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1. Introduction. Hirota representations of soliton equations have proved very
useful. They produced many of the known families of multisoliton solutions, and
have often led to a disclosure of the underlying Lax systems and infinite sets of
conserved quantities [1,2].

A striking feature is the ease with which direct insight can be gained into the
nature of the eigenvalue problem associated with soliton equations derivable from a
quadratic Hirota equation (for a single Hirota function), such as the KdV equation
or the Boussinesq equation. A key element is the bilinear Bäcklund transformation
(BT) which can be obtained straight away from the Hirota representation of these
equations, through decoupling of a related ‘‘two field condition’’ by means of an
appropriate constraint of minimal weight. Details of this procedure have been
reported elsewhere [3,4]. The main point is that bilinear BT’s are obtained system-
atically, without the need of tricky ‘‘exchange formulas’’ [1]. They arise in the form
of ‘‘Y-systems’’, each equation of which belongs to a linear space spanned by a basis
of binary Bell polynomials (Y-polynomials) [5].

An important element is the logarithmic linearizability of Y-systems, which
implies that each bilinear BT can be mapped onto a corresponding linear system of
Lax type. However, it turns out that these linear systems involve differential opera-
tors which, even in the simplest case, do not constitute a Darboux covariant Lax
pair. See Chapters 2 and 3 of [6]. This fact prevents us from obtaining large classes
of solutions by direct application of the powerful Darboux machinery to the systems
which arise by straightforward linearization of the Y-systems.

Here we present a simple scheme by means of which this difficulty can be
resolved for a variety of soliton equations which admit a bilinear BT that comprises
a constraint of lowest possible weight (weight 2). Darboux covariant Lax pairs for
the KdV, Boussinesq and KdV5 equations are obtained in a unified manner, by
exploiting the relations between the coefficients of linear differential operators con-
nected by a classical Darboux transformation. We show, in particular, that the
concept of Darboux covariance may be regarded as an elementary tool capable of
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generating families of 1+1 dimensional soliton systems, exhibiting their close con-
nection within a higher dimensional hierarchy (KP).

We start our discussion by recalling the main properties of the Y-polynomials
(derived in [5]) and by indicating how the use of the Y-basis can lead systematically
from the original nonlinear partial differential equations to the associated linear
systems. The example of the Lax equation is instructive since this fifth order equa-
tion cannot be derived from a single quadratic Hirota equation.

2. Binary Bell polynomials. The binary polynomials that we use are defined in
terms of the exponential Bell polynomials [7]

Ymx;ntð f Þ � e�f@mx @
n
t e

f ð1Þ

as follows:

Ymx;ntðv;wÞ � Ymx;ntð f Þ
����
fpx;qt ¼

vpx;qt if pþ q is odd;

wpx;qt if pþ q is even;

( ð2Þ

with the understanding that fpx;qt � @px@
q
t f.

They inherit the easily recognizable partitional structure of the Bell polynomials

YxðvÞ ¼ vx; Y2xðv;wÞ ¼ w2x þ v2x; Yx;tðv;wÞ ¼ wxt þ vxvt;

Y3xðv;wÞ ¼ v3x þ 3vxw2x þ v3x; � � �
ð4Þ

The link between Y-polynomials and the standard Hirota expressions

Dp
xD

q
t G

0 � G � @x � @x0ð Þ
p @t � @t0ð Þ

qG0ðx; tÞGðx0; t0Þ
jx0¼x;t0¼t

ð5Þ

is given by the identity

Ymx;ntðv ¼ lnG0=G; w ¼ lnG0GÞ � ðG0GÞ�1Dm
x D

n
t G

0 � G: ð6Þ

In the particular case G0 ¼ G one has

G�2Dm
x D

n
t G � G � Ymx;ntð0; Q ¼ 2 lnGÞ �

0 if mþ n is odd;

Pmx;ntðQÞ if mþ n is even;

(
ð7Þ

the P-polynomials being characterized by an equally recognizable ‘‘even part’’ par-
titional structure

P2xðQÞ ¼ Q2x; Px;tðQÞ ¼ Qxt; P4xðQÞ ¼ Q4x þ 3Q2
2x;

P6xðQÞ ¼ Q6x þ 15Q2xQ4x þ 15Q3
2x; � � �

ð8Þ

A crucial property of the Y-polynomials is related to the transformation
w ¼ vþQ; v ¼ ln :
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Ypx;qtðv;w ¼ vþQÞ
jv¼ln 

¼  �1
Xp
j¼0

Xq
k¼0 ð jþkÞ¼even

p
j

� �
q
k

� �
Pjx;ktðQÞ ðp�jÞx;ðq�kÞt: ð9Þ

It should also be noticed that polynomials Ypx;qtðv;wÞ, constructed with the deriva-
tives of dimensionless variables v and w, are homogeneous expressions of weight
pþ qr if r stands for the dimension of t (the dimension of x is chosen equal to 1).

