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Abstract
Random effects meta-analysis model is an important tool for integrating results from multiple independent studies.
However, the standard model is based on the assumption of normal distributions for both random effects and
within-study errors, making it susceptible to outlying studies. Although robust modeling using the t distribution is
an appealing idea, the existing work, that explores the use of the t distribution only for random effects, involves
complicated numerical integration and numerical optimization. In this article, a novel robust meta-analysis model
using the t distribution is proposed (tMeta). The novelty is that the marginal distribution of the effect size in
tMeta follows the t distribution, enabling that tMeta can simultaneously accommodate and detect outlying studies
in a simple and adaptive manner. A simple and fast EM-type algorithm is developed for maximum likelihood
estimation. Due to the mathematical tractability of the t distribution, tMeta frees from numerical integration and
allows for efficient optimization. Experiments on real data demonstrate that tMeta is compared favorably with
related competitors in situations involving mild outliers. Moreover, in the presence of gross outliers, while related
competitors may fail, tMeta continues to perform consistently and robustly.

Highlights
What is already know
Random effects model is a popular tool for handling heterogeneity between studies in meta-analysis. However,
the standard model is based on the Gaussian assumption and thus is susceptible to outlying studies.

What is new
A novel robust meta-analysis model using student’s t distribution called tMeta is proposed, which is capable
of simultaneously accommodating and detecting outlying studies in a simple and adaptive manner. Empirical
results show that tMeta is compared favorably with related competitors.

Potential impact for Research Synthesis Methods readers
Compared with related competitors, tMeta frees from numerical integration and allows for efficient optimiza-
tion, which, to our knowledge, offers the first neat solution to robust meta-analysis modeling using the t
distribution. Importantly, tMeta provides a simple but powerful robust meta-analysis tool that can accommodate
and detect both mild and gross outliers simultaneously.
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1. Introduction

In meta-analyses, the collected studies often exhibit heterogeneity, characterized by greater variation
among studies than can be explained by the variation within each study,1 which could result
in misleading conclusions about the overall treatment effect.2,3 The random effects model is a
popular tool for handling heterogeneity.4,5 However, the standard model assumes normal distribu-
tions for both random effects and within-study errors (nMeta), making it susceptible to outlying
studies.

Outlier detection is a central research area in meta-analysis. Many methods have been developed.
For example, a likelihood ratio test was constructed to identify outliers by detecting inflated variance6;
a forward search algorithm was developed specifically for this purpose7; several outlier and influence
diagnostic procedures in meta-regression models were presented.8 Subsequently, case deletion diag-
nostics and local influence analysis using multiple perturbation schemes, were investigated.9 Several
Bayesian outlier detection measures were also introduced for handling outlying studies in network
meta-analysis.10 Another important methodology for dealing with outliers is outlier accommodation or
robust estimation, which can down-weight the influence of outliers. For instance, robust functions like
Huber’s rho and Tukey’s biweight functions were employed to replace the original non-robust objective
function, resulting in robust estimates.11

This article focuses on outlier accommodation and detection simultaneously. Several efforts have
been made toward this objective. Non-normal alternatives to normal random effects were investigated,
and it was found that the t distribution performs the best (tRE-Meta).12 The shortcoming is that
the marginal distribution of 𝑦𝑖 in tRE-Meta is mathematically intractable. Consequently, numerical
integration is required to evaluate the log-likelihood and numerical optimization methods have to
be employed for maximum likelihood (ML) estimation. Subsequently, new models where 𝑦𝑖 has
a tractable marginal distribution were presented, including the three parameter symmetric marginal
model (SYM-Meta) and the four parameter skew marginal model (SKM-Meta).13 Nevertheless,
numerical optimization has still to be employed to obtain ML estimates. As a tractable model, a
variant of a two-component mixture model (MIX-Meta) was proposed, with one component modeling
standard studies and the other addressing outlying studies.1 In MIX-Meta, the marginal distribution
of the observed effect 𝑦𝑖 is a mixture of two normal distributions. However, MIX-Meta suffers
from initialization issues, necessitating multiple runs of the fitting algorithm with different starting
values.

The common feature of these methods is that the error terms are assumed to follow the normal
distribution. In this article, we break this limitation as the marginal distribution of error term in our
proposed model follows the t distribution. It is known that the t distribution includes the normal
distribution as a special case when the degrees of freedom 𝜈 goes to infinity. This means that
tMeta offers greater flexibility and applicability than the conventional normal assumption. The main
contributions of this article are as follows.

(i) The marginal distribution of the effect size 𝑦𝑖 in tMeta follows the t distribution, enabling it
to simultaneously accommodate and detect outliers in a simple and adaptive manner. 1) The t
distribution offers an additional robustness tuning parameter which can adaptively down-weight
outlying studies. 2) The expected weights follow in proportion to a Beta distribution, providing a
useful critical value for outlier detection.

(ii) tMeta provides a simple but powerful robust meta-analysis tool that can accommodate and detect
both mild and gross outliers simultaneously. As can be seen from Section 4, 1) tMeta versus SYM-
Meta and SKM-Meta. Both the three-parameter SYM-Meta and four-parameter SKM-Meta fail in
most of the outlier detection tasks, though they have good performance in outlier accommodation.
2) tMeta versus tRE-Meta and MIX-Meta. While all the three methods can be used to detect
mild outliers, tMeta performs the best in outlier accommodation. More importantly, in the
presence of gross outliers, both tRE-Meta and MIX-Meta could fail while tMeta still performs
satisfactorily.
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(iii) Due to its mathematical tractability, tMeta frees from numerical integration and allows for
efficient optimization. In contrast, tRE-Meta requires both complicated numerical integration and
numerical optimization; SYM-Meta and SKM-Meta involve complex numerical optimization13;
MIX-Meta requires multiple runs of the fitting algorithm due to the sensitivity issue of mixture
models to initialization.1 To our knowledge, tMeta offers the first neat solution to robust meta-
analysis modeling using the t distribution.

