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1. Introduction

The study of the CR Yamabe problem began with the celebrated works of Jerison
and Lee [26–29]. The prototypical nonlinear partial differential equation in this
problem is

L u = u
Q+2
Q−2 ,

where L indicates the negative sum of squares of the left-invariant vector fields
generating the horizontal space in the Heisenberg group Hn with real dimension
2n+ 1, whereas Q = 2n+ 2 denotes the so-called homogeneous dimension associ-
ated with the non-isotropic group dilations. (In this paper, we always use the group
law dictated by the Baker–Campbell–Hausdorff formula. When the Lie group is
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2 N. Garofalo, A. Loiudice and D. Vassilev

Hn, or more in general a group of Heisenberg type, this choice obviously affects the
expression of the horizontal Laplacian.) In the present paper, we are interested in
the following nonlocal version of the above equation:

Lsu = u
Q+2s
Q−2s , (1.1)

where the fractional parameter s ∈ (0, 1), and Ls denotes a certain pseudodiffer-
ential operator which arises in conformal CR geometry. As an application of our
main result we derive sharp decay estimates of nonnegative solutions of (1.1).

The operator Ls in (1.1) was first introduced in [2] via the spectral formula:

Ls = 2s|T |sΓ(− 1
2L |T |−1 + 1+s

2 )
Γ(− 1

2L |T |−1 + 1−s
2 )

, (1.2)

where Γ(x) =
´∞
0
tx−1e−tdt denotes Euler gamma function. In (1.2) we have let

T = ∂σ, where for a point g ∈ Hn we have indicated with g = (z, σ) its logarithmic
coordinates. More in general, in a group of Heisenberg type G, with logarithmic
coordinates g = (z, σ) ∈ G, where z denotes the horizontal variable and σ the verti-
cal one, the pseudodifferential operator Ls is defined by the following generalization
of (1.2):

Ls = 2s(−Δσ)s/2
Γ(− 1

2L (−Δσ)−1/2 + 1+s
2 )

Γ(− 1
2L (−Δσ)−1/2 + 1−s

2 )
, (1.3)

where −Δσ is the positive Laplacian in the centre of the group, see [37]. For-
mulas (1.2) and (1.3) should be seen as the counterpart of the well-known spectral
representation ̂(−Δ)su = (2π|ξ|)2sû, where we have denoted by f̂ the Fourier trans-
form of a function f , see [38, Chap. 5]. An important fact, first proved for Hn

in [12] using hyperbolic scattering, and subsequently generalized to any group of
Heisenberg type in [37] using non-commutative harmonic analysis, is the following
Dirichlet-to-Neumann characterization of Ls:

− lim
y→0+

y1−2s∂yU((z, σ), y) = 21−2sΓ(1 − s)
Γ(s)

Lsu(z, σ),

where U((z, σ), y) is the solution to a certain extension problem from conformal
CR geometry very different from that of Caffarelli–Silvestre in [5]. Yet another
fundamental fact, proved in [36, Proposition 4.1] and [37, Theorem 1.2] for
0 < s < 1/2, is the following remarkable Riesz type representation:

α(m, k, s) Lsu(g) =
ˆ

G

u(g) − u(h)
|h|Q+2s

dh, (1.4)

where with g = (z, σ), we have denoted by |g| = |(z, σ)| = (|z|4 + 16|σ|2)1/4 the
non-isotropic gauge in a group of Heisenberg type G. Using the heat equation
approach in [17, 18], formula (1.4) can be extended to cover the whole range
0 < s < 1. In (1.4) the number α(m, k, s) > 0 denotes an explicit constant depend-
ing on s and the dimensions m and k of the horizontal and vertical layers of the
Lie algebra of G. While by (1.2), (1.3), and the classical formula Γ(x+ 1) = xΓ(x),
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Optimal decay for solutions of nonlocal semilinear equations 3

it is formally almost obvious that in the limit as s↗ 1 the operator Ls tends to
the negative of the horizontal Laplacian L , we emphasize that, contrarily to an
unfortunate misconception, when G = Hn, or more in general it is of Heisenberg
type, for no s ∈ (0, 1) does the standard fractional power

L su(g)
def
= (−L )su(g) = − s

Γ(1 − s)

ˆ ∞

0

1
t1+s

(Ptu(g) − u(g)) dt (1.5)

coincide with the pseudodifferential operator defined by the left-hand side of (1.4)
(in (1.5) we have denoted by Pt = e−tL the heat semigroup constructed in [10]).
Unlike their classical predecessors (−Δ)s, in the purely non-Abelian setting of Hn

the pseudodifferential operators L s in (1.5) are not CR conformally invariant, nor
they have any special geometric meaning, while the operators Ls are CR confor-
mally invariant. For these reasons, we will refer to the operator Ls as the geometric
(or conformal) fractional sub-Laplacian, even in the general setting of groups of
Heisenberg type, see [12, Section 8.3] for relevant remarks in the remaining non-
Abelian groups of Iwasawa type. Furthermore, it is not true that the fundamental
solution E (s)(z, σ) of L s is a multiple of |(z, σ)|2s−Q, see [17, Theor. 5.1]. What is
instead true, as proven originally by Cowling and Haagerup [6], see also [36, (3.10)],
and with a completely different approach based on heat equation techniques in [17,
Theor. 1.2] (the reader should also see in this respect the works [18] and [19]), is
that the fundamental solution of the conformal fractional sub-Laplacian Ls in (1.3)
is given by

E(s)(z, σ) =
C(s)(m, k)
|(z, σ)|Q−2s

, (1.6)

where

C(s)(m, k) =
2

m
2 +2k−3s−1Γ( 1

2 (m2 + 1 − s))Γ(1
2 (m2 + k − s))

π
m+k+1

2 Γ(s)
.

It is worth emphasizing here that, when s→ 1, one recovers from (1.6) the famous
formula for the fundamental solution of −L , first found by Folland in [9] in Hn, and
subsequently generalized by Kaplan in [30] to groups of Heisenberg type. Before
proceeding, we pause to notice that from the stochastic completeness and left-
invariance of Pt, in any Carnot group G one tautologically obtains from (1.5)

L su(g) =
1
2

ˆ
G

2u(g) − u(gh) − u(gh−1)

||h||Q+2s
(s)

dh, (1.7)

where for g ∈ G we have defined

1

||g||Q+2s
(s)

def
=

2s
Γ(1 − s)

ˆ ∞

0

1
t1+s

p(g, t)dt, (1.8)

with p(g, t) the positive heat kernel of −L . While in the Abelian case G = Rn,
with Euclidean norm | · |, an elementary explicit calculation in (1.8), based on the
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4 N. Garofalo, A. Loiudice and D. Vassilev

knowledge that p(x, t) = (4πt)−
n
2 e−

|x|2
4t , gives

1
||x||n+2s

(s)

=
s22s+1Γ(n+2s

2 )
π

n
2 Γ(1 − s)

1
|x|n+2s

,

and one recovers from (1.5) Riesz’ classical representation, when G is a non-Abelian
Carnot group it is not true that the right-hand side of (1.8) defines a function of
the gauge |g| = |(z, σ)| = (|z|4 + 16|σ|2)1/4. In fact, in any (non-Abelian) group
of Heisenberg type the following explicit expression of (1.8) was computed in
[17, Theorem 5.1] (to obtain it, one should change s into −s in that result, see
[17, Remark 5.2])

1

||g||Q+2s
(s)

=
s2k+2sΓ(m2 + k + s)

π
m+k

2 Γ(1 − s)Γ(k2 )

1
|z|2( m

2 +k+s)

×
ˆ 1

0

(tanh−1 √y)−s−1 (1 − y)
m
4 −1

y
1
2 (k+s−1)

× F

(
1
2

(m
2

+ k + s
)
,
1
2

(m
2

+ k + 1 + s
)

;
k

2
;−16|σ|2

|z|4 y

)
dy, (1.9)

where we have denoted by F (a, b; c; z) the Gauss hypergeometric series. Formula
(1.9) proves in particular that the function defined by (1.8) is not a function of the
gauge N(z, σ) = (|z|4 + 16|σ|2)1/4 (although it does have the expected cylindrical
symmetry since it depends on |z|4 and |σ|2). If we substitute (1.9) in (1.8), and
then (1.8) in (1.7), by comparing with formula (1.4), we conclude that L s �= Ls

for every 0 < s < 1.
Formulas (1.4) and (1.6) motivated the results in the present work. As we have

mentioned, we are interested in optimal decay estimates for nonnegative subsolu-
tions of (1.1). In this respect, [36, Theorem 3.1] and [37, Theorem 3.7] gave the
explicit form of a solution to the fractional Yamabe equation on group of Heisen-
berg type as a consequence of the intertwining properties of Ls for 0 < s < n+ 1,
see also [18] for a different approach to intertwining based on the heat equation. In
the notation of [18, Corollary 3.3], the result is that if G is of Heisenberg type, and
0 < s < 1, then for every (z, σ) ∈ G, and y > 0 one has the following intertwining
identity:

Ls

(
((|z|2 + y2)2 + 16|σ|2)−m+2k−2s

4

)
=

Γ
(
m+2+2s

4

)
Γ
(
m+2k+2s

4

)
Γ
(
m+2−2s

4

)
Γ
(
m+2k−2s

4

) (1.10)

× (4y)2s((|z|2 + y2)2 + 16|σ|2)−m+2k+2s
4 .