3. Y-systems associated with sech squared soliton equations. We consider three
examples of sech squared soliton equations with order ranging from 3 to 5: KdV,
Boussinesq, and KdV5.

The simplest one is the KdV equation

KdVðuÞ � ut þ u3x þ 6uux ¼ 0: ð10Þ

Its invariance under the scale transformation

x ! �x; t ! �3t; u ! ��2u; ð11Þ

shows that u has the dimension -2. A dimensionless field Q can be introduced by
setting u ¼ cQ2x, with c a dimensionless parameter to be determined. The resulting
equation for Q can be derived from the ‘‘potential’’ equation

Qxt þQ4x þ 3cQ2
2x ¼ 0; ð12Þ

which can be cast into the form

EðQÞ � PxtðQÞ þ P4xðQÞ � G�2ðDxDt þD4
xÞG � G

���
G¼expðQ=2Þ

¼ 0 ð13Þ

by setting c ¼ 1.
The well known Hirota ‘‘two field condition’’ on G and G0, to be satisfied as a

differential consequence of a bilinear BT (that one must find) takes the form [1]

G0�2ðDxDt þD4
xÞG

0 � G0 � G�2ðDxDt þD4
xÞG � G ¼ 0: ð14Þ

It corresponds to the following condition on Q ¼ 2 lnG ¼ w� v and
Q0 ¼ 2 lnG0 ¼ wþ v:

Eðwþ vÞ � Eðw� vÞ ¼ 2ðvxt þ v4x þ 6v2xw2xÞ

� 2 @x YtðvÞ þ Y3xðv;wÞ½ 
 þ 6W½Y2xðv;wÞ;YxðvÞ

� �

¼ 0:
ð15Þ

This condition can easily be decoupled into a pair of equations in the form of linear
combinations of Y-polynomials set equal to zero. It suffices to impose such a con-
straint on v and w (pj; qj ¼ integer or zero, cj ¼ constant)X

j

cjYpjx;qjtðv;wÞ ¼ 0; ð16Þ
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of lowest possible order (or weight).
The simplest possible choice is a constraint of weight 2

Y2xðv;wÞ � w2x þ v2x ¼ 0: ð17Þ

In order to obtain a parameter dependent decomposition we rather impose the
condition

Y2xðv;wÞ ¼ �; � ¼ arbitrary parameter of weight 2: ð18Þ

It leads us to the following Y-system

Y2xðv;wÞ � � ¼ 0;

YtðvÞ þ Y3xðv;wÞ þ 3�YxðvÞ ¼ 0;
ð19Þ

the compatibility of which is subject to that of the corresponding system for  (set-
ting w ¼ vþQ, v ¼ ln and using relation (9))

ðL2 � �Þ �  2x þ ðQ2x � �Þ ¼ 0;

ð@t þ L3Þ �  t þ  3x þ 3ðQ2x þ �Þ x ¼ 0;
ð20Þ

i.e. to the (�-independent) condition

ðQxt þQ4x þ 3Q2xÞx � @xEðQÞ ¼ 0: ð21Þ

The bilinear equivalent of the Y-system (19) is obtained by means of relation (6)

D2
xG

0 � G ¼ �G0G;

ðDt þD3
x þ 3�DxÞG

0 � G ¼ 0:
ð22Þ

It is the bilinear BT for KdV proposed by Hirota [1].
A similar analysis can be applied to the Boussinesq equation

BqðuÞ � u2t � u4x þ 3ðu2Þ2x ¼ 0: ð23Þ

It shows that this equation can be derived from a potential version, obtained by
setting u ¼ �Q2x, which can be cast into the form