The rest of this article is organized as follows. Section 2 reviews some related works. Section 3
proposes our new model tMeta. Section 4 conducts case studies to compare tMeta with several closely
related competitors. Section 5 offers a summary of the entire article.

2. Background

In this section, we briefly review some fundamental results concerning the standard model nMeta and
Student’s t distribution.

2.1. Normal meta-analysis model (nMeta)

In nMeta, the effect size 𝑦𝑖 for the i-th study is defined as follows

𝑦𝑖 = 𝜇 + 𝑏𝑖 + 𝑒𝑖 , 𝑖 = 1, . . . , 𝑁, (1)

where the random effects 𝑏𝑖 captures heterogeneity across studies and follows N(0, 𝜎2), the within-
study error 𝑒𝑖 follows N(0, 𝑠2

𝑖 ) and they are independent of each other. Here, 𝜇 is the over-
all effect size, 𝜎2 is the unknown between-study variance and 𝑠2

𝑖 is the known within-study
variance.

From (1), we have 𝑦𝑖 ∼ N(𝜇, 𝜎2 + 𝑠2
𝑖 ). Estimates for the parameters 𝜇 and 𝜎2 can be obtained

through maximum likelihood methods.14

2.2. Student’s t distribution

Suppose that a random variable y follows the univariate t distribution t(𝜇, 𝜎2, 𝜈), with center 𝜇 ∈ R,
scale parameter 𝜎2 ∈ R+, and degrees of freedom 𝜈 > 0, then the probability density function (p.d.f.)
of y is given by

𝑓 (𝑦; 𝜇, 𝜎2, 𝜈) =
𝜎−1Γ( 𝜈+1

2 )

(𝜋𝜈)
1
2 Γ( 𝜈2 )

{
1 +

𝛿2 (𝜇, 𝜎2)

𝜈

}− (𝜈+1)
2

,

where Γ(·) is the gamma function and 𝛿2 (𝜇, 𝜎2) = (𝑦 − 𝜇)2/𝜎2 is the squared Mahalanobis distance
of y from the center 𝜇 with respect to 𝜎2. If 𝜈 > 1, E[𝑦] = 𝜇; if 𝜈 > 2, Var(𝑦) = 𝜈𝜎2/(𝜈 − 2); and if
𝜈 → ∞, 𝑡 (𝜇, 𝜎2, 𝜈) → N(𝜇, 𝜎2).15

Given a latent weight variable 𝜏 distributed as the Gamma distribution Gam(𝜈/2, 𝜈/2), y can also
be represented hierarchically as a latent variable model as follows15:

𝑦 |𝜏 ∼ N

(
𝜇,

𝜎2

𝜏

)
, 𝜏 ∼ Gam

( 𝜈
2
,
𝜈

2

)
. (2)
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Under model (2), it is easy to obtain the marginal distribution 𝑦 ∼ t(𝜇, 𝜎2, 𝜈) by 𝑓 (𝑦; 𝜇, 𝜎2, 𝜈) =∫ ∞

0 𝑓 (𝑦 |𝜏) 𝑓 (𝜏)𝑑𝜏16 and the posterior distribution of 𝜏 given y

𝜏 |𝑦 ∼ Gam
(
𝜈 + 1

2
,
𝜈 + 𝛿2(𝜇, 𝜎2)

2

)
.

3. Novel robust meta-analysis model

In this section, we propose a novel robust meta-analysis model called tMeta. In Section 3.1, we present
the model. In Section 3.2, we develop an algorithm for parameter estimation. In Section 3.3 and
Section 3.4, we give the details for outlier accommodation and detection in tMeta.

3.1. The proposed tMeta model

Based on the hierarchical representation of the t distribution in Section 2.2, we propose a novel robust
random effects meta-analysis model, denoted by tMeta. Its latent variable model can be expressed by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝑖 = 𝜇 + 𝑏𝑖 + 𝑒𝑖 , 𝑖 = 1, . . . , 𝑁,
𝑏𝑖 |𝜏𝑖 ∼ N(0, 𝜎2/𝜏𝑖), 𝑒𝑖 |𝜏𝑖 ∼ N(0, 𝑠2

𝑖 /𝜏𝑖)

𝜏𝑖 ∼ Gam (𝜈/2, 𝜈/2) ,
(3)

where, unlike nMeta, the random effects 𝑏𝑖 and the within-study error 𝑒𝑖 under tMeta are only
conditionally independent; that is, 𝑏𝑖 and 𝑒𝑖 are mutually independent given the latent weight 𝜏𝑖; 𝜇
is the overall effect size, 𝜎2 is the unknown between-study variance, 𝑠2

𝑖 is the known within-study
variance, and the degrees of freedom 𝜈 > 0.

According to (3), integrating out the latent weight 𝜏𝑖 yields the marginal distributions 𝑏𝑖 ∼ 𝑡 (0, 𝜎2, 𝜈)
and 𝑒𝑖 ∼ 𝑡 (0, 𝑠2

𝑖 , 𝜈). Furthermore, using the property of the normal distribution, it is easy to obtain the
conditional distribution of 𝑦𝑖 given 𝜏𝑖

𝑦𝑖 |𝜏𝑖 ∼ N

(
𝜇,

1
𝜏𝑖
(𝜎2 + 𝑠2

𝑖 )

)
. (4)

Integrating out the latent weight 𝜏𝑖 , we obtain an important result that the marginal distribution 𝑦𝑖
follows a t distribution, that is,

𝑦𝑖 ∼ 𝑡 (𝜇, 𝜎2 + 𝑠2
𝑖 , 𝜈). (5)

Note that this result is not available under tRE-Meta model, where the marginal distribution of 𝑦𝑖
is mathematically intractable. This difference arises because tMeta and tRE-Meta model outliers in
distinct ways. In tRE-Meta, outliers are assumed to result solely from extreme variation within studies.
By contrast, as shown in (4), tMeta models the importance of a study i at the 𝑦𝑖-level by incorporating
a latent weight 𝜏𝑖 associated with 𝑦𝑖 to reflect the study’s significance. The same 𝜏𝑖 is then naturally
applied to both the between-study effect 𝑏𝑖 and the within-study error 𝑒𝑖 , as shown in (3). In other
words, outliers in tMeta are assumed to result from extreme variation across both the within-study and
between-study levels. This hierarchical modeling framework enables a tractable marginal model for the
effect 𝑦𝑖 .