Here, it might be worth clarifying for the reader that the parameter y appearing in
(1.10) is precisely the ‘extension’ variable in the parabolic counterpart of the confor-
mal version of the extension problem discovered in [12]. An immediate consequence
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Optimal decay for solutions of nonlocal semilinear equations 5

of (1.10) is that, for any real positive number y > 0, the function

uy(z, σ) =

(
Γ
(
m+2+2s

4

)
Γ
(
m+2k+2s

4

)
Γ
(
m+2−2s

4

)
Γ
(
m+2k−2s

4

)
)m+2k−2s

4s (
16y2

(|z|2 + y2)2 + 16|σ|2
)m+2k−2s

4

(1.11)

is a positive solution of the nonlinear equation (1.1). In this sense, we might say
that functions (1.11) represent the counterpart of the so-called ‘bubbles’ from con-
formal geometry. We note that in the particular setting of the Heisenberg group
Hn (which corresponds to the case m = 2n and k = 1) the function appearing in
the left-hand side of (1.10) defines, up to group translations, the unique extremal
of the Hardy–Littlewood–Sobolev inequalities obtained by Frank and Lieb in [14].
(We emphasize that letting s↗ 1 one recovers from (1.11) the functions that, in
the local case s = 1, were shown to be the unique positive solutions of the CR Yam-
abe equation respectively in [27], for the Heisenberg group Hn, and [24], for the
quaternionic Heisenberg group. See also the important cited work [14], and [20,
Theor. 1.1] and [21] for partial results in groups of Heisenberg type.)

Whether in a group of Heisenberg type G all nonnegative solutions of (1.1) are, up
to left-translations, given by (1.11) presently remains a challenging open question.
A first step in such problem is understanding the optimal decay of nonnegative
solutions to (1.1). Keeping in mind that the number m+ 2k in (1.11) represents
the homogeneous dimension Q of the group G, by setting the scaling factor y = 1,
we see that there exists a universal constant C > 0 such that

u1(z, σ) � C

|(z, σ)|Q−2s
.

It is thus natural to guess that the optimal decay of all nonnegative solutions to
(1.1) should be dictated by (1.6), i.e. by the fundamental solution of Ls. In theorem
1.2 we prove that this guess is correct.

To facilitate the exposition of the ideas and underline the general character of
our approach, in this paper we have chosen to work in the setting of homogeneous
Lie groups G with dilations {δλ}λ>0, as in the seminal monograph of Folland and
Stein [11]. We emphasize that such groups encompass the stratified, nilpotent Lie
groups in [39], [10], and [11] (but they are a strictly larger class). In particular,
our results include Lie groups of Iwasawa type for which (1.1) becomes significant
in the case of pseudo-conformal CR and quaternionic contact geometry. We shall
assume throughout that | · | is a fixed homogeneous norm in G, i.e. g �→ |g| is a
continuous function on G which is C∞ smooth on G \ {e}, where e is the group
identity, |g| = 0 if and only if g = e, and for all g ∈ G we have

(i) |g−1| = |g|; (ii) |δλg| = λ|g|. (1.12)

Finally, we shall assume that the fixed norm satisfies the triangle inequality:

|g · h| � |g| + |h|, g, h ∈ G. (1.13)

We stress that, according to [23], any homogeneous group allows a norm which
satisfies the triangle inequality. (It is well-known that in a group of Heisenberg
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6 N. Garofalo, A. Loiudice and D. Vassilev

type the anisotropic gauge |g| = |(z, σ)| = (|z|4 + 16|σ|2)1/4 satisfies (i)–(iii), see
[7].) We shall denote with

BR(g) ≡ B(g,R) = {h | |g−1 ◦ h| < R}
the resulting open balls with centre g and radius R.

For 1 � p <∞ and 0 < s < 1 we consider the Banach space Ds,p(G) defined as
the closure of the space of functions u ∈ C∞

0 (G) with respect to the norm:

||u||Ds,p(G) = [u]s,p =
(ˆ

G

ˆ
G

|u(g) − u(h)|p
|g−1 · h|Q+ps

dgdh
)1/p

<∞. (1.14)

We are particularly interested in the case p = 2. In this case, the Euler–Lagrange
equation of (1.14) involves the following left-invariant nonlocal operator, initially
defined on functions u ∈ C∞

0 (G)

Lsu(g) =
1
2

ˆ
G

2u(g) − u(gh) − u(gh−1)
|h|Q+2s

dh = lim
ε→0

ˆ
G\B(g,ε)

u(g) − u(h)
|g−1 · h|Q+2s

dh,

(1.15)

see [16] for a general construction of the fractional operator Ls on the Dirichlet
space Ds,2(G) and relevant Sobolev-type embedding results. In (1.15), and here-
after in this work, the number Q > 0 represents the homogeneous dimension of G

associated with the group dilations {δλ}λ>0. It is clear from (1.4) that, when G is of
Heisenberg type, the nonlocal operator Ls defined using the Koranyi gauge is just
a multiple of Ls in (1.3), and this provides strong enough motivation to work with
(1.15). A second motivation comes from [16, Theor. 1.2], in which we prove that,
if X1, . . . , Xm are the left-invariant vector fields of homogeneity one with associ-
ated coordinates xj , and the fixed homogeneous norm |g| is a spherically symmetric
function of the coordinates (x1, . . . , xm), then for a function u ∈ C∞

0 (G) we have
the identities:

lim
s→0+

2s
σQ

Lsu(g) = −u(g) and lim
s→1−

4m(1 − s)
τm

Lsu(g) = −
m∑
i=1

X2
i u(g), (1.16)

where σQ, τm > 0 are suitable universal constants. Throughout the paper, for
0 < s < 1 we let

2∗(s)
def
=

2Q
Q− 2s

and (2∗(s))′ =
2Q

Q+ 2s
, (1.17)

so that 2∗(s), which is the Sobolev exponent associated with the fractional Sobolev
inequality [16, Theorem 1.2]:(ˆ

G

|u|2∗(s)(g)dg
)1/2∗(s)

� S

(ˆ
G

ˆ
G

|u(g) − u(h)|2
|h−1 · g|Q+2s

dgdh
)1/2

, (1.18)

and (2∗(s))′ is its Hölder conjugate. In addition to the fractional Sobolev exponent
2∗(s), the following exponents will be used:

r
def
=

2∗(s)
2

=
Q

Q− 2s
and r′ =

r

r − 1
=
Q

2s
. (1.19)
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Optimal decay for solutions of nonlocal semilinear equations 7

With all this being said, we are ready to state our results. The first one concerns
the nonlocal Schrödinger type equation (1.20). For the notion of subsolution to such
equation, see (2.6).

Theorem 1.1. Let G be a homogeneous group. Let u ∈ Ds,2(G) be a nonnegative
subsolution to the equation:

Lsu = V u. (1.20)

Suppose the following conditions hold true:

(i) for some t0 > r′ = Q
2s we have V ∈ Lr

′
(G) ∩ Lt0(G);

(ii) there exist R̄0 and K0 so that for R > R̄0 we have
ˆ
{|g|>R}

|V (g)|t0dg � K0

R2st0−Q . (1.21)

Then there exists a constant C > 0, depending on Q, s, and K0, such that for all
g0 ∈ G with |g0| = 2R0 � 4R̄0, we have for 0 < R � R0

sup
B(g0,R/2)

u � C

 
B(g0,R)

u+ CT (u; g0, R/2), (1.22)

where the ‘tail’ is given by

T (u; g0, R) = R2s

ˆ
{|g−1

0 ·h|>R}

u(h)
|g−1

0 · h|Q+2s
dh. (1.23)

We note that the potential V in (1.20) is not assumed to be radial (i.e. a func-
tion of the norm | · |), or controlled by a power of u. Hypothesis (1.21) goes back
to the work [1], see also [42] where a similar assumption was used in the case
of Schrödinger type equations modelled on the equations for the extremals to
Hardy–Sobolev inequalities with polyradial symmetry. For other results about the
Schrödinger equation see [13]. The ‘tail’ in (1.23) appeared in [35] in the setting of
the Heisenberg group Hn.