EðQÞ � P2tðQÞ � P4xðQÞ � G�2ðD2
t �D4

xÞG � G
jG¼expðQ=2Þ

¼ 0: ð24Þ

The corresponding two field condition

EðQ0 ¼ wþ vÞ � EðQ ¼ wþ vÞ � 2ðv2t � v4x � 6v2xw2xÞ ð25Þ

¼ �2@xY3xðv;wÞ þ 2v2t þ 6W½Y2xðv;wÞ;YxðvÞ
 ¼ 0

can still be decoupled into a pair of equations of the form (16) by means of a Y-
constraint of weight 2 (notice that in this case the dimension of t ¼ 2, so that we
dispose of two Y-polynomials of weight 2)
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YtðvÞ þ aY2xðv;wÞ ¼ 0; a ¼ dimensionless constant to be determined.

The decoupling requires a2 ¼ �3 and produces the following parameter dependent
Y-system (� ¼ integration constant):

Yt þ aY2xðv;wÞ ¼ 0;

aYx;tðv;wÞ þ Y3xðv;wÞ ¼ �:
ða2 ¼ �3Þ ð26Þ

The corresponding bilinear system

ðDt þ aD2
xÞG

0 � G ¼ 0

ðaDxDt þD3
x � �ÞG

0 � G ¼ 0
ð27Þ

is the bilinear BT for Boussinesq obtained by Nimmo and Freeman [8]. Its compat-
ibility is subject to that of the linear equivalent to the system (26):

 t þ a 2x þ aQ2x ¼ 0;

a xt þ  3x þ 3Q2x x þ ðaQxt � �Þ ¼ 0;
ða2 ¼ �3Þ; ð28Þ

i.e. to the following potential version of the Boussinesq equation:

PBqðQÞ � ðQ2t �Q4x � 3Q2
2xÞx ¼ 0: ð29Þ

We now consider the KdV5 equation

KdV5ðuÞ � ut þ u5x þ 10uu3x þ 20uxu2x þ 30u2ux ¼ 0: ð30Þ

Setting u ¼ cQ2x it is found that it can be derived from the potential equation:

EcðQÞ � Qxt þQ6x þ 10cQ2xQ4x þ 5cQ2
3x þ 10c2Q3

2x ¼ 0: ð31Þ

The left hand side of this equation is homogeneous of weight 6, but there is no value
of c such that it be expressible as a linear combination of the weight 6 polynomials
P6xðQÞ and PxtðQÞ.

Setting c ¼ 1, we may nevertheless consider the two field condition

E1ðwþ vÞ � E1ðw� vÞ � 2f@x½YtðvÞ þ Y5xðv;wÞ
 þ Rðv;wÞg ¼ 0; ð32Þ

with

Rðv;wÞ ¼ � 5 vxw5x � v2xw4x þ 6vxw2xw3x þ 2v3xw3x � 3v2xw
2
2x

�
þ6v2xv2xw2x þ 4vxv2xv3x þ 2v2xv4x þ v4xv2x � 2v32x

	
:

ð33Þ

Eliminating w2x (and its derivatives) by means of the weight 2 constraint (18) it is
found that the condition (32) can be decoupled into the following Y-system:

Y2xðv;wÞ ¼ �;

YðvÞ þ Y5xðv;wÞ þ 15�2YxðvÞ ¼ 0:
ð34Þ
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Its compatibility is subject to that of the corresponding linear system:

 2x þ ðQ2x � �Þ ¼ 0;

 t þ L5 ¼ 0; L5 ¼ @5x þ 10Q2x@
3
x þ 5ðQ4x þ 3Q2

2x þ 3�2Þ@x;
ð35Þ

i.e. to the condition

ðQxt þQ6x þ 10Q2xQ4x þ 5Q2
3x þ 10Q3

2xÞx � @xE1ðQÞ ¼ 0: ð36Þ

4. Darboux covariant Lax pairs. Let us now go back to the KdV equation (10)
and the associated linear system (20). It comprises the second order eigenvalue
equation with the well known Darboux property [6], according to which (non van-
ishing) solutions � of this equation produce gauge transformations [9]