As a result, the degrees of freedom 𝜈 in tMeta can be interpreted as an overall measure of deviation
from the nMeta model across both within-study and between-study levels. The two models differ
significantly when 𝜈 is small but become similar as 𝜈 becomes large. Similar overall measures have
appeared in the literature; for example, a total correlation parameter has been used to capture overall
correlation across both levels in the normal random-effects model.17 Notably, nMeta emerges as a
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special case of tMeta in the limit, as the t distribution 𝑡 (𝜇, 𝜎2+ 𝑠2
𝑖 , 𝜈) approaches the normal distribution

N(𝜇, 𝜎2 + 𝑠2
𝑖 ) as 𝜈 → ∞.

3.1.1. Probability distributions
From tMeta model (3), it is easy to obtain the following probability distributions

𝑦𝑖 |𝑏𝑖 , 𝜏𝑖 ∼ N

(
𝜇 + 𝑏𝑖 ,

𝑠2
𝑖

𝜏𝑖

)
,

𝑏𝑖 |𝑦𝑖 , 𝜏𝑖 ∼ N

(
𝜎2(𝑦𝑖 − 𝜇)

𝜎2 + 𝑠2
𝑖

,
𝜎2𝑠2

𝑖

𝜏𝑖 (𝜎2 + 𝑠2
𝑖 )

)
,

𝑏𝑖 |𝑦𝑖 ∼ 𝑡

(
𝜎2 (𝑦𝑖 − 𝜇)

𝜎2 + 𝑠2
𝑖

,
𝜎2𝑠2

𝑖

(𝜎2 + 𝑠2
𝑖 )
, 𝜈

)
,

𝜏𝑖 |𝑦𝑖 ∼ Gam

(
𝜈 + 1

2
,
𝜈 + 𝛿2

𝑖 (𝜇, 𝜎
2)

2

)
, (6)

where

𝛿2
𝑖 (𝜇, 𝜎

2) =
(𝑦𝑖 − 𝜇)2

𝜎2 + 𝑠2
𝑖

, (7)

is the squared Mahalanobis distance of 𝑦𝑖 from the overall effect size 𝜇. It is clear that all the probability
distributions under tMeta, including the marginal distributions of 𝑏𝑖 , 𝑒𝑖 and 𝑦𝑖 given in Section 3.1, are
well-known and tractable.

3.1.2. Robust meta-regression with covariates
When several covariates are involved, the model (3) can be extended to a more general model,

𝑦𝑖 = x′
𝑖𝜷 + 𝑏𝑖 + 𝑒𝑖 , 𝑖 = 1, . . . , 𝑁,

where x𝑖 represents p-dimensional vector of covariates, 𝜷 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)
′ is the p-dimensional

regression coefficients; the random variables 𝑏𝑖 and 𝑒𝑖 and the other parameters 𝜇, 𝜎2 and 𝜈 are similar
as those in tMeta (3). Under this model, we have 𝑦𝑖 ∼ 𝑡 (x′

𝑖𝜷, 𝜎
2 + 𝑠2

𝑖 , 𝜈).

3.2. Maximum likelihood estimation

In this section, we develop estimation algorithms for obtaining the ML estimates of the parameters
𝜽 = (𝜇, 𝜎2, 𝜈) in the tMeta model. Given the effect size vector y = (𝑦1, . . . , 𝑦𝑁 ), from (3) the observed
data log-likelihood function L is (up to a constant),

L(𝜽 |y) = −
1
2

∑𝑁

𝑖=1

{
(𝜈 + 1) (𝜈 + 𝛿2

𝑖 (𝜇, 𝜎
2)) + ln(𝜎2 + 𝑠2

𝑖 )
}

+ 𝑁

{
ln Γ(

𝜈 + 1
2

) − ln Γ(
𝜈

2
) +

𝜈

2
ln 𝜈

}
. (8)

The maximization of L in (8) can be obtained by standard numerical optimizers. However, we shall
propose an EM-type algorithm to obtain the ML estimate �̂� because of its simplicity and stability.15

From (6), the required conditional expectation in the E-step can be obtained as

𝜏𝑖 � E[𝜏𝑖 |𝑦𝑖] =
𝜈 + 1

𝜈 + 𝛿2
𝑖 (𝜇, 𝜎

2)
. (9)
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The details about the development of this algorithm can be found in Section A.1 of the Appendix.

3.3. Outlier accommodation

3.3.1. Adaptive outlier accommodation
Looking at (9), (A.2), and (A.3), the following can be observed.

(i) When the data contain no outliers and the 𝑦𝑖’s come from nMeta, 𝜈 is expected to take on large
values. This causes all the weights 𝜏𝑖 in (9) to be close to 1. Consequently, (A.2) and (A.3) would
degenerate to those of nMeta, and hence tMeta adaptively degenerates to nMeta in this case.

(ii) In the presence of outliers, 𝜈 is expected to take on small values, and the outlying study 𝑦𝑖 would
have a much greater squared Mahalanobis distance 𝛿2

𝑖 (𝜇, 𝜎
2) compared with non-outliers, causing

the outlier’s 𝜏𝑖 in (9) to be much smaller than those of non-outliers. Consequently, the impact of
outliers on the estimators in (A.2) and (A.3) is substantially reduced, allowing tMeta to yield robust
estimates.