Our second result is the following theorem in which we establish the sharp
asymptotic decay of weak nonnegative subsolutions to the fractional Yamabe type
equation (1.1). The result applies to weak solutions of Lsu = |u|2∗(s)−2u, since then
|u| is a weak subsolution of the Yamabe type equation.

Theorem 1.2. Let G be a homogeneous group of homogeneous dimension Q and
0 < s < 1. If u ∈ Ds,2(G) is a nonnegative subsolution to the nonlocal Yamabe type
equation

Lsu = u
Q+2s
Q−2s , (1.24)

then | · |Q−2s u ∈ L∞(G).

We mention that in [3, Theor. 1.1] the authors established, in the setting of
Rn, the sharp asymptotic behaviour of the spherically symmetric extremals for the
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8 N. Garofalo, A. Loiudice and D. Vassilev

fractional Lp Sobolev inequality, i.e. for the radial nonnegative solutions in Rn of
the equation with critical exponent

(−Δp)su = u
n(p−1)+sp

n−sp ,

where 0 < s < 1, 1 < p < n
s , see also [34]. However, both [3] and [34] use in a

critical way the monotonicity and radial symmetry of the solutions in order to
derive the asymptotic behaviour from the regularity of u in the weak space Lr,∞,
where r = n(p−1)

n−sp . As it is well-known, in the Euclidean setting one can use radially
decreasing rearrangement or the moving plane method to establish monotonicity
and radial symmetry of solutions to variational problems and partial differential
equations. These tools are not available in Carnot groups and proving the relevant
symmetries of similar problems remains a very challenging task.

The result of theorem 1.2 does not rely on the symmetry of the solution, hence
the method of proof is new even in the Euclidean setting. In order to obtain the
optimal decay theorem 1.2 without relying on symmetry of the solution, we use a
version of the local boundedness estimate given in theorem 1.1 and then obtain a
new estimate of the tail term, which is particular for the fractional case.

In closing, we provide a brief description of the paper. In § 2 we introduce the
geometric setting of the paper and the relevant definitions. We also prove proposi-
tion 2.1, a preparatory result which provides regularity in Lp spaces for subsolutions
of fractional Schrödinger equations. In § 3 we prove theorem 1.1. Finally, in § 4 we
prove theorem 1.2.

2. Homogeneous groups and fractional operators

This section is devoted to providing the necessary background and stating a pre-
liminary result, proposition 2.1. Let G be a homogeneous group as defined in
[11, Chapter 1]. In particular, (G, ◦) is a connected simply connected nilpotent
Lie group. Furthermore, the exponential map exp : g → G is a diffeomorphism of
the Lie algebra g onto the group G and g is endowed with a family of non-isotropic
group dilations δλ for λ > 0. Explicitly, there is a basis Xj , j = 1, . . . , n of the Lie
algebra g and positive real numbers dj , such that,

1 = d1 � d2 � · · · � dn and δλXj = λdjXj ,

which, using the exponential map, define 1-parameter family of automorphisms of
the group G given by exp ◦δλ ◦ exp−1. We will use the same notation δλ for the
group automorphisms. As customary, we indicate with

Q = d1 + · · · + dn

the homogeneous dimension of G with respect to the nonisotropic dilations δλ. We
will denote with dg a fixed Haar measure given by the push forward of the Lebesgue
measure on the Lie algebra via the exponential map, see [11, Proposition 1.2]. We
note that this gives a bi-invariant Haar measure. Furthermore, the homogeneous
dimension and the Haar measure are related by the identity d(δλg) = tQ dg.
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Optimal decay for solutions of nonlocal semilinear equations 9

The polar coordinates formula for the Haar measure gives the existence of a
unique Radon measure dσ(g), such that, for u ∈ L1(G) we have the identity,
[11, Prop. (1.15)]:

ˆ
G

u(g)dg =
ˆ ∞

0

ˆ
{|g|=1}

u(δrg)rQ−1dσ(g)dr. (2.1)

In particular, we have, see [8]:

ˆ
{r<|g|<R}

|g|−γ dg =

⎧⎨
⎩

σQ
Q− γ

(
RQ−γ − rQ−γ) , γ �= Q

σQ log(R/r), γ = Q,
(2.2)

where σQ = QωQ, and ωQ =
´
B1

dg > 0.

2.1. The fractional operator

For 0 < s < 1 consider the quadratic form:

Qs(u, φ)
def
=

ˆ
G

ˆ
G

(u(g) − u(h))(φ(g) − φ(h))
|g−1 · h|Q+2s

dgdh.

Following [16], we let Ds,2(G) be the fractional Sobolev space defined as the closure
of C∞

0 (G) with respect to the case p = 2 of the seminorm (1.14), i.e.

[u]s,2 = Qs(u, u)1/2 =
(ˆ

G

ˆ
G

|u(g) − u(h)|2
|g−1 · h|Q+2s

dgdh
)1/2

. (2.3)

The infinitesimal generator of the quadratic form Qs(u, φ) is the nonlocal operator
Ls defined in (1.15). By a weak solution of the equation Lsu = F we intend a
function u ∈ Ds,2(G) such that for any φ ∈ C∞

0 (G) one has:

Qs(u, φ) =
ˆ

G

ˆ
G

(u(g) − u(h))(φ(g) − φ(h))
|g−1 · h|Q+2s

dgdh =
ˆ

G

F (g)φ(g)dg. (2.4)

Weak subsolutions are defined by requiring

Qs(u, φ) �
ˆ

G

F (g)φ(g)dg

for all non-negative test functions φ. As shown in [16, Theorem 1.1] this is equivalent
to defining the fractional operator Lsu by formula (1.15). As we have underlined in
§ 1, besides the Euclidean case G = Rn, in a Lie group of Heisenberg type, equipped
with the Koranyi norm, definition (1.15) equals, up to a multiplicative constant, the
fractional powers of the conformally invariant (or geometric) horizontal Laplacian
defined by (1.3), see [12, 37] and [17].
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10 N. Garofalo, A. Loiudice and D. Vassilev

2.2. A preparatory result on Lebesgue space regularity

In the proof of theorem 1.1 we will need the following regularity in Lebesgue
spaces involving the fractional operator (1.15). In its proof we adapt the arguments
that in the local case were developed in [20, Lemma 10.2], [40, Theor. 4.1], and
[41, Theor. 2.5], except that in the nonlocal case one has to use the Sobolev inequal-
ity (1.18), rather than the Folland–Stein embedding D1,2(G) ↪→ L

2Q
Q−2 (G). As far

as part (b) of proposition 2.1 is concerned, in addition to the cited references we
also mention [15, Sec. 4], where a similar result was proved for L2 solutions, and
[32, Lemma 2.3], for a closely related result concerning the Yamabe equation on
the Heisenberg group Hn. In the local case in Rn, a sharp Lorentz space result was
obtained for solutions to equations modelled on Yamabe type equations, or more
generally for the Euler–Lagrange equation related to the Lp Sobolev inequality. This
type of result originated with the work [25], and was subsequently used to obtain
the sharp Lp regularity and the asymptotic behaviour for solutions of such equa-
tions, see [43, Lemma 2.2] and [3, Proposition 3.3]. These results were extended to
Yamabe type equations in Carnot groups in [33, Theorem 11 and Proposition 3.2].
We mention that, since we work in the more general setting of a Schrödinger type
equation, in proposition 2.1(b) we do not obtain a borderline Lr,∞(G) Lorentz regu-
larity for the considered non-negative subsolutions, instead, we show that u ∈ Lq(G)
for r = 2∗(s)

2 < q <∞. For the statement of the next proposition, the reader should
keep in mind definition (1.19) of the exponents r and r′.

Proposition 2.1. Let G be a homogeneous group and suppose that u ∈ Ds,2(G) be
a nonnegative subsolution to the nonlocal equation

Lsu = V u, (2.5)

with V ∈ Lr
′
(G), i.e. for every φ ∈ C∞

0 (G) such that φ � 0 one has

Qs(u, φ) =
ˆ

G

ˆ
G

(u(g) − u(h))(φ(g) − φ(h))
|g−1 · h|Q+2s

dgdh �
ˆ

G

V (g)u(g)φ(g)dg. (2.6)

(a) We have u ∈ Lq(Ω) for every 2∗(s) � q <∞. Furthermore, for any 2∗(s) <
q <∞ there exist a constant CQ > 0, such that for all sufficiently large M
for which

(ˆ
{|V |>M}

V r
′
dg

)1/r′

� 1
qCQ

, (2.7)

one has

‖u‖Lq(G) � (qCQM)1/q‖u‖Ds,2(G).

