the initial rise
is possible if in the outer region the pinning force is stronger.

As a result, the star’s angular velocity may change not only
abruptly, showing a glitch-like rise, but also more gradually,
depending on local properties of the region, i.e., the distri-
bution of areas with uneven pinning but also the local value
of the mutual friction and the moment of inertia of the fluid.
In general, our results indicate that an initial increase in the
spin-down rate (decrease in absolute value) may be the pre-
cursor of a larger glitch, although the differences in pinning
required for this scenario are larger than those that our numer-
ical setup allows. We are thus unable to simulate physically
realistic sizes and timescales.

This behaviour, however, is similar to what has been
observed in pulsar J0537–6910 (Middleditch et al. 2006;
Ferdman et al. 2018), where the preglitch behaviour exhibits
brief ‘upticks’ and ‘downticks’ in ν̇ of varying amplitudes
and durations. The timescales are different from those that
we simulate, due to our numerical limitations. However, our
results, although they depend on poorly known physical quan-
tities in the crust of the star, indicate that it is possible that the
same process in a NS may lead to different phenomena. In
the case presented here, the interaction between the superfluid
and the normal component gives a rise to a glitch precursor,
while the same process in an isolated strong pinning region
leads to a standard glitch.
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Figure 10. Initial conditions for γ and �	 for the antiglitch test cases de-
scribed in the text. Two cases are shown: (1) conditions leading to and in-
crease of the angular velocity; (2) conditions leading to a decrease of the
angular velocity, or ‘antiglitch’.

5.3. Frequency decrease and antiglitches

The non-linear evolution we consider can, however, lead to
other surprising results in the framework of the standard glitch
model. In particular, we find setups in which not only an in-
crease, but also a decrease in a star’s angular velocity can be
obtained. To do this, we study the evolution of a system with
step initial conditions using the setup in case III, correspond-
ing to equations (46) and (47). Initial conditions for two cases
are shown in Figure 10.

The difference between the two setups is that in the first
case the region with null lag is located ‘behind’ the region
with free vortices and these regions partially coincide while
in the second case the null-lag region is located further out
than the front. Results for this case are shown in Figure 11.

As can be seen from the figure, unpinned vortices in the
area behind the zero lag region start to exchange angular mo-
mentum, which tends to increase the angular velocity. How-
ever, propagation tends to decrease the extent of the cou-
pled region at a faster rate, resulting in an ‘anti-glitch’, i.e.,
a local decrease of angular velocity. This behaviour is in-
triguing, given observations of such antiglitches in magne-
tars (Archibald et al. 2013). However, since the decrease in
frequency is the result of a competition of process, it is pos-
sible that the overall antiglitch behaviour is the consequence
of our particular setup. As for the influence of the numerical
dissipation, several tests have been made in order to study the
changes of the ‘antiglitch’ behaviour appearance as well as

Figure 11. Evolution in time of the angular velocity of a charged component
for a glitch–‘antiglitch’ test. The blue rising curve corresponds to the glitch-
like rise, the green decreasing curve to the antiglitch-like behaviour.

the time of rise. It was found that it has minimal impact on the
results, and the feature is robust for our setup. However, fur-
ther investigation in a more realistic scenario will be required
to determine whether this evolution is physically significant.

Other initial conditions, in fact, result in much more pre-
dictable evolutions and show an increase of angular velocity,
as shown in Figure 11 as a blue curve, while the ‘antiglitch’
is shown as green curve.

Let us study in detail the evolution of the solution where
the ‘antiglitch’ appears. For this, we show four snapshots for
γ and �	 on Figure 12.

Initially, unpinned vortices form a small peak in �	 be-
hind the main region of the lag. This peak grows with time
until it reaches the main region with zero lag. Next, these two
regions start to interact, forcing the initial region with vor-
tices to decrease in size and move. Further interaction makes
both regions move, γ decrease and an unpinning wave prop-
agate. The overall outcome, whether an increase or decrease
in frequency, is thus sensitive to the timescale on which these
processes occur and the speed of propagation of γ .

6 PARAMETER STUDY

To study the influence of the different parameters on the evo-
lution of the solution, we first change the mutual friction,
i.e., the B parameter. In a realistic star, this parameter de-
pends on density, and will thus depend on the location of
the computational box in the NS. Since we take the mutual
friction to be constant, it represents the averaged value over
the computational domain, i.e., over the path of vortex move-
ment. Decreasing the mutual friction will generally increase
the timescale for the rise, while higher mutual friction leads
to a faster glitch, for a fixed initial setup.

The dependance is intuitively correct since the mutual fric-
tion is the mechanism that is responsible for an angular’s mo-
mentum transfer strength, it is a ‘bridge’ between the normal
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12 Khomenko and Haskell

Figure 12. Snapshots of evolution in time for �	 (left column) and γ (right column) (a) After 1 s; (b) after 6 s; (c)
after 12 s; (d) after 30 s.

and the superfluid component, and the behaviour can easily
be understood from equation (21) for the coupling timescale
between components, if we neglect non-linear terms. The
consequences of the mutual friction variations are shown in
Figure 13 for case II as a representative of a non-constant

advection family and in Figure 14 for case I with constant
advection.

Note that γB is the parameter that affects the character of
a glitch. Its evolution leads, for example, to different kinds
of relaxation even in a single pulsar, given that in a realistic
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Figure 13. Influence of the mutual friction parameter B on the speed of rise
for case II. (a) B = 10−3; (b) B = 10−4; (c) B = 10−5.