In summary, the degrees of freedom 𝜈 is a robustness tuning parameter that adapts according to the
presence of outliers in the data.

3.3.2. Breakdown point
In statistics, the robustness of estimators is assessed by breakdown points, which are the proportion of
arbitrarily large outlying observations an estimator can tolerate before giving an incorrect result. The
following Proposition 1 gives the breakdown point of tMeta.

Proposition 1. The upper bound of the breakdown point of tMeta is 1/(𝜈 + 1).

Proof. As proved by Dümbgen and Tyler,18 the upper bound of the breakdown point of the d-
dimensional multivariate t distribution is 1/(𝜈+𝑑). For tMeta, the dimension of t-distributed 𝑦𝑖 is 𝑑 = 1
and hence the upper bound of tMeta is given by 1/(𝜈 + 1). This completes the proof. �

In our implementation, we restrict 𝜈 ≥ 1. Proposition 1 shows that tMeta is a highly robust method
as its breakdown point could be close to 50% under this restriction.

3.4. Outlier detection

Similar to that in multivariate t and matrix-variate t distributions,19–21 the expected weight 𝜏𝑖 in tMeta
given by (9) can be used as outlier indicator. Let

𝑢𝑖 =
𝑁

�̂�2 + 𝑠2
𝑖

/∑𝑁

𝑖=1

1
�̂�2 + 𝑠2

𝑖

. (10)

The following Proposition 2 gives the details.

Proposition 2. Assume that the study {𝑦𝑖}
𝑁
𝑖=1 follow tMeta model (3). Given the ML estimate �̂� , we

have, when the estimate �̂�2 > 0,

1
𝑁

∑𝑁

𝑖=1
𝑢𝑖𝜏𝑖 = 1,

and when �̂�2 = 0,

1
𝑁

∑𝑁

𝑖=1
𝑢𝑖𝜏𝑖 ≥ 1,
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Proof. The proof can be found in Section A.2 of the Appendix. �

Proposition 2 shows that when the estimate �̂�2 > 0, the average of all 𝑢𝑖𝜏𝑖’s equals to 1. In other
words, the study with 𝑢𝑖𝜏𝑖 much smaller than 1 (i.e., 𝜏𝑖 much smaller than 1/𝑢𝑖) or close to 0 can be
considered as an outlier. When �̂�2 = 0, our experience reveals that

∑𝑁
𝑖=1 𝑢𝑖𝜏𝑖/𝑁 may be slightly greater

than 1.
In practice, a critical value is needed to judge whether a study is an outlier or not. The following

Proposition 3 does this task. Let 𝐹 (𝑎, 𝑏) and Beta(𝑎, 𝑏) stand for the F distribution and Beta distribution
with parameters a and b, respectively. The 𝛼 quantile of Beta(𝑎, 𝑏) is denoted by Beta𝛼 (𝑎, 𝑏).

Proposition 3. Suppose that the study set {𝑦𝑖}
𝑁
𝑖=1 follow tMeta model (3). Then we have that the

Mahalanobis distance 𝛿2
𝑖 (𝜇, 𝜎

2) ∼ 𝐹 (1, 𝜈). Given the ML estimate �̂� , the weights 𝜏𝑖 , 𝑖 = 1, . . . , 𝑁
converge in distribution to (1 + 1/𝜈)𝐵𝑒𝑡𝑎(𝜈/2, 1/2) as the study sample size N approaches infinity.
Therefore, at a significance level of 𝛼, the i-th study with 𝜏𝑖 < (1 + 1/𝜈)𝐵𝑒𝑡𝑎𝛼 (𝜈/2, 1/2) could be
identified as an outlier.

Proof. This is a special case with dimension 𝑑 = 1 of the result on the d-dimensional multivariate t
distribution proved by Wang and Fun.19 This completes the proof. �

4. Results

In this section, we compare the performance of our proposed tMeta with five closely related
methods: nMeta, tRE-Meta, MIX-Meta, SYM-Meta and SKM-Meta using four benchmark real-
world datasets. For tMeta, the iteration stops when the relative change in the objective function
L (|1-L(𝑡) /L(𝑡+1) |) is smaller than the given threshold 𝑡𝑜𝑙 = 10−8 or the number of iterations
exceeds 𝑡𝑚𝑎𝑥 = 100. For nMeta, tRE-Meta, and MIX-Meta, we use the R codes available from
https://cran.r-project.org/web/packages/metaplus/. In addition, we use the default setting for MIX-
Meta, i.e., 20 initializations. The code for SYM-Meta and SKM-Meta can be found from the
supplementary materials by Baker and Jackson.13

To perform outlier detection for tMeta, we utilize the critical value provided in Proposition 3 and
set the significance level 𝛼 = 0.05. For better visualization, we equivalently plot the inverse of 𝜏𝑖 .
That is, the study with 1/𝜏𝑖 > 1/((1 + 1/𝜈)Beta𝛼 (𝜈/2, 1/2)) is identified as an outlier for tMeta. For
MIX-Meta, we use the empirical threshold 0.9 as suggested by Beath,1 which represents the posterior
probability that a study belongs to the outlying component. For SYM-Meta and SKM-Meta, we adopt
the p-value method specially developed for both models by Baker and Jackson.13 Since tRE-Meta lacks
guidelines for setting the threshold, we follow the empirical approach by Baker and Jackson,12 treating
studies with very small values of the relative weight 𝜔𝑖/𝜔

0
𝑖 , or equivalently, very large values of 𝜔0

𝑖 /𝜔𝑖

as outliers, where 𝜔𝑖 and 𝜔0
𝑖 are the weights under tRE-Meta and nMeta, respectively.