(b) In fact, it holds u ∈ Lq(G) for r = 2∗(s)
2 < q <∞.
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Optimal decay for solutions of nonlocal semilinear equations 11

(c) If, in addition, V ∈ Lt0(G) for some t0 > r′, then u ∈ Lq(G) for r = 2∗(s)
2 <

q � ∞. In addition, the sup of u is estimated as follows:

‖u‖L∞(G) � CQ ‖V ‖
t′0r

r−t′0
Lt0 (G) ‖u‖L2∗(s)t′0 (G)

,

where t′0 is the Hölder conjugate to t0 and CQ is a constant depending on the
homogeneous dimension.

Proof. We begin by recalling a few basic facts which are crucial for working with
appropriate test functions in the weak formulation of the nonlocal equation (2.5).
First, using Hölder’s inequality and the definition of the homogeneous fractional
Sobolev space Ds,2(G), we can take φ ∈ Ds,2(G) in the weak formulation (2.6). For
a globally Lipschitz function F defined on R and a function u ∈ Ds,2(G) we have
from (2.3) the inequality

[F ◦ u]s,2 � ‖F ′‖L∞(R)[u]s,2,

hence F ◦ u ∈ Ds,2(G). Assuming, in addition, that F is of the form F (t) =´ t
0
G′(τ)2dτ , then from Jensen’s inequality we have for any nonnegative numbers

a � b the inequality:

(
G(b) −G(a)

b− a

)2

=

(
1

b− a

ˆ b

a

G′(τ)dτ

)2

� 1
b− a

ˆ b

a

G′(τ)2dτ =
F (b) − F (a)

b− a
,

which gives

(b− a) (F (b) − F (a)) � (G(b) −G(a))2 . (2.8)

Applying the Sobolev inequality (1.18) to the function G ◦ u, and using (2.8), we
find

‖G ◦ u‖2
L2∗(s)(G) � S2

ˆ
G

ˆ
G

|G ◦ u(g) −G ◦ u(h)|2
|h−1 · g|Q+2s

dgdh (2.9)

� S2

ˆ
G

ˆ
G

(u(g) − u(h))(F ◦ u(g) − F ◦ u(h))
|g−1 · h|Q+2s

dgdh

� S2

ˆ
G

V (g)u(g)(F ◦ u)(g)dg,

where in the last inequality we have used (2.6) with the choice φ = F ◦ u as a test
function.

For the proof of parts (a) and (c) see for example [20, Lemma 10.2] and [40,
Theorem 4.1], but one has to use the fractional Sobolev inequality (1.18) rather
than the Folland–Stein inequality. We give the proof of part (c) below taking into
account also [3, Proposition 3.3] which dealt with the Euler–Lagrange equation of
the fractional p-Laplacian in the Euclidean setting.

To prove (b) in proposition 2.1 we will show that for any 0 < α < 1 we have that
u ∈ Lr(1+α)(G). From part (a) and the fact that 2∗(s)/2 < r(1 + α) < 2r = 2∗(s)
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12 N. Garofalo, A. Loiudice and D. Vassilev

the claim of part (b) will be proven. The details are as follows. For ε > 0 and
0 < α < 1, consider the functions:

Fε(t) =
ˆ t

0

G′
ε(τ)

2dτ, where Gε(t) = t(t+ ε)(α−1)/2.

Notice that Fε is nondecreasing by definition. A simple calculation shows that

0 � G′
ε(t) =

1
(t+ ε)(3−α)/2

[
1 + α

2
t+ ε

]
� 1

(t+ ε)(1−α)/2
� 1
ε(1−α)/2

, (2.10)

where we have used that α < 1. This shows in particular that F ′
ε(t) = G′

ε(t)
2 �

εα−1, therefore Fε is a globally Lipschitz function. We thus find from (2.9):

‖Gε ◦ u‖2
L2∗(s)(G) � S2

ˆ
G

|V |uFε(u)dg. (2.11)

In order to estimate the right-hand side in (2.11) we will use the following
inequalities, which are valid for u � 0:

Fε(u) � 1
α
uα and uFε(u) � 1

α
Gε(u)2. (2.12)

The former is easily proved by noting that:

Fε(u) �
ˆ u

0

dt
(t+ ε)1−α

� (u+ ε)−α

α
� 1
α
uα.

This estimate trivially gives uFε(u) � u (u+ε)α−εα

α , and therefore from the definition
of Gε we see that the latter inequality in (2.12) does hold provided that

(u+ ε)α − εα � u

u+ ε
(u+ ε)α, i.e. (u+ ε)α−1 − εα−1 � 0.

The latter inequality follows from the trivial inequality

(1 + x)1−α � 1

valid for x � 0 and 0 < α < 1.
Keeping in mind definition (1.19) of the exponents r and r′, using now in (2.11)

the first inequality in (2.12) and Hölder inequality, we easily obtain for a fixed
δ > 0:

‖Gε ◦ u‖2
L2∗(s)(G) � S2

(
1
α

ˆ
{|V |>δ}

|V |u1+αdg +
ˆ
{|V |�δ}

|V |uFε(u)dg
)

(2.13)

� S2

⎡
⎣ 1
α

(ˆ
{|V |>δ}

|V |r′dg
)1/r′ (ˆ

{|V |>δ}
ur(1+α)dg

)1/r
⎤
⎦

+ S2

⎡
⎣(ˆ

{|V |�δ}
|V |r′dg

)1/r′ (ˆ
{|V |�δ}

(uFε(u))rdg

)1/r
⎤
⎦ .
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Optimal decay for solutions of nonlocal semilinear equations 13

Next, we use the second of inequalities (2.12) to obtain the estimate:(ˆ
{|V |�δ}

(uFε(u))rdg

)1/r

� 1
α

(ˆ
{|V |�δ}

(Gε(u))
2r

)1/r

� 1
α
‖Gε ◦ u‖2

L2∗(s)(G).

(2.14)

By Lebesgue-dominated convergence one has
´
{|V |�δ} |V |r′dg −→ 0 as δ → 0+.

Therefore, we can choose δ > 0 so small that

S2

α

(ˆ
{|V |�δ}

|V |r′dg
)1/r′

<
1
2
. (2.15)

Combining (2.15) with (2.14) we can absorb in the left-hand side the second term
in the right-hand side of (2.13), obtaining the inequality:

‖Gε ◦ u‖2
L2∗(s)(G) � 2S2

α

(ˆ
{|V |>δ}

|V |r′dg
)1/r′ (ˆ

{|V |>δ}
ur(1+α)dg

)1/r

. (2.16)

Notice that the hypothesis V ∈ Lr
′
(G) and Chebyshev inequality imply that the

distribution function of V satisfies for every δ > 0:

μ(δ) = |{g ∈ G | |V (g)| > δ}| � 1
δr′

ˆ
{|V |>δ}

|V |r′dg <∞. (2.17)

Since r(1 + α) < 2r = 2∗(s), Hölder inequality thus gives( 
{|V |>δ}

ur(1+α)dg

) 1
r(1+α)

�
( 

{|V |>δ}
u2∗(s)dg

) 1
2∗(s)

,

or equivalently, recalling that 2r = 2∗(s):(ˆ
{|V |>δ}

ur(1+α)dg

) 1
r

� μ(δ)
1
r − 1+α

2r

(ˆ
{|V |>δ}

u2∗(s)dg

) 1+α
2∗(s)

(2.18)

= μ(δ)
1−α
2r

(ˆ
{|V |>δ}

u2∗(s)dg

) 1+α
2∗(s)

.

Using (2.17), (2.18), and r′/r = 1/(1 − r) in (2.16) we obtain:

‖Gε ◦ u‖2
L2∗(s)(G) � 2S2

α

‖V ‖1+ 1−α
2(1−r)

Lr′(G)

δ
1−α

2(1−r)

‖u‖1+α
L2∗(s)(G)

.

Letting ε go to 0, noting that limε→0Gε(u) = u(1+α)/2 gives:(ˆ
G

u(1+α)r

)1/r

<∞,

which, taking into account also part (a), completes the proof of part (b) of
proposition 2.1. �
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14 N. Garofalo, A. Loiudice and D. Vassilev

3. Proof of theorem 1.1

The proof consists of several steps detailed in the following sub-sections.