Figure 14. Influence of the mutual friction parameter B on the speed of rise
for case I. (a) B = 10−3; (b) B = 10−4; (c) B = 10−5.

system it is not constant in time (due to vortex pinning and
unpinning) or constant along the path of vortex movement
(Haskell & Antonopoulou 2014).

Next, let us study the influence of the angular frequency of a
star. In all of the simulations, the angular frequency is initially
equal to 70 s−1 which is approximately equal to the Vela
pulsar’s angular velocity. In order to see how the unpinning
wave propagation reacts, we experiment with changing it to
7 s−1. Results are shown on Figure 15. As expected from the
linear analysis in (21), decreasing the angular velocity of a
star increases the rise time but does not strongly affect the
results in the non-linear regime.

Changing the proton fraction xp acts as a simple rescaling
of the mutual friction parameter B in our simple setup, and
thus does not significantly affect the results for reasonable
values of the parameter in the crust.

Figure 15. Influence of the angular frequency 	 of a star on the charged
component evolution for constant advection, i.e., case I: (a) 	 = 70 s−1,
(b) 	 = 7 s−1.

7 CONCLUSIONS

In this paper, we have outlined a formalism for simulating
the motion of superfluid vortex over-densities and fronts in
hydrodynamical two-fluid simulations of pulsar glitches. We
have shown that accounting explicitly for the differential rota-
tion that is built up due to vortex accumulation introduces ad-
ditional non-linear terms in the evolution equations for the lag
�	, which allow for travelling waves (‘unpinning’ waves)
as solutions. The observational consequence of this setup is
that coupling between the normal and superfluid components
of the neutron star, mediated by vortex motion, can lead not
only to exponential terms in the evolution of a pulsar’s fre-
quency, but also linear terms, and generally slower, longer
term variations in the spin frequency of a neutron star.

We take our model one step further and introduce an ad-
ditional parameter to the evolution, namely the fraction of
free vortices in the system, γ . This parameter encodes the
sub-grid physics of vortex motion that is not resolved on a
hydrodynamical level, and depends on the complex quantum
mechanical statistical processes that govern vortex interac-
tions at a microscopic level. While microphysical simulations
have been relatively successful in investigating the relation
between pulsar glitches and SOC (Warszawski & Melatos
2011; Haskell & Melatos 2015) in small systems, or pinning
of a vortex to a single defect (Wlazłowski et al. 2016), they
are still not at the level where contact can be made with large-
scale descriptions. We thus propose three phenomenological
models for vortex motion, all of which mimic advection of
free vortices together with propagating fronts in the lag be-
tween the normal component and the superfluid neutrons.

We study the evolution of the lag �	 and the free vor-
tex fraction γ in several setups for all three our prescriptions
for varying mutual friction parameters B and rotation rates
	. The main conclusion is that localised unpinning leads to
an initial rapid rise, on the timescale of seconds or less for
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mutual friction parameters B > 10−4, as one may expect due
to electron scattering of magnetised vortex cores in the pres-
ence of superconducting protons (Alpar et al. 1984b), or due
to Kelvin waves as the vortices move past nuclear clusters in
the crust (Jones 1992; Epstein & Baym 1992). This phase is,
however, generally followed by a slower, quasi-linear rise on
timescales of a minute, which is similar to what was observed
in the 1989 glitch of the Crab pulsar (Lyne et al. 1992). Over-
all, the prescription we use for motion of the vortex fraction
has little influence on the exponential rise, which is mainly
due to the linear terms, but impacts on the slower long-term
evolution. Nevertheless, the evolution of the normal com-
ponent frequency is qualitatively similar, with only modest
differences in rotational rates and frequency derivatives, be-
tween the three cases, which gives us confidence that our
conclusions are robust and do not depend strongly on how
we approximate the sub-grid physics of vortex motion.

We have also investigated how changes in pinning strength,
approximated by different initial conditions for the lag, can
impact the evolution of the frequency and the glitch. We find
that if there are regions in which pinning decreases with den-
sity, as one expects in the deep crust (Seveso et al. 2016),
then an initial unpinning event may lead to a slow change
in frequency as a precursor of a larger glitch, triggered when
the unpinning front reaches the stronger pinning region. Such
precursor events may, in fact, have been observed before a
number of glitches in pulsar J0537–6910 (Middleditch et al.
2006; Ferdman et al. 2018), where ‘upticks’ and ‘downticks’
in ν̇ of varying amplitudes and durations were observed prior
to several glitches.

We also find specific setups in which vortex motion can
lead to a decrease in frequency, or an antiglitch, such as that
observed in the magnetar 1E 2259+586 (Archibald et al.
2013). This behaviour is intriguing, as it would provide an
explanation for this phenomenon in the standard glitch model
[see also Kantor & Gusakov (2014) for an alternative ap-
proach]. In our setup, the feature is robust to changes in nu-
merical dissipation, and does not appear to be a numerical
artefact. Nevertheless, a more detailed study in a more realis-
tic setup is necessary to understand whether such an evolution
is physically significant and would occur in a neutron star.

Despite the uncertainties, both due to the implementation
of vortex motion, and poorly constrained physical parame-
ters in the interior of the neutron stars, our simple models
highlight the importance of allowing for vortex motion and
accumulation in hydrodynamical simulations, as this allows
for new and qualitatively different behaviour before, during
and after a glitch. On the other hand, our models are also
further confirmation that the large-scale response of the star
strongly impacts on conclusions drawn from small-scale vor-
tex dynamics alone, as was already shown to be the case
for size and waiting time distributions (Haskell 2016). Fu-
ture work should thus focus on further bridging the gap in
scales between microscopic quantum mechanical simulations
of vortex motion and large-scale hydrodynamical models of
superfluid neutron stars.
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