G� ¼ �@x�
�1 ¼ @x � �; � ¼ @x ln�; ð37Þ

which map L2ðQÞ ¼ @2x þQ2x onto a similar operator:

eLL2 � G�L2ðQÞG�1
� � L2ðeQQÞ with eQQ ¼ Qþ 2 ln�: ð38Þ

A similar property does not hold for the evolution equation in (20). However, it is
easy to see that transformations G� generated by solutions � of the third order
evolution equation

ð@t þ L3Þ� ¼ 0; L3 ¼ @3x þ b2@x þ b3; ð39Þ

map the operator @t þ L3 onto the similar

G�ð@t þ L3ÞG
�1
� ¼ @t þ eLL3; eLL3 ¼ @3x þ

ebb2@x þ ebb3; ð40Þ

with

�b2 � ebb2 � b2 ¼ 3�x and �b3 � ebb3 � b3 ¼ b2;x þ ��b2 þ 3�2x: ð41Þ

This follows from equation (39) and more particularly from its differential con-
sequence

�t þ @x �2x þ 3��x þ �
3 þ b2� þ b3

� �
¼ 0: ð42Þ

The next step is to look for a system, equivalent to the system (20), in which the
eigenvalue equation

L2ðQÞ� ¼ �� ð43Þ

is accompanied by a Darboux covariant third order evolution equation (39). The
problem is to find a third order operator L3, with appropriate coefficients b2ðQÞ and
b3ðQÞ, such that @t þ L3ðQÞ be mapped, by gauge transformations (37) generated by
(non vanishing) solutions � of the system (43,39), onto a similar operator, @t þ eLL3ðQÞ,
which satisfies the covariance condition
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eLL3ðQÞ ¼ L3ðeQQ ¼ Qþ�QÞ; �Q ¼ 2 ln�: ð44Þ

It suffices to determine b2 and b3 in the form of polynomial expressions in terms of
derivatives of Q (of order r > 1)

bi ¼ FiðQ2x;Q3x; � � �Þ; i ¼ 2; 3; ð45Þ

such that

�Fi � FiðQ2x þ�Q2x;Q3x þ�Q3x; � � �Þ � FiðQ2x;Q3x; � � �Þ ¼ �bi; ð46Þ

with �Qrx ¼ 2ðln�Þrx, the �bi being determined by the relations (41).
Thus, in order to satisfy the first condition:

�F2 ¼ F2;Q2x
��Q2x þ � � � ¼ 3�x ¼

3

2
�Q2x; ð47Þ

one chooses

b2 ¼ F2ðQ2xÞ �
3

2
Q2x þ c2; c2 ¼ arbitrary constant: ð48Þ

The expression (41) for �b3 then becomes

�b3 ¼
3

2
Q3x þ 3��x þ 3�2x; ð49Þ

from which Q3x can be eliminated on account of equation (43)

Q3x ¼ ��2x � 2��x: ð50Þ

In view of the resulting expression

�b3 ¼
3

2
�2x ¼

3

4
�Q3x; ð51Þ

it is clear that the second condition

�F3 ¼ F3;Q2x
��Q2x þ F3;Q3x

��Q3x þ � � � ¼
3

4
�Q3x ð52Þ

is satisfied if one chooses

b3 ¼ F3ðQ3xÞ �
3

4
Q3x þ c3; c3 ¼ arbitrary constant: ð53Þ

Setting c2 ¼ c3 ¼ 0 for simplicity, we find the following Darboux covariant evolu-
tion equation

½@t þ L3;covðQÞ
� ¼ 0; L3;covðQÞ ¼ @3x þ
3

2
Q2x@x þ

3

4
Q3x: ð54Þ
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The system (43,54) is a Darboux covariant equivalent to the former system (20) as

L3;covðQÞ ¼
1

4
½L3 þ 3@xðL2 � �Þ
: ð55Þ

The operator L3;covðQÞ coincides precisely to the third order operator which gives
rise to the KdV equation in the Lax formalism [10]

½@t þ L3;covðQÞ;L2ðQÞ
 ¼ �
1

4
ðQxt þQ4x þ 3Q2

2xÞx: ð56Þ

The analogy between the Lax formalism and the requirement of Darboux cov-
ariance can be further disclosed by considering a Darboux covariant equivalent to
the system (35), i.e. by looking for a system in which the eigenvalue equation (43) is
accompanied by a Darboux covariant fifth order evolution equation (c1 ¼ constant)