To compare the computational efficiency, we will report their total CPU time consumed by various
methods, which is sum of the time used for training model and that for detecting outliers. For tMeta and
MIX-Meta, outlier detection is a byproduct of the model training and incurs no additional time cost.
However, tRE-Meta, SYM-Meta and SKM-Meta require additional time cost for outlier detection. To
be specific, tRE-Meta requires numerical methods to compute 𝜔0

𝑖 /𝜔𝑖 while SYM-Meta and SKM-Meta
necessitate additional efforts to implement the p-value method.

4.1. Intravenous magnesium

The Mag dataset22 comprises 16 studies. As can be seen from the forest plot shown in Figure 1(a), it
looks difficult to visually identify which study is an outlier except that study 16 seems different from
others due to its relatively large 𝑦𝑖 value and low 𝑠2

𝑖 . Previous researches1,6 have analyzed this dataset
and found no outliers. Below we perform outlier detection with various methods.
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Figure 1. Top row: forest plots on two datasets: (a) Mag and (b) Hipfrac, where each effect size𝑦𝑖and
95% confidence interval are shown as circle and solid line, respectively. Bottom row: evolement of log-
likelihood ofLversus number of iterations: (c) Mag and (d) Hipfrac.

Table 1. Results of parameter estimates, negative log-likelihood, and CPU
time (in seconds) by various methods on Mag dataset.

Methods 𝜇 𝜎 𝜈 -L Time

nMeta −0.746 0.504 — 19.685 —
tRE-Meta −0.746 0.504 inf 19.685 3.0
MIX-Meta −0.746 0.504 — 19.685 32.4
SYM-Meta −0.746 0.504 — 19.685 0.3
SKM-Meta −0.746 0.504 — 19.685 0.3
tMeta −0.746 0.504 inf 19.685 0.05
Note: ‘—’ indicates that a method does not have corresponding results.

We fit all the six methods on the Mag dataset. Table 1 collects the results. The results in Table 1 show
all the six methods yield similar performance. This means that all the five methods tRE-Meta, MIX-
Meta, SYM-Meta, SKM-Meta and tMeta could degrade to nMeta. Nevertheless, among the five robust
methods, tMeta is computationally the most efficient while tRE-Meta and MIX-Meta require much
more time. Figure 1(c) shows the evolvement of log-likelihood L versus number of iterations when
fitting tMeta. It can be seen from Figure 1(c) that tMeta converges within 7 iterations on this dataset.
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Figure 2. Results on outlier detection by various methods on Mag dataset: (a) tMeta; (b) tRE-Meta;
(c) MIX-Meta; (d) SYM-Meta; (e) SKM-Meta. The marker solid point•in blue represents normal studies
judged by a method.

Table 2. Results of parameter estimates, negative log-likelihood,
BIC, and CPU time (in seconds) by various methods on Hipfrac
dataset.

Methods 𝜇 𝜎 𝜈 -L BIC Time

nMeta 1.357 0.260 — 8.498 22.661 —
tRE-Meta 1.251 0.013 0.582 6.575 21.649 79.2
MIX-Meta 1.252 0.000 — 4.507 20.347 364.1
SYM-Meta 1.220 0.074 — 5.670 19.840 0.222
SKM-Meta 1.202 0.063 — 1.439 14.212 0.2
tMeta 1.252 0.000 1.871 3.700 15.899 0.03
Note: The best method is shown in boldface. ‘—’ indicates that a method does not have
corresponding results.

Figure 2 shows the results of detecting outliers by the five methods. It can be seen from Figure 2 that
all the five methods suggest no outliers for Mag dataset. This finding is consistent with that by Beath.1

4.2. Hipfrac dataset

The Hipfrac dataset23 contains 17 studies, collected from an investigation on the magnitude and
duration of excess mortality after hip fracture among older men. Figure 1(b) shows the forest plot,
from which it seems hard to identify which study is an outlier. Below we perform outlier analysis with
various methods.

We fit all the six methods on the Hipfrac dataset. Table 2 summarizes the results. The results in
Table 2 show that tMeta and SKM-Meta obtain significantly better BIC than the other methods and
SKM-Meta wins by a narrow margin. In terms of computational efficiency among the five robust
methods, tMeta is the fastest while tRE-Meta and MIX-Meta are the slowest runners. Figure 1(d) shows
the evolution of log-likelihood L versus number of iterations when fitting tMeta. It can be seen from
Figure 1(d) that tMeta converges within 6 iterations on this dataset.

Figure 3 shows the results of detecting outliers by the five methods. It can be seen from Figure 3 that
both tMeta and tRE-Meta identify study 17 as an outlier. This result is consistent with that obtained by
Lin et al.2 In contrast, MIX-Meta identifies one more outlier: study 9, while SYM-Meta and SKM-Meta
fail completely.

It is interesting to make a further comparison between tMeta and tRE-Meta. From Figure 3(a), it
can be seen that tMeta detects that study 9 as being close to an outlier, while it is not the case by tRE-
Meta from Figure 3(b). In fact, Lin et al.2 have considered study 9 as a potential outlier and perform
a sensitivity analysis by removing this study. As a result, they found that study 9 is not influential.
Therefore, the result by tMeta is well match that obtained by Lin et al.2
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Figure 3. Results on outlier detection by various methods on Hipfrac dataset: (a) tMeta; (b) tRE-Meta;
(c) MIX-Meta; (d) SYM-Meta; (e) SKM-Meta. The vertical line indicates the critical value for tMeta
(red) and the threshold 0.9 (magenta) for MIX-Meta. The vertical line indicates the critical value for
tMeta and the threshold 0.9 for MIX-Meta. The marker solid point•in blue represents normal studies
judged by a method. Star ‘*’ signals outlying studies, with red for tMeta and magenta for the other
methods.

4.3. Fluoride toothpaste

This dataset contains 70 studies, obtained from an evaluation of fluoride’s efficacy in preventing
childhood dental caries.24 The effect size 𝑦𝑖 denotes the difference between control and treatment
groups, with negative values signifying significant therapeutic effects.