3.1. The localized fractional Sobolev inequality

The proof of theorem 1.1 will use the following version of a localized fractional
Sobolev inequality. For an open set Ω ⊂ G we denote by Ds,2(Ω) the completion of
C∞

0 (Ω) with respect to the norm:

‖v‖Ds,2(Ω) =
(ˆ

G

ˆ
G

|ṽ(g) − ṽ(h)|2
|g−1 · h|Q+2s

)1/2

,

where ṽ denotes the extension of v to a function on G, which is equal to zero outside
of Ω.

Lemma 3.1. Let 0 < s < 1 and 2s < Q. There exists a constant C = C(Q, s) > 0
such that, for any ball BR of radius R, r < R, and v ∈ Ds,2(BR) with supp v ⊂ Br
we have[ˆ

BR

|v|2∗(s) dh
]2/2∗(s)

� C

[ˆ
BR

ˆ
BR

|v(g) − v(h)|2
|g−1 · h|Q+2s

dgdh+
1
R2s

(
R

R− r

)Q+2s ˆ
BR

|v|2 dh

]
. (3.1)

Proof. The proof is essentially contained in the Euclidean version [4, Proposi-
tion 2.3]. We will use the trivial extension and then apply the fractional Sobolev
inequality (1.18). Since v has compact support in BR its extension by zero on
the complement of the ball is a function ṽ ∈ Ds,2(G). Furthermore, due to the
assumption on the support of v, we have

‖ṽ‖2
Ds,2(G) �

ˆ
BR

ˆ
BR

|v(g) − v(h)|2
|g−1 · h|Q+2s

dgdh + 2

ˆ
Br

|v(g)|2
ˆ

G\BR

1

|g−1 · h|Q+2s
dh dg (3.2)

�
ˆ

BR

ˆ
BR

|v(g) − v(h)|2
|g−1 · h|Q+2s

dgdh + 2

ˆ
G\BR

sup
g∈Br

1

|g−1 · h|Q+2s
dh

ˆ
BR

|v(g)|2dg

�
ˆ

BR

ˆ
BR

|v(g) − v(h)|2
|g−1 · h|Q+2s

dgdh + C

(
R

R − r

)Q+2s
1

R2s

ˆ
BR

|v(g)|2dg.

In order to see the last of the above inequalities we used polar coordinates as in
identity (2.2) to obtain the following inequalities, where σQ is the area of the unit
sphere:
ˆ

G\BR

sup
g∈Br

1
|g−1 · h|Q+2s

dh �
ˆ
B2R\BR

1

(|h| − r)Q+2s
dh+

ˆ
G\B2R

1
|g−1 · h|Q+2s

dh

� σQ

[ˆ 2R

R

tQ−1

(t− r)Q+2s
dt+

ˆ ∞

2R

(
2
t

)Q+2s

tQ−1dt

]
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Optimal decay for solutions of nonlocal semilinear equations 15

since |g−1 · h| � |h| − r � |h|/2 when r < R, |g| < r, and |h| � 2R. Therefore, we
have ˆ

G\BR

sup
g∈Br

1
|g−1 · h|Q+2s

dh � C

[
RQ

Q+ 2s

(
1

R− r

)Q+2s

+
1
2s

2Q+2s

R2s

]
,

which gives (3.2). The latter implies trivially (3.1). �

3.2. Caccioppoli inequality

We begin by stating the adaptation to our setting of the Caccioppoli inequality
for the fractional p-Laplacian in Euclidean space [4]. For β � 1 and δ > 0 define
the following functions for t � 0:

φ(t) = (t+ δ)β , Φ(t) =
ˆ t

0

|φ′(τ)|1/2 dτ = 2
β1/2

β + 1
(t+ δ)(β+1)/2. (3.3)

For our goals, the precise value of δ is given in (3.9). Suppose Ω′ � G and
ψ ∈ C∞

0 (G) is a positive function with suppψ ⊂ Ω′. Let u be a weak nonnega-
tive subsolution to the equation Lsu = F with F ∈ L(2∗(s))′ . Then, we have for
some constant C = C(Q), which is independent of Ω′, the inequality:

ˆ
Ω′

ˆ
Ω′

∣∣∣Φ(u(g))ψ(g) − Φ(u(h))ψ(h)
∣∣∣2

|g−1 · h|Q+2s
� C

ˆ
G

|F |φ(u(g))ψ2(g) dg

+
C

β

(
β + 1

2

)2 ˆ
Ω′

ˆ
Ω′

|ψ(g) − ψ(h)|2
|g−1 · h|Q+2s

(
(Φ(u(g))2 + Φ(u(h))2

)
dg dh

+ C

(
sup

h∈suppψ

ˆ
G\Ω′

|u(g)|
|g−1 · h|Q+2s

dg

) ˆ
Ω′
φ(u)ψ2 dg.

(3.4)

The proof of the above formula follows from the proof of the localized Caccioppoli
inequality [4, Proposition 3.5] after letting p = 2, replacing the ambient space with
the considered homogeneous group and using its homogeneous dimension instead
of the Euclidean dimension.

We now fix g0 ∈ G, and for 0 < r < R, we take a nonnegative smooth bump
function ψ ∈ C∞

0 (G) such that

ψ|Br(g0) ≡ 1, suppψ � B r+R
2

(g0), |ψ(g1) − ψ(g2)| � C

R− r
|g−1

1 · g2|.
(3.5)

In order to achieve (3.5) we take a cut-off function ψ(g) = η(|g−1
0 · g|), where η is

a smooth bump function on the real line, such that, η(t) ≡ 1 on |t| � r, η ≡ 0 on
t � (R+ r)/2 and for some constant K > 0 we have |η′(t)| � K/(R− r) for all t.
Hence, for any ρ1, ρ2 ∈ R we have

|η(ρ1) − η(ρ2)| � K

R− r
|ρ1 − ρ2|.

Furthermore, if we let ρ(g) = |g−1 · go|, then from the triangle inequality (1.13) it
follows that ρ is a Lipschitz continuous function with respect to the gauge distance,
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16 N. Garofalo, A. Loiudice and D. Vassilev

with Lipschitz constant equal to 1:

|ρ(g1) − ρ(g2)| � |g−1
1 · g2|, g1, g2 ∈ G

Therefore, for gj ∈ G and ρj = ρ(gj), j = 1, 2, we have

|ψ(g1) − ψ(g2)| = |η(ρ1) − η(ρ2)| � K

R− r
|ρ1 − ρ2| � K

R− r
|g−1

1 · g2|.

For the remainder of the proof, for any r > 0 we will denote by Br the ball Br(g0)
with the understanding that the centre is the fixed point g0.

If u is a nonnegative weak subsolution to

Lsu = V u,

then, with the above choice of ψ and F = V u, (3.4) implies the following inequality:

ˆ
BR

ˆ
BR

|uδ(g)(β+1)/2ψ(g) − uδ(h)(β+1)/2ψ(h)|2
|g−1 · h|Q+2s

dg dh (3.6)

� Cβ

[ˆ
BR

ψ2 V uβ+1
δ dh+

(
R

R− r

)2 1
R2s

ˆ
BR

uβ+1
δ dh

+
(

R

R− r

)Q+2s 1
R2s

T (u; g0, R)
ˆ
BR

uβδ dh

]
,

where uδ = u+ δ and T (u; g0, R) is the tail (1.23). The proof of (3.6) is contained
in [4, Theorem 3.8 and (3.29)], except that we have to use the Lipschitz bound in
(3.5) for the term |ψ(g) − ψ(h)|2 in (3.4).