½@t þ L5ðQÞ
� ¼ 0; L5ðQÞ ¼ @5x þ c1@
4
x þ b2ðQÞ@3x þ b3ðQÞ@2x þ b4ðQÞ@x þ b5ðQÞ:

ð57Þ

A transformation G� generated by a (non vanishing) solution � of the system (43,57)
maps @t þ L5ðQÞ onto the similar @t þ eLL5ðQÞ, where

eLL5ðQÞ ¼ @5x þ c1@
4
x þ

ebb2ðQÞ@3x þ
ebb3ðQÞ@2x þ

ebb4ðQÞ@x þ ebb5ðQÞ ð58Þ

with

�b2 � ebb2 � b2 ¼ 5�x ¼
5

2
�Q2x; ð59Þ

�b3 � ebb3 � b3 ¼ b2;x þ ��b2 þ 4c1�x þ 10�2x; ð60Þ

�b4 � ebb4 � b4 ¼ b3;x þ ��b3 þ 3�xebb2 þ 6c1�2x þ 10�3x; ð61Þ

�b5 � ebb5 � b5 ¼ b4;x þ ��b4 þ 2�xebb3 þ 3�2xebb2 þ 4c1�3x þ 5�4x: ð62Þ

These relations can again be used in a straightforward manner to determine
polynomial expressions biðQÞ, i ¼ 2; 3; 4; 5; which satisfy the covariance requirement

ebbiðQÞ � biðQÞ þ�bi ¼ biðeQQ ¼ Qþ 2 ln�Þ: ð63Þ

The appropriate expression for b2 follows immediately from relation (59) and the
identity �Qrx ¼ 2ðln�Þrx, r > 1

b2 ¼
5

2
Q2x þ c2; c2 ¼ arbitrary constant; ð64Þ

the subsequent bi>2 being similarly determined (up to arbitrary constants ci) by
using relation (60–62) together with equation (50) and its differential consequences.
Setting c4 ¼ c5 ¼ 0 and keeping c3 as an arbitrary constant, the resulting L5;covðQÞ

can be expressed as follows:
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L5;covðQÞ ¼ �LL5;covðQÞ þ c1L
2
2ðQÞ þ c2L3;covðQÞ þ c3L2ðQÞ ð65Þ

with

�LL5;covðQÞ ¼ @5x þ
5

2
Q2x@

3
x þ

15

4
Q3x@

2
x þ

25

8
Q4x þ

15

8
Q2

2x

� �
@x þ

15

16
ðQ5x þ 2Q2xQ3xÞ:

ð66Þ

Again it is easy to verify that the Darboux covariant system in which equation (43)
is accompanied by the evolution equation

�t þ �LL5;covðQÞ� ¼ 0 ð67Þ

is equivalent to the system (35) and that

�LL5;covðQÞ ¼
1

16
L5 þ

15

16
½@3x þ ðQ2x þ �Þ@x þQ3x
½L2ðQÞ � �
; ð68Þ

corresponds precisely to Lax’s fifth order generator of isospectral deformations of
L2ðQÞ.

We notice that the appearance of the third order Darboux covariant operator
L3;covðQÞ as part of L5;covðQÞ can be regarded as a direct indication of the close
relationship between KdV and KdV5 as members of the same hierarchy.

We also notice that L2
2ðQÞ represents the actual fourth order operator L4;covðQÞ

to be associated with L2ðQÞ for Darboux covariance, hinting, in an elementary way,
at the absence of even order flows within the KdV hierarchy.

5. Darboux covariant evolutions and KP. In contrast to the original Lax pro-
cedure, the above technique of generating soliton equations through the construc-
tion of Darboux covariant linear systems is not restricted to systems associated with
a second order eigenvalue equation (43). It is as easy to construct a Darboux cov-
ariant system which involves a third order eigenvalue problem and a second order t-
evolution (interchange of the role of L2 and L3)

½@t þ L2ðQÞ
� ¼ 0; L2ðQÞ ¼ @2x þQ2x; ð69Þ

L3ðQÞ� � @3x þ b2ðQÞ@x þ b3ðQÞ ¼ ��: ð70Þ

A gauge transformation G� generated by a (non vanishing) solution � of the system
(69,70) maps the operators @t þ L2ðQÞ and L3ðQÞ onto the similar