Previous works1,6,12 have concluded that there exist three outliers in this dataset: study 63, study 50
and study 38. Contrarily, the analysis with SKM-Meta suggests no outliers in the dataset.13 To better
examine the outlier detection performance by various methods, we shall perform two experiments in
this section. In the first experiment of Section 4.3, we use the original dataset (Flu). In the second
experiment of Section 4.3, we add the original dataset with one more artificial outlier. The resulting
dataset is called modified Flu for clarity.

4.3.1. Original Flu
Figure 4(a) shows the forest plot of the original dataset Flu. It can be observed from Figure 4(a) that
studies 38, 50, and 63 look like abnormal. We then perform further analysis to identify outliers.

We fit all the six methods on Flu. Table 3 summarizes the results. The results in Table 3 show
that tMeta, SYM-Meta and SKM-Meta obtain substantially better BIC than the other methods and
SKM-Meta is again the best. Among the five robust methods, tMeta is the most computationally
efficient while tRE-Meta and MIX-Meta are the most inefficient. Figure 4(c) shows the evolution of
log-likelihood L versus number of iterations when fitting tMeta. It can be seen from Figure 4(c) that
tMeta converges within 18 iterations on this dataset.

The top row in Figure 5 shows the results of detecting outliers by the five methods. It can be seen
from Figure 5 that tMeta, tRE-Meta and MIX-Meta all identify three studies: 63, 50, 38. This means
that the result by tMeta is consistent with those in previous works.1,6,12 In contrast, SYM-Meta only
detects the most abnormal study 63 as one outlier while SYM-Meta identify no outlier.

4.3.2. Modified Flu
In the modified Flu, the outlier (study 71) is introduced as follows. The effect size 𝑦71 is generated from
the uniform distribution U on the interval [1, 2], i.e., 𝑦71 ∼ 𝑈 (1, 2). We set its within-study variance
𝑠2

71 = 1/12. Figure 4(b) shows the forest plot of modified Flu, from which it can be seen that the newly
added study 71 looks like a mild outlier as it is very different from all the other studies.

Table 3 summarizes the results by six methods. The results in Table 3 show that tMeta yields the best
BIC on this dataset, which is then followed by SYM-Meta, and SKM-Meta is the third best. Among
the five robust methods, tMeta is again the best performer in computational efficiency while tRE-Meta
and MIX-Meta are still the most inefficient. Figure 4(d) shows the evolution of log-likelihood L versus
number of iterations when fitting tMeta. It can be seen from Figure 4(d) that tMeta converges within 19
iterations on this dataset.
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Figure 4. Top row: forest plots on the fluoride toothpaste dataset: (a) Flu and (b) modified Flu, where
each effect size𝑦𝑖and 95% confidence interval are shown as circle and solid line, respectively. Bottom
row: evolement of log-likelihood ofLversus number of iterations: (c) Flu and (d) modified Flu.

The bottom row in Figure 5 shows the results of detecting outliers by the five methods. It can be
seen from the bottom row of Figure 5 that tMeta, tRE-Meta and MIX-Meta successfully identify four
outliers: 71, 63, 50, 38. In contrast, SYM-Meta fails to detect any outlier, while SKM-Meta can detect
the newly added study 71.

4.4. CDP-choline

The CDP-choline dataset25 is obtained by exploring the cytidinediphosphocholine analysis in cognitive
and behavioural disorders associated with chronic brain diseases in the elderly. The sample size is
𝑁 = 10.

Previous analyses1,6,12 have concluded that there is one outlier in this dataset: study 8. Like
Section 4.3, we perform two experiments. In the first experiment of Section 4.4, we use the original
dataset (CDP). In the second experiment of Section 4.4, we modify CDP so that it contains more
outliers, which is denoted by modified CDP for clarity.

4.4.1. Original CDP
Figure 6(a) shows the forest plot of the original CDP. It can be observed from Figure 6(a) that study 8
looks like abnormal. We then perform further analysis to identify outliers.

We fit all the six methods on CDP. Table 4 summarizes the results. The results in Table 4 show
that tMeta, SYM-Meta and SKM-Meta obtain significantly better BIC than the other methods and
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Table 3. Results by various methods on the original and modified fluoride
toothpaste dataset, including parameter estimates, negative log-likelihood,
BIC, and CPU time (in seconds).

Methods 𝜇 𝜎 𝜈 -L BIC Time

Original Flu
nMeta −0.300 0.119 — 1.233 10.963 —
tRE-Meta −0.280 0.049 1.158 −13.121 −13.497 64.0
MIX-Meta −0.281 0.090 — −14.636 −12.277 27.0
SYM-Meta −0.282 0.092 — −17.148 −21.551 0.4
SKM-Meta −0.273 0.081 — −21.914 −26.834 0.6
tMeta −0.282 0.051 2.754 −18.283 −23.820 0.05

Modified Flu
nMeta −0.297 0.139 — 15.760 40.046 —
tRE-Meta −0.279 0.047 1.023 −7.774 −2.761 59.2
MIX-Meta −0.280 0.088 — −10.062 −3.072 26.9
SYM-Meta −0.282 0.092 — −12.399 −12.010 0.7
SKM-Meta −0.277 0.088 — −13.144 −9.238 0.6
tMeta −0.281 0.047 2.367 −13.791 −14.794 0.05
Note: The best method is shown in boldface. ‘—’ indicates that a method does not have corresponding results.
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Figure 5. Results on outlier detection by various methods on fluoride toothpaste dataset. Top row:
the original dataset; Bottom row: the modified dataset. (a), (f) tMeta; (b), (g) tRE-Meta; (c), (h) MIX-
Meta; (d), (i) SYM-Meta; (e), (j) SKM-Meta. The vertical line indicates the critical value for tMeta and
the threshold 0.9 for MIX-Meta. The marker solid point•in blue represents normal studies judged by a
method. Star ‘*’ signals outlying studies, with red for tMeta and magenta for the other methods.