Next, we apply to inequality (3.6) the localized Sobolev inequality (3.1), with r

replaced with (R+ r)/2 and v with ψ u(β+1)/2
δ , taking into account

(
R

R− r

)2

�
(

R

R− r

)Q+2s

and also that by the choice of ψ we have supp (ψ u(β+1)/2
δ ) � B(R+r)/2 � BR . As

a result, we obtain:

⎡
⎣ˆ

BR+r
2

ψ2∗(s)u
(β+1)2∗(s)/2
δ dh

⎤
⎦

2/2∗(s)

� Cβ

[ˆ
BR

ψ2V uβ+1
δ dh (3.7)

+
(

R

R− r

)Q+2s 1
R2s

ˆ
BR

uβ+1
δ dh+

(
R

R− r

)Q+2s 1
R2s

T (u; g0, R)
ˆ
BR

uβδ dh

]
.
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Optimal decay for solutions of nonlocal semilinear equations 17

3.3. Use the assumptions on V

This is the core of the new argument leading to our result. By Hölder’s inequality
and suppψ � B(R+r)/2, we have

ˆ
BR

ψ2V uβ+1
δ dh �

(ˆ
BR

V t0 dh
)1/t0

⎛
⎝ˆ

BR+r
2

(
ψ u

β+1
2

δ

)2∗(s)

dh

⎞
⎠

1/t

×
⎛
⎝ˆ

BR+r
2

(
ψ u

β+1
2

δ

)2

dh

⎞
⎠

1/κ

,

where

t =
2st0
Q− 2s

and κ =
2st0

2st0 −Q

so that
1
t0

+
1
t

+
1
κ

= 1 and
2∗(s)/2

t
+

1
κ

= 1,

which is possible due to the assumptions in theorem 1.1. Next, we use Young’s
inequality ab � εa

κ′

κ′ + 1
εκ−1

bκ

κ in the right-hand side of the above inequality to
conclude:

ˆ
ψ2V uβ+1

δ dh � ε

κ′

⎛
⎝ˆ

BR+r
2

(
ψ u

β+1
2

δ

)2∗(s)

dh

⎞
⎠
κ′/t

+
1

εκ−1κ

(ˆ
BR

V t0 dh
)κ/t0 ⎛⎝ˆ

BR+r
2

ψ2 uβ+1
δ dh

⎞
⎠ .

Hence, taking into account κ′/t = 2/2∗(s), κ/t0 = 2s
2st0−Q and the above inequality

together with the properties of ψ, we obtain from (3.7) the following inequality:

⎡
⎣ˆ

BR+r
2

ψ2∗(s)u
(β+1)

2∗(s)
2

δ dh

⎤
⎦

2
2∗(s)

� β

⎧⎪⎨
⎪⎩
Cε

κ′

⎡
⎣ˆ

BR+r
2

ψ2∗(s)u
(β+1)

2∗(s)
2

δ dh

⎤
⎦

2
2∗(s)

+
C

εκ−1κ

(ˆ
BR

V t0 dh
) 2s

2st0−Q
(ˆ

BR

uβ+1
δ dh

)

+ C

(
R

R− r

)Q+2s [ 1
R2s

ˆ
BR

uβ+1
δ dh+

1
R2s

T (u; g0, R)
ˆ
BR

uβδ dh
]}

.
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18 N. Garofalo, A. Loiudice and D. Vassilev

Choosing ε such that Cεβ
κ′ = 1

2 , we absorb the first term on the right-hand side in
the left-hand side, and then reduce the domain of integration, taking into account
that ψ ≡ 1 on Br, which brings us to the following inequality:

[ˆ
Br

u
(β+1)

2∗(s)
2

δ dh
] 2

2∗(s)

� C

[
βκ
(ˆ

BR

V t0 dh
) 2s

2st0−Q

+
(

R

R− r

)Q+2s
β

R2s

]ˆ
BR

uβ+1
δ dh

+ C

(
R

R− r

)Q+2s
β

R2s
T (u; g0, R)

ˆ
BR

uβδ dh.

Since uβδ � uβ+1
δ /δ, the above inequality allows us to conclude:

[ˆ
Br

u
(β+1)

2∗(s)
2

δ dh
] 2

2∗(s)

� Cβκ

[(ˆ
BR

V t0 dh
) 2s

2st0−Q

+
(

R

R− r

)Q+2s 1
R2s

+
(

R

R− r

)Q+2s 1
δR2s

T (u; g0, R)

] ˆ
BR

uβ+1
δ dh.

We recall that in the latter inequality we have radii 0 < r < R and all balls are
centred at the fixed point g0. Suppose, in addition, that 2R0 = |g0| and 0 < R � R0.
Then, we have

BR = B(g0, R) ⊂ B(g0, R0) ⊂ G \B(0, R0),

taking into account the triangle inequality (1.13). Therefore, for R0 � 2R̄0 the decay
assumption of V , cf. theorem 1.1(ii), and the above inclusions imply that for some
constant C = C(Q, s, K0) we have the bound

(ˆ
BR

V t0 dh
)2s/(2st0−Q)

�
(ˆ

BR0

V t0 dh

)2s/(2st0−Q)

�
(ˆ

{|g|>R0}
V t0 dh

)2s/(2st0−Q)

� C

R2s
0

� C

R2s

after using 0 < R � R0 for the last inequality. Therefore, also observing that
R/(R− r) > 1, we have proven that there exists a constant C = C(Q, s, K0), such
that for any β � 1, g0 such that R0 = |g0|

2 � R̄0, and radii 0 < r < R � R0 we have

[ˆ
Br

u
(β+1)

2∗(s)
2

δ dh
] 2

2∗(s)

� Cβκ

R2s

(
R

R− r

)Q+2s [
1 +

T (u; g0, R)
δ

]ˆ
BR

uβ+1
δ dh.

(3.8)
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Optimal decay for solutions of nonlocal semilinear equations 19

3.4. Moser’s iteration

By proposition 2.1(c) we have that u ∈ Lq(G) ∩ L∞(G) for any q � 2∗(s)/2, hence
u ∈ Lq0loc(G) for q0 � 2. In fact, for the proof of the theorem we can assume q0 = 2,
but the argument is valid for any q0 � 2. We also let β = q0 − 1.

Recalling that the exponent r = 2∗(s)/2 = Q/(Q− 2s) > 1, see (1.19), we define
the sequence

qj+1 = rqj > qj , j = 0, 1, 2, . . . .

From (3.8) we have with Brj
= B(g, rj), rj = R

2 (1 + 2−j), j = 0, 1, 2, . . . the
inequality:
(ˆ

Brj+1

u
qj+1
δ dh

)1/qj+1

�
C1/qj q

κ/qj

j

r
2s/qj

j

[(
rj

rj − rj+1

)Q+2s
]1/qj [

1 +
T (u, g0, rj)

δ

]1/qj

×
(ˆ

Brj

u
qj

δ dh

)1/qj

.

The definition of the tail (1.23) gives for a fixed R � R̄0 and R/2 � rj < R the inequality:

T (u; g0, rj) = rj
2s

ˆ
|g−1·h|>rj

u(h)
|g−1 · h|Q+2s

dh � 22sT (u; g0, R/2)

while a simple estimate shows(
rj

rj − rj+1

)Q+2s

� 2(j+2)(Q+2s).

Hence, letting

Mj =

(ˆ
Brj+1

u
qj+1
δ dh

)1/qj+1

and T = 1 +
T (u; g,R/2)

δ

we have with some constants C0 and C1 depending on Q and s the inequality:

Mj+1 � C
1/qj

0 C
(j+2)/qj

1 (qj)κ/qj

R2s/qj
T 1/qj Mj .

Therefore, for

δ = T (u; g,R/2), (3.9)

we have T = 2 and we obtain the inequality:

Mj+1 � C(j+2)/qj (qj)κ/qj

R2s/qj
Mj .

Therefore, recalling that qj+1 = rjq0, we obtain

sup
B(g,R/2)

(u+ δ) � C

(
1
R2s

) 1
q0

∑∞
j=0 r

−j

C
1

q0

∑∞
j=0(j+2)r−j

∞∏
j=0

(qj)κ/qj M0.
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20 N. Garofalo, A. Loiudice and D. Vassilev

From the definitions of the exponents r and its Hölder conjugate r′ = Q/(2s) we
have

1
q0

∞∑
j=0

1
rj

=
1
q0

r

r − 1
=
r′

q0
=

Q

2sq0

and
∞∏
j=0

(qj)κ/qj <∞ since
∞∑
i=1

log(qj)
qj

<∞.

Thus, we find:

sup
B(g0,R/2)

(u+ δ) � C

( 
B(g0,R)

(u+ δ)q0 dh

)1/q0

.

If we let q0 = 2 and take into account the definition of δ we have shown that there
is a constant C0, depending on Q and s, such that the inequality

sup
B(g0,R/2)

u � C0

( 
B(g0,R)

u2 dh

)1/2

+ C0T (u; g0, R/2). (3.10)

holds for any g0 ∈ G with |g0| = 2R0 � 2R̄0 and 0 < R � R0, where R̄0 is the radius
in the assumptions of theorem 1.1.

3.5. Lowering the exponent

To lower the exponent in the average integral in the above inequality we follow
the standard argument, see for example [22, p. 223, Theorem 7.3], except that we
need to account for the tail term similarly to [31, Corollary 2.1]. In view of the
eventual use of the sought estimate in obtaining the asymptotic behaviour of the
solution, it is also important to keep the constant in the inequality independent of
R as in (3.10). For any ρ > 0, let:

Mρ
def
= sup

B(g0,ρ)

u.

