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In the theory of multivalent functions there are several different levels of
postulates for /^-valency. Perhaps the most well-known is the class of mean p-
valent functions in the sense of Spencer [8] (we shall refer to them as areally mean
/>-valent functions), whose basic properties are found, e.g., in Hayman [4]. Re-
cently Eke [1,2] extended to these functions a number of results which had been
known for circumferentially mean p-valent functions.

On the other hand, Garabedian-Royden [3] and Jenkins [5] have introduced
a wider class, for which they discussed the extension of Koebe's 1/4-theorem.
Functions in this class are referred to as weakly mean />-valent functions by the
former, and logarithmically areally mean />-valent functions by the latter. There
are various other properties of areally mean />-valent functions which are satisfied
by those functions also.

In the present paper, we shall discuss a negative aspect of logarithmically
areally mean />-valent functions. It will be shown that the above mentioned result
of Eke cannot be extended to those functions.

We shall also give a glance at s-dimensionally mean /7-valent functions, dis-
cussed in Spencer [8], which lie in between areally mean />-valent functions and
logarithmically areally mean j?-valent functions.

Given a regular function / on the unit disc \z\ < 1, let n(w) be the number of
w-points counted with multiplicity, and consider its circumferential mean

p(R) = 1 rn(Reie)d9,
2nJ 0

0 g R < oo. It is a non-negative lower-semicontinuous function and is such that
p{R) > 0 if and only if there exists z satisfying R = |/(z)|.
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If there exists a number p > 0 such that

(A) f Rp(R)d(R2) ^ pnR2

Jo

for R > 0,/is called an areally mean p-valent function. It has at most [p] zeros and
satisfies the following basic inequality (see Hayman [4, p. 23]):

for every Rt, R2 with 0 < Rt < R2 •
If there exists p > 0 such that

J R K

for every Rt and R2 with 0 < Rt < R2, we shall call/logarithmically areally mean
p-valent. As appears implicitly in Hayman [4, p. 33], (A) implies (L). Further a
function with (L) has at most [p] zeros and, as Schwarz's inequality

Rj JRl R JRl Rp(R)

shows, satisfies (B). As a consequence, all the theorems in Chapter 2 of Hayman
[4] are true for logarithmically areally mean />-valent functions.

3

Ifp is a positive integer, a function/with expansion

/TVT\ f ( rf\ — _ P 1̂  ™ _ P "t" 1 1̂

about the origin will be referred to as normalized.
Clearly for a function with (N) and (A) there exists an Ro > 0 such that

p(R) = p for R with 0 ^ R £ Ro and

(B*) * • R ' f * ^

for every R ^ Ro.
We shall call a function normalized logarithmically areally mean p-valent if it

satisfies (N) and, for some Ro,

p(R) = p for every R with 0 ^ R <L RQ

(I*) CR p(R)dR . , R

J Ro K K0
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for every R ^ Ro. It is to be noted that neither of the implications (N, L) M
(N, L*) holds (see 9°).

As before a function with (N, A) satisfies (L*). A function with (N, L*) has a
zero only at the origin and satisfies (B*). Therefore the theorems in Chapter 2 of
Hayman [4] continue to hold for normalized logarithmically areally mean/7-valent
functions also.

Under the assumption (N), the condition (L*) is readily seen to be equivalent
to

"«p(R)-pI, dR ^ 0 for every R,
o -K

which is the definition adopted by Garabedian-Royden [3].

4

We shall say that a /?-valent function f attains maximum growth in the direction
<p if

(1) lhn(l-r)2p|/(rei<p)| > 0.
r->l

For circumferentially meanp-valent functions (i.e.,p{R) ^ p for every R > 0)
Hayman [4], and for areally/>-valent functions Eke [1, 2] recently, proved that (1)
implies regularity of growth, namely the existence of the finite non-zero limit

(2) l im(l-r)2 ' | /(re*)| .

We shall show that this conclusion does not hold for a function with (L) or
(N, L*):

THEOREM 1. There exists a logarithmically areally mean p-valent function as
well as a normalized logarithmically areally mean p-valent function which attain
maximum growth in direction (p yet do not have the limit (2).

To prove Theorem 1 by constructing counter-examples we need some prepara-
tion, which begins with the quotation of a result of Eke [1, Theorem 3] as follows:

If a regular function on \z\ < 1 has only a finite number of zeros and satisfies

(3) lim |/(re*)| = oo, - ^ - = oo
r-l JRoRp(R)

for some Ro with p(R0) > 0, then the limit

(4) a = li
Rp(R)

exists including the possibility of a = — oo.
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Notice that, if (3) holds for some Ro, then it does also for every Ro with
p(R0) > 0. The value of a depends on Ro, but whether or not a > — oo is inde-
pendent of Ro.

This result indicates that if the growth is measured by means of the integral
in (4), then the growth is regular whenever a > — oo, and the case a > — oo cor-
responds to the case where/attains maximum growth so measured in direction (p.

6

We now compare these with (2) and (1).

LEMMA 1. For a function f satisfying (B), a necessary and sufficient condition
for (I) is the validity of

— / f " ^ 1 dR _ . - .
-oo(5) lim 21og > -

- i U R o Rp(R) 1-r/
and

(6) Ihn" ( - log/?- f* -^-) > -oo

for every, of equivalently some, Ro with p(R0) > 0.
For a function f satisfying (-8*), the same is true with respect to the Ro involved

in (B*).