SKM-Meta is again the best. In terms of computational efficiency among the five robust methods,
tMeta is the most efficient while tRE-Meta and MIX-Meta are the slowest runners. Figure 6(c) shows
the evolution of log-likelihood L versus number of iterations when fitting tMeta. It can be seen from
Figure 6(c) that tMeta converges within 10 iterations on this dataset.

The top row in Figure 7 shows the results of detecting outliers by the five methods. It can be seen
from Figure 5 that all the five methods successfully identify study 8 as an outlier. This means that the
results by tMeta, SYM-Meta and SKM-Meta are consistent with those in previous works.1,6,12
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Figure 6. Top row: forest plots on CDP-choline dataset: (a) original dataset; (b) modified dataset.
Bottom row: evolement of log-likelihood ofLversus number of iterations: (c) original dataset and (d)
modified dataset.

Figure 7. Results on outlier detection by various methods on CDP-choline dataset. Top row: the
original dataset; Bottom row: the modified dataset. (a), (f) tMeta; (b), (g) tRE-Meta; (c), (h) MIX-
Meta; (d), (i) SYM-Meta; (e), (j) SKM-Meta. The vertical line indicates the critical value for tMeta and
the threshold 0.9 for MIX-Meta. The marker solid point•in blue represents normal studies judged by a
method. Star ‘*’ signals outlying studies, with red for tMeta and magenta for the other methods.
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Table 4. Results by various methods on the CDP-choline dataset, includ-
ing parameter estimates, negative log-likelihood, BIC, and CPU time (in
seconds).

Methods 𝜇 𝜎 𝜈 -L BIC Time

Original CDP
nMeta 0.389 0.383 — 8.199 21.002 —
tRE-Meta 0.195 0.006 0.494 4.058 15.024 24.7
MIX-Meta 0.191 1.777 — 3.007 15.225 47
SYM-Meta 0.194 0.000 — 2.847 12.602 0.14
SKM-Meta 0.193 0.000 — 1.403 12.016 0.2
tMeta 0.187 0.000 2.380 3.377 13.662 0.03

Modified CDP
nMeta 5.879 17.126 — 46.855 98.506 —
tRE-Meta 0.193 0.002 0.273 13.768 34.729 65.9
MIX-Meta 5.879 2.455 — 46.855 103.302 19.5
SYM-Meta 5.880 17.117 — 46.855 100.904 0.3
SKM-Meta 0.484 0.711 — 21.622 52.836 0.4
tMeta 0.200 0.115 1.000 17.081 41.355 0.03
Note: The best method is shown in boldface. ‘—’ indicates that a method does not have corresponding results.

4.4.2. Modified CDP
In the modified CDP, we make two modifications: (i) add one outlier, namely study 11, which is set as
𝑦11 = 60, 𝑠2

11 = 0.01; (ii) set 𝑠2
8 = 0.01. Figure 6(b) shows the forest plot of modified CDP, from which

it can be seen that the newly added study 11 is a gross outlier as it is extremely different from all the
other studies and study 8 is a mild outlier but now it has a smaller within-study variance than that in the
original CDP.

Table 4 summarizes the results by six methods. The results in Table 4 show that tRE-Meta and
tMeta have better BIC than the other methods on this dataset and tRE-Meta is the best. In terms of
computational efficiency among the five robust methods, tMeta is still the most efficient while tRE-
Meta and MIX-Meta demand the most time. Figure 6(d) shows the evolution of log-likelihood L versus
number of iterations when fitting tMeta. It can be seen from Figure 6(d) that tMeta requires 29 iterations
to converge on this dataset.

The bottom row in Figure 7 shows the results of detecting outliers by the five methods. It can be seen
that tMeta performs reliably as it successfully detects the two outliers: study 11, 8. In contrast, MIX-
Meta and SKM-Meta fail to detect the most extreme study 11. tRE-Meta and SYM-Meta can identify
study 11 but they fail to detect study 8.

5. Conclusion

For outlier accommodation and detection simultaneously, in this article we propose a novel robust meta-
analysis model using student’s t distribution, namely tMeta. tMeta can be expressed as a hierarchical
latent variable model while the marginal distribution of the effect size 𝑦𝑖 follows a tractable t
distribution. To obtain the ML estimates of the parameters, we develop an ECME algorithm, which
is computationally much more efficient than related methods as shown in our experiments. Empirical
results on real datasets show that tMeta not only improves the robustness of nMeta as expected but also
is compared favorably with closely related competitors in that it can provide the best performance for
outlier accommodation and detection simultaneously, for both mild and gross outliers.
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The experiment results show that SKM-Meta on some datasets yields better performance in outlier
accommodation. For future work it would be interesting to extend tMeta using the skew-t distribution
for further accommodating skewed data.
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A. Appendix

A.1. The proposed ECME algorithm for tMeta

In this subsection, we develop an Expectation Conditional Maximization of Either (ECME) algorithm,
a variant of the EM algorithm with faster monotone convergence. [15] Our ECME consists of an E-step
followed by three conditional maximization (CM)-steps. In each CM step, a parameter in 𝜽 = (𝜇, 𝜎2, 𝜈)
is maximized while keeping the others fixed.

Let 𝝉 = (𝜏1, . . . , 𝜏𝑁 ) be the missing data. From (3), the log-likelihood function of complete data
(y, 𝝉) is given by

L𝑐 (𝜽 |y, 𝝉) =
∑𝑁

𝑖=1
ln{𝑝(𝑦𝑖 |𝜏𝑖)𝑝(𝜏𝑖)}.