First, we will show the following slight modification of (3.10). There is a constant
C1, depending on Q and s, such that, for all g0 ∈ G with |g0| = 2R0 � 4R̄0 and
0 < r < R � R0 we have

Mr � C1

(
R

R− r

)Q ⎡⎣( 
B(g0,R)

u2 dh

)1/2

+ T (u; g0, R)

⎤
⎦ . (3.11)

Letting τ = r/R, 0 < τ < 1, the above inequality is equivalent to showing, with the
same constant C1, that we have

MτR � C1

(1 − τ)Q

⎡
⎣( 

B(g0,R)

u2 dh

)1/2

+ T (u; g0, R)

⎤
⎦ . (3.12)
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Optimal decay for solutions of nonlocal semilinear equations 21

We turn to the proof of (3.12). Let g1 ∈ B(g0, τR) and ρ be sufficiently small, in
fact,

ρ =
(1 − τ)R

4
,

so that,

B(g1, ρ) ⊂ B(g1, 2ρ) ⊂ B(g0, R) and sup
B(g0,τR)

u = sup
B(g1,ρ)

u.

Notice that by the triangle inequality we have |g1| � 2R̄0, which follows from |g0| =
2R0 � 4R̄0, cf. the line above (3.11), hence we can apply (3.10) to the ball B(g1, ρ),
which gives

MτR = sup
B(g1,ρ)

u � C0

( 
B(g1,2ρ)

u2 dh

)1/2

+ C0T (u; g1, ρ) (3.13)

� C02−Q/2
(
R

ρ

)Q/2( 
B(g0,R)

u2 dh

)1/2

+ C0T (u; g1, ρ)

=
C02Q/2

(1 − τ)Q/2

( 
B(g0,R)

u2 dh

)1/2

+ C0T (u; g1, ρ),

taking into account that by the definition of ρ we have R/ρ = 4
1−τ . We will estimate

the tail term in the last line by using the tail term centred at g0 and radius R, and
the average of u over the ball B(g0, R). For this we split the domain of integration
of the integral in the formula for the tail,

T (u; g1, ρ) = ρ2s

ˆ
G\B(g1,ρ)

u(h)
|h−1 · g1|Q+2s

dh,

in two disjoint sets

G \B(g1, r) = (G \B(g0, R)) ∪ (B(g0, R) \B(g1, ρ)) .

The integral over the second of the above sets is estimated by using h /∈ B(g1, ρ),
followed by Hölder’s inequality, to obtain

ρ2s

ˆ
B(g0,R)\B(g1,ρ)

u(h)
|h−1 ◦ g1|Q+2s

dh

� ρ2s

ρQ+2s

ˆ
B(g0,R)\B(g1,ρ)

u dh (3.14)

� ωQ

(
R

ρ

)Q  
B(g0,R)

u dh � ωQ

(
R

ρ

)Q( 
B(g0,R)

u2 dh

)1/2

=
4QωQ

(1 − τ)Q

( 
B(g0,R)

u2 dh

)1/2

,

where ωQ is the volume of the unit gauge ball.
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22 N. Garofalo, A. Loiudice and D. Vassilev

In order to estimate the integral in the tail over G \B(g0, R), we use the triangle
inequality, h /∈ B(g1, ρ) and g1 ∈ B(g0, τR), which give

|h−1 · g0|
|h−1 · g1| � |h−1 ◦ g1| + |g−1

1 · g0|
|h−1 · g1| � 1 +

τR

ρ
= 1 +

4τ
1 − τ

=
1 + 3τ
1 − τ

<
4

1 − τ
=
R

r
.

Hence, we have

ρ2s

ˆ
G\B(g0,R)

u(h)
|h−1 · g1|Q+2s

dh � ρ2s

(
R

ρ

)Q+2s ˆ
G\B(g0,R)

u(h)
|h−1 · g0|Q+2s

dh

(3.15)

=
(
R

r

)Q
T (u; g0, R) =

4Q

(1 − τ)Q
T (u; g0, R).

Inequalities (3.13)–(3.15) give

MτR � C02Q/2

(1 − τ)Q/2

( 
B(g0,R)

u2 dh

)1/2

+
C04Q

(1 − τ)Q
T (u; g0, R)

+
C04QωQ
(1 − τ)Q

( 
B(g0,R)

u2 dh

)1/2

(3.16)

� (C0 + ωQ)4Q

(1 − τ)Q

( 
B(g0,R)

u2 dh

)1/2

+
C04Q

(1 − τ)Q
T (u; g0, R)

since 0 < 1 − τ < 1. The proof of (3.11) is complete.
Let us note that for r and R as in (3.11) satisfying, in addition, R0/2 � r < R �

R0 we have R/(R− r) � 2 and

T (u; g0, R) � 22s

(
R

R0

)2s

T (u; g0,
R0

2
) � 22sT

(
u; g0,

R0

2

)
.

Therefore, inequality (3.11) implies that for all g0 ∈ G with |g0| = 2R0 � 4R̄0 and
R0/2 � r < R � R0 we have

Mr � 2Q+2sC1

⎡
⎣( 

B(g0,R)

u2 dh

)1/2

+ T

(
u; g0,

R0

2

)⎤⎦ (3.17)

� M
1/2
R 2Q+2sC1

(
1

ωQRQ

ˆ
B(g0,R0)

u dh

)1/2

+ 2Q+2sC1T

(
u; g0,

R0

2

)
.

Inequality (3.17) implies, using ab � 1
2 (a2 + b2) and R− r < R, the inequality

Mr � 1
2
MR +

A

(R− r)Q
+B, (3.18)
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Optimal decay for solutions of nonlocal semilinear equations 23

where

A = 4Q+2sC2
1

1
ωQ

ˆ
B(g0,R0)

u dh and B = 2Q+2sC1T

(
u; g0,

R0

2

)
.

Therefore, by a standard iteration argument, see for example [22, p. 191, Lemma
6.1], there exists a constant cQ so that Mr � cQ[A(R− r)−Q +B]. Hence, for any
R0 � 2R̄0, and g0 ∈ G with |g0| = 2R0, we have

sup
B(g0,R0/2)

� C

[ 
B(g0,R0)

u dh+ T (u; g0, R0/2)

]
.

This completes the proof of theorem 1.1.

4. Proof of theorem 1.2

Recall that here we are considering a nonnegative subsolution u to the Yamabe
type equation Lsu = u2∗(s)−1.

4.1. The optimal Lorentz space regularity

The first step is to obtain the optimal Lorentz space regularity of u. For this we
can adapt to the current setting [3, Propositions 3.2 and 3.3], which gives

u ∈ Lr,∞(G) ∩ L∞(G), (4.1)

recalling that r = 2∗(s)/2, cf. (1.19). Notice that in the cited results from [3], valid
in the Euclidean setting, the authors do not assume that the solution is radial, but
the radial symmetry is used ultimately to obtain the rate of decay of the solution
of the fractional Yamabe equation.

For the sake of completeness and self-containment of the proof, in the setting of a
homogeneous group, and right-hand side of the equation modelled on the fractional
Yamabe equation, we include a proof of the sharp Lebesgue space regularity (4.1),
relying on proposition 2.1. First, proposition 2.1 implies that u ∈ Lq(G) ∩ L∞(G),
for any q > r = 2∗(s)/2. Indeed, if V = u2∗(s)−2 then since u ∈ L2∗(s)(G) it follows
that V ∈ Lr

′
(G). Hence, by proposition 2.1(b) it follows u ∈ Lq(G) for all q such

that 2∗(s)
2 < q <∞. Hence, part (c) gives that we also have u ∈ L∞(G). Finally,

we can see that u ∈ L2∗(s)/2,∞(G) as follows. Take Ft(u) = min{u, t}. Using the
equation and the fractional Sobolev inequality we have

‖Ft ◦ u‖2
L2∗(s)(G) � C

ˆ
G

V uFt(u)dg, (4.2)

where V = u2∗(s)−2. Using first that Ft(u) � t and then the definition of V we have
ˆ

G

V uFt(u)dg � t

ˆ
G

V udg � t

ˆ
G

u2∗(s)−1dg <∞ (4.3)
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24 N. Garofalo, A. Loiudice and D. Vassilev

since u2∗(s)−1 ∈ L1(G) noting that 2∗(s) − 1 > 2∗(s)/2. Let μ(t) be the distribution
function of u. From the definition of Ft we have trivially:ˆ

G

(Ft(u))2
∗(s)dg = t2

∗(s)μ(t) +
ˆ
{u<t}

u2∗(s)dg � t2
∗(s)μ(t). (4.4)

Therefore, bounding from above the left-hand side of the above inequality using
(4.2) and then using (4.3) we have

t2
∗(s)μ(t) �

(
C

ˆ
G

V uFt(u)dg
)2∗(s)/2

� Ct2
∗(s)/2,

which shows that u ∈ L2∗(s)/2,∞(G).