PROOF. It is immediate if we compare (4) with

(1') Hm ( ! log |/(re")| - 2 log —) > - oo,
r-i \p 1-r/

which is equivalent to (1). Notice that either (1') or (5), (6) implies (3), so that the
limit of (5) always exists.

LEMMA 2. For a function f satisfying (1) and (L), the existence of the finite
non-zero limit (2) is equivalent to the existence of the finite limit

(7) lim ( f &dR-p\ogR\

for every, or equivalently some, Ro with P(RQ) > 0.
For a function f satisfying (1) and (L*), the same is true with respect to the Ro

involved in (L*).

PROOF. On comparing (4) with

(2') lim (- log |/(re")| - 2 log — ) > - oo,
— i \p 1-r/
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which is equivalent to the existence of the finite non-zero limit (2), we conclude as
before that (2') is equivalent to the existence of the finite limit

(8) lim (±ogR
\ JRoRp(R)

On the other hand, the right-hand side of

a R P(R) J D i R \ 2 I CR dR 1 , R\
t-^-dR-plog— \+p2[\ log —

«o R Ro! \JRO
RP(R) P RO?

is bounded since (6) and either (L) or (L*) are satisfied. Since the integrand of the
left-hand side is non-negative, the limit for R -> oo of the integral exists. According-
ly the existence of (8) is equivalent to that of the first term of the right-hand side
of (9). Q.E.D.

Actually Eke [2, Theorem 1] showed the existence of (7) for areally mean
/>-valent functions with (1), and proved that (1) implies (2).

In order to prove Theorem 1, it suffices to construct a function / which
satisfies (5), (6), and either (L) or (L*), yet does not have the limit (7).

Except for (5), these conditions are geometric properties of the Riemann sur-
face covering the w-plane. There is a case, even though very limited, where a suffi-
cient condition for (5) (i.e., a > — oo in (4)) also is obtained in geometric terms.

Suppose a regular function / on \z\ < 1 has only a finite number of zeros.
Take r0 > 0 such that/does not vanish on the annulus r0 < \z\ < 1. Let D be
the domain obtained from this annulus cut along the ray arg z = q> + n. Clearly

C = log/(z)

is single valued and regular on D. We assume that this function is univalent.
Furthermore we require the image domain to have the following shape: there exist
positive lower-semicontinuous functions d1 and 62 on — oo < { < oo having the
property that the image domain is contained in A = {£ = £ + iri\ — oo < ^ < oo,
— 0i(£) < r\ < 62(Z)}, contains { (eJ |£ 0 ^ £} for some £,0, and such that the
point z = ei<p corresponds to £ = +00.

LEMMA 3. If a function/with the above properties satisfies in addition the follow-
ing conditions, then (5) holds: There exist 0 < m and M < 00 such that

(10) m<Ok(Z)<M, A: = 1 , 2
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for £ ^ £0, and there exists V < oo such that the total variation Vk^, £,2) of 9k

over the interval [£t, £2] satisfies

(11) Vt(Z1,e2)£V, A: = 1 , 2

for every Zi, Z2 with £0 ^ £1 < £2 •

PROOF. Map the unit disk cut along the radius arg z = q> + n by

~ , . ze~l<p

~-i<e\2

onto the strip S = {Z| |Im Z| < \n). Apply the Second Fundamental Inequality
of Ahlfors (see Jenkins-Oikawa [6]) to the conformal mapping Z -> £. On setting
X'(£) = inf {ReZ|ReC(Z) = £}, *"'({) = sup (ReZ|ReC(Z) = £}, and 0 =
61+62, we obtain

m

for every ^ and £* such that £0 + 2M < £* < £. Observe that Q(£) = 2np{R) if
£ = logi? and i l og ( r ( l - r )~ 2 ) ^ X"{£.) if R = \f{rei<f)\. On taking Ro with
£0 < log i?0 and then £* with log i?0 < *̂> w e obtain

2 log -^— ^ + const,
1-r J ^ J?K^)

which implies (5).

8

Now we are in a position to prove Theorem 1. Consider a positive lower-semi-
continuous function &(£) on — 00 < f < 00 such that ©(£) = 2np = const, for
£ < 0. Let ^ be a conformal mapping of |z| < 1 onto the domain A = {£ =
<!; + ;>/|-oo < f < 00, |»/| < 6>(£)/2} such that z = e'v corresponds to C = +°0-
Set

/ = exp g.

Next, let g* be a conformal mapping of |z| < 1 cut along the radius arg z =
onto J such that z = 0, e'1" correspond to C = - oo, + oo, respectively, and that
the radius argz = <p corresponds to the real-axis in the £-plane. If p is a positive
integer, the symmetry of g* guarantees the regularity of exp g* on \z\ < 1, which
then has a zero of multiplicity p at the origin. On taking a constant c0 suitably we
can make

/ * = )
satisfy the condition (N).
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For both these functions/and/*, we have

2np(R) = 0(0 if i = log R.

Accordingly the conditions (L), (L*), (6), (10), and (11) with respect to Ro = 1
fo r / and Ro = exp c0 for /* are respectively expressed as follows:

(12) I (0(O~2np)d^ ^np for 0 < a < b < oo
J a

Cb

(12*) (0(O~2np)d£, ^ 0 for 0 < b
Jo

rb / 1 1 \
(13) lim ) dt, < oo

fc->ooj0 \0(O 2np)

< oo

(14) 0 < inf 0(0, sup 0(0 < oo

(15) The total variation of 0(0 on any closed subinterval is bounded by a
constant V.

The non-existence of the limit (7) is equivalent to

(16) Non-existence of lim \ (