E-step: Compute the expected complete data log-likelihood function L𝑐 with respect to the conditional
distribution 𝑝(𝝉 |y, 𝜽),

Q(𝜽) = E[L𝑐 (𝜽 |y, 𝝉) |y] = Q1 (𝜇, 𝜎
2) + Q2(𝜈),

where, up to a constant

Q1(𝜇, 𝜎
2) = −

1
2

∑𝑁

𝑖=1

{
ln(𝜎2 + 𝑠2

𝑖 ) + E[𝜏𝑖 |𝑦𝑖]𝛿
2
𝑖 (𝜇, 𝜎

2)
}
. (A.1)

Here, 𝛿2
𝑖 (𝜇, 𝜎

2) is given by (7). The required conditional expectation can be obtained by (9).
In our ECME, the first two CM-steps maximize Q while the third CM-step maximize L. In detail,
CM-step 1: Given (𝜎2, 𝜈), maximize Q1 in (A.1) with respect to 𝜇 yielding

�̃� =
∑𝑁

𝑖=1

𝜏𝑖𝑦𝑖

𝜎2 + 𝑠2
𝑖

/∑𝑁

𝑖=1

𝜏𝑖

𝜎2 + 𝑠2
𝑖

. (A.2)

CM-step 2: Given ( �̃�, 𝜈), maximize Q1 in (A.1) with respect to 𝜎2 under the same restriction �̃�2 ≥ 0
as in nMeta, [9] yielding

𝜎2
𝑡 =

∑𝑁

𝑖=1

𝜏𝑖 (𝑦𝑖 − �̃�)2 − 𝑠2
𝑖

(𝜎2 + 𝑠2
𝑖 )

2

/∑𝑁

𝑖=1

1
(𝜎2 + 𝑠2

𝑖 )
2
,

�̃�2 = max
{
𝜎2
𝑡 , 0

}
. (A.3)
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CM-step 3: Given ( �̃�, �̃�2), maximize the observed data log-likelihood function L in (8) w.r.t. 𝜈.
This is equivalent to finding the root of the following equation

L′(𝜈) = − 𝜓(
𝜈

2
) + ln(

𝜈

2
) + 1 + 𝜓(

𝜈 + 1
2

) − ln(
𝜈 + 1

2
)

+
1
𝑁

∑𝑁

𝑖=1

{
ln

(
𝜈 + 1
𝜈 + 𝛿2

𝑖

)
−

(
𝜈 + 1
𝜈 + 𝛿2

𝑖

)}
= 0, (A.4)

where 𝛿2
𝑖 = 𝛿2

𝑖 ( �̃�, �̃�
2), and 𝜓(𝑥) = 𝑑 ln(Γ(𝑥))/𝑑𝑥 is the digamma function. Solving (A.4) only requires

one-dimensional search, which can be performed, e.g., by the bisection method. [15]
For clarity, the complete ECME algorithm is summarized in Algorithm 1.

Algorithm 1 The ECME algotithm for tMeta

Input: Data y and initialization of 𝜽=(𝜇, 𝜎2, 𝜈).

1. repeat
2. E-step: Compute 𝜏𝑖 via (9).
3. CM-step 1: Update �̃� via (A2).
4. CM-step 2: Update �̃�2 via (A3).
5. CM-step 3: Update �̃� via (A4).
6. until the relative change of L in (8) is smaller than a threshold.

Output: �̃� = ( �̃�, �̃�2, �̃�).

A.2. Proof for Proposition 2

Proof. For ML estimate �̂� , multiplying (9) by �̂� + 𝛿2
𝑖 ( �̂�, 𝜎

2), we obtain

�̂� + 1 = �̂�𝜏𝑖 + 𝜏𝑖𝛿
2
𝑖 ( �̂�, �̂�

2). (A.5)

On both sides of (A.3), multiply by
∑𝑁

𝑖=1 1/(�̂�2 + 𝑠2
𝑖 )

2 and then add
∑𝑁

𝑖=1 𝑠
2
𝑖 /(�̂�

2 + 𝑠2
𝑖 )

2. On noting (7),
when �̂�2 > 0, we have

∑𝑁

𝑖=1

𝜏𝑖𝛿
2
𝑖 ( �̂�, �̂�

2)

�̂�2 + 𝑠2
𝑖

=
∑𝑁

𝑖=1

1
�̂�2 + 𝑠2

𝑖

, (A.6)

and when �̂�2 = 0, we have ∑𝑁

𝑖=1

𝜏𝑖𝛿
2
𝑖 ( �̂�, �̂�

2)

�̂�2 + 𝑠2
𝑖

≤
∑𝑁

𝑖=1

1
�̂�2 + 𝑠2

𝑖

. (A.7)

On both sides of (A.5), divide by �̂�2 + 𝑠2
𝑖 and take the sum over i from 1 to N, yielding

∑𝑁

𝑖=1

�̂� + 1
�̂�2 + 𝑠2

𝑖

=
∑𝑁

𝑖=1

𝜏𝑖𝛿
2
𝑖 ( �̂�, �̂�

2)

�̂�2 + 𝑠2
𝑖

+
∑𝑁

𝑖=1

�̂�𝜏𝑖

�̂�2 + 𝑠2
𝑖

. (A.8)

Substituting (A.6) and (A.7) into (A.8), respectively, we obtain, when �̂�2 > 0,∑𝑁

𝑖=1

𝜏𝑖

�̂�2 + 𝑠2
𝑖

=
∑𝑁

𝑖=1

1
�̂�2 + 𝑠2

𝑖

, (A.9)
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and when �̂�2 = 0, ∑𝑁

𝑖=1

𝜏𝑖

�̂�2 + 𝑠2
𝑖

≥
∑𝑁

𝑖=1

1
�̂�2 + 𝑠2

𝑖

, (A.10)

When �̂�2 > 0, from (A.9) we have

1
𝑁

∑𝑁

𝑖=1
𝑢𝑖𝜏𝑖 = 1,

and when �̂�2 = 0, from (A.10) we have

1
𝑁

∑𝑁

𝑖=1
𝑢𝑖𝜏𝑖 ≥ 1.

where 𝑢𝑖 is given by (10). This completes the proof. �
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