G�½@t þ L2ðQÞ
G�1
� ¼ @t þ L2ðeQQ ¼ Qþ 2 ln�Þ; ð71Þ

G�L3ðQÞG�1
� ¼ eLL3ðQÞ � @3x þ

ebb2ðQÞ@x þ ebb3ðQÞ; ð72Þ

the differences �bi � ebbi � bi being still given by relation (41). This follows again
from differential consequences of equations (69,70), and, in particular from the
relation
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�t þ ð�x þ �
2Þx þQ3x ¼ 0: ð73Þ

On account of this relation, and the expressions (41) for �b2 and �b3, it is clear that
the covariance conditions

ebbiðQÞ � biðQÞ þ�bi ¼ biðeQQ ¼ Qþ 2 ln�Þ; i ¼ 2; 3; ð74Þ

determine b2ðQÞ and b3ðQÞ up to arbitrary constants

b2 ¼
3

2
Q2x þ c2 and b3 ¼

3

4
ðQ3x �QxtÞ þ c3: ð75Þ

Setting c2 ¼ c3 ¼ 0 it is found that @t þ L2ðQÞ and

bLL3;covðQÞ ¼ @3x þ
3

2
Q2x@x þ

3

4
ðQ3x �QxtÞ ð76Þ

constitute a Darboux covariant Lax pair for a potential version of the Boussinesq
equation (23) (with a re-scaled t-variable) as

½@t þ L2ðQÞ; bLL3;covðQÞ
 ¼ �ð3Q2t þQ4x þ 3Q2
2xÞx: ð77Þ

The closely related Darboux covariant Lax systems (43,54) and (69,70) hint at the
common origin of the 1+1 dimensional KdV and Boussinesq equation as reductions
of the 1+2 dimensional Kadomtsev Petviashvili equation [11]. In fact, it is natural
to complete the above analysis by starting from the second order evolution equation
(69) and by looking for an associated Darboux covariant t3-evolution

½@t3 þ L3ðQÞ
� ¼ 0; L3ðQÞ ¼ @3x þ b2ðQÞ@x þ b3ðQÞ: ð79Þ

The appropriate expressions for b2ðQÞ and b3ðQÞ, are still determined by the condi-
tions (74). In view of relation (41) and equation (73) it is clear that these expressions
are given by equation (75) in which t has been replaced by t2.

The compatibility condition for the resulting covariant ðt2; t3Þ-system (re-scaling t3)

½@t2 þ L2ðQÞ
� ¼ 0;

½@t3 þ L3;covðQÞ
� ¼ 0; L3;covðQÞ ¼ 4@3x þ 6Q2x@x þ 3ðQ3x �Qxt2 Þ;
ð80Þ

is subject to a condition which can be expressed as the x-derivative of an equation
which involves a linear combination of P-polynomials of weight 4

½@t3 þ L3;covðQÞ; @t2 þ L2ðQÞ
 ¼ ½Px;t3ðQÞ þ 3P2t2 ðQÞ þ P4xðQÞ
x ¼ 0; ð81Þ

and which does therefore correspond to a quadratic Hirota expression of degree 4

FðDx;Dt2 ;Dt3 Þ ¼ DxDt3 þ 3D2
t2
þD4

x: ð82Þ

Equation (81) can be regarded as a potential version of the Kadomtsev-Petviashvili
equation
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ðut3 þ u3x þ 6uuxÞx þ 3u2t2 ¼ 0; ð83Þ

obtained by setting u ¼ Q2x and by integrating once with respect to x.
The present results suggest that a construction of higher order tp-evolutions,

p ¼ 4; 5; . . . ; in terms of higher operators Lp;covðQÞ ¼ @px þ b2ðQÞ@p�2
x þ � � � þ bpðQÞ

which are Darboux covariant with respect to L2ðQÞ, could be undertaken step by
step, so as to produce higher order members of the KP hierarchy. This could be
checked by identifying Jimbo and Miwa’s higher degree KP equations [11] (invol-
ving higher degree Hirota forms) with potential commutator compatibility condi-
tions between two Darboux covariant linear evolutions. In order to do so one must
verify that all commutators ½Lp;cov; L2ðQÞ
 can be identified (up to differentiation
with repect to x) with expressions involving linear combinations of multidimensional
P-polynomials Pm1t1;���mptp;���ðQÞ with t1 ¼ x.
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