4.2. Asymptotic behaviour of the tail term

We shall reduce the problem to a question of Lp regularity of certain truncated
powers of the homogeneous norm, which we define next. For R > 0 and α > 0, let:

ρ(g) = ρα,R(g) =
{|g|−α, |g| � R

0, |g| < R.

Lemma 4.1. For Q/p < α the Lorentz norms of ρα,R are given by the following
formulas:

‖ρα,R(g)‖Lp,σ =
[ˆ ∞

0

(
t1/pρ∗(t)

)σ dt
t

]1/σ
=

CQ,σ

Rα−
Q
p

. (4.5)

Proof. Let μ(s) = |{g | ρα,R(g) > s}| be the distribution function of ρα,R. From the
representation of the Haar measure in polar coordinates (2.2), we have

μ(s) =

{
0, s > ρ(R)
σQ
Q

(
s−Q/α −RQ

)
, 0 < s � ρ(R).

The corresponding radially decreasing rearrangement is

ρ∗(t) = inf {s � 0 | μ(s) � t} =
(
Q

σQ
t+RQ

)−α/Q

since s = ρ∗(t) is determined from σQ/Q(s−Q/α −RQ) = t > 0. A small calculation
shows then that for some constant CQ,σ we have (4.5). �

Next, we use the optimal Lorentz space estimate and lemma 4.1 to bound the
tail.

Lemma 4.2. With the standing assumption, i.e. u ∈ Ds,2(G) is a nonnegative sub-
solution to the Yamabe type equation (1.24), we have that the tail has the following
decay:

T (u; g0, R) ≡ R2s

ˆ
G\B(g0,R)

u(g)
|g−1 · g0|Q+2s

dg � CR−(Q−2s)

with C a constant depending on the homogeneous dimension Q.
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Proof. By Hölder’s inequality we have

T (u; g0, R) ≡ R2s

ˆ
G\B(g0,R)

u(g)
|g−1 · g0|Q+2s

dg � R2s‖u‖Lr,∞‖ρQ+2s,R‖Lr′,1 , (4.6)

recalling the definition of r in (1.19) and using the weak Lr,∞ regularity of u that we
already proved. Hence, the claim of the lemma follows by lemma 4.1 which shows
that for some constant C = C(Q) we have

‖ρQ+2s,R‖Lr′,1 � CR−Q. (4.7)

As a consequence, taking into account that r′ = Q/(2s) we obtain (4.7). �

4.3. The slow decay

The proof of theorem 1.2 will also use a preliminary ‘slow’ decay of the solution
u, see [44, Lemma 2.1] for case of the Yamabe equation on a Riemannian manifold
with maximal volume growth.

Lemma 4.3. If u ∈ Ds,2(G) is a nonnegative subsolution to the Yamabe type
equation, then u has the slow decay |g|(Q−2s)/2u ∈ L∞(G).

Proof. The key to this decay is the scale invariance of the equation, i.e. the fact
that

uλ(g) = λ(Q−2s)/2u(δλg)

is also a subsolution to the Yamabe type equation and the scale invariance of the
Ds,2(G) and the L2∗(s)(G) norms. In order to show the slow decay, it is then enough
to show that there exist constants λo and C, depending only on Q and s, and the
invariant under the scaling norms, such that for all g0 with λ = |g0|/2 > λ0 we have
on the ball B(h0, 1) with h0 = δλ−1g0, the estimate:

max
h∈B(ho,1)

uλ(h) � C. (4.8)

Indeed, (4.8) implies:

( |go|
2

)(Q−2s)/2

u(go) �
( |go|

2

)(Q−2s)/2

sup
B(g0,λ)

u(g) = max
B(h0,1)

uλ(h) � C,

which gives the desired decay. Bound (4.8) will be seen from the local version of
proposition 2.1(c) in the case V = u

2∗(s)−2
λ by showing that the local supremum

bound is independent of λ. To simplify the notation let v = uλ. We follow the
argument in the proof of theorem 1.1 with V = v2∗(s)−2. Furthermore, for 1

2 < r <
R < 3

2 we take a bump function ψ, so that,

ψ|Br
≡ 1, suppψ � B r+R

2
,

where here and for the remainder of the proof, for any r > 0 we will denote by Br
the ball B(h0, r) with the understanding that the centre is h0.
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In particular, we have (3.7) with uδ replaced by vδ, but now we can absorb the
first term on the right-hand side in the left-hand side for all sufficiently large λ.
Indeed, applying Hölder’s inequality we have

ˆ
ψ2V vβ+1

δ dh �

⎡
⎣ˆ

B r+R
2

V r
′
dh

⎤
⎦

1/r′ ⎡
⎣ˆ

BR+r
2

ψ2∗(s)v
(β+1)2∗(s)/2
δ dh

⎤
⎦

2/2∗(s)

.

(4.9)
Since V = v2∗(s)−2 the first term can be estimated as follows:

ˆ
B r+R

2

V r
′
dh =

ˆ
B r+R

2

v2∗(s)dh �
ˆ
B(g0,λ)

u2∗(s) dh→ 0 as λ→ ∞,

using the scaling property of the L2∗(s) norm and u ∈ L2∗(s)(G). Therefore, we have
the analogue of (3.8), i.e. for all λ � λ0 there exists a constant C = C(Q, s, K0),
such that, the following inequality holds true:

[ˆ
Br

v
(β+1)

2∗(s)
2

δ dh
] 2

2∗(s)

� Cβκ

R2s

[(
R

R− r

)2
] [

1 +
T (v;h0, R)

δ

]ˆ
BR

vβ+1
δ dh.

(4.10)

A Moser type iteration argument shows then the existence of a constant C such
that for all λ � R0, h0 = δλ−1g0 and |g| = 2λ we have the inequality

sup
B(h0,1)

v � C

⎡
⎣( 

B(h0,2)

v2∗(s) dh

)1/2∗(s)

+ T (v;h0, 1/2)

⎤
⎦ (4.11)

� C

[(ˆ
G

v2∗(s) dh
)1/2∗(s)

+ T (v;h0, 1/2)

]

� C
[‖u‖Ds,2(G) + ‖u‖L2∗(s)(G)‖ρQ+2s,1‖L2∗(s)′,1

]
� C,

after using the fractional Sobolev inequality, Hölder’s inequality, (4.5), and the
invariance under scalings of the Ds,2(G) and L2∗(s)(G) norms. �

4.4. Conclusion of the proof of theorem 1.2

We begin by noting that, from what we have already proved, theorem 1.1 can be
applied to the potential V = u2∗(s)−2. Indeed, the slow decay of u, cf. lemma 4.3,
gives that for some constant C we have

u(g) � C|g|−(Q−2s)/2,
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which together with (2.2) implies the needed assumptions on V , in particular, for
t0 > r′ = Q/(2s), cf. (1.19), we have

ˆ
|g|�R

V t0 dh =
ˆ
|g|�R

ut0(2
∗(s)−2) dh

� C
4st0

Q−2s

ˆ
|g|�R

|g|−2st0 dh =
σQC

4st0
Q−2s

2st0 −Q

1
R2st0−Q .

Therefore, theorem 1.1 gives that for all g ∈ G and 2R = |g| sufficiently large we
have (1.22), i.e. there exists a constant C independent of g, such that

sup
B(g,R/2)

u � C

 
B(g,R)

u+ CT (u; g,R/2). (4.12)

Furthermore, the weak L2∗(s)/2 regularity (4.1) shows that for r = 2∗(s)/2 we
have the inequality

 
B(g,R)

u dh � r

r − 1
1

|BR|1/r ‖u‖L2∗(s)/2,∞ =
C

RQ−2s
‖u‖Lr,∞ , (4.13)

taking into account that for 1 � p <∞ the Lp,1(G) norm of the characteristic
function of the gauge ball BR is p|BR|1/p.

Now we are ready to conclude the proof of theorem 1.2 since by (4.12), (4.13),
and lemma 4.2 we can claim the following estimate for all sufficiently large 2R = |g|,

u(g) � max
B(g,R/2)

u � C

RQ−2s
‖u‖L2∗(s)/2,∞ +

C

RQ−2s

with a constant C independent of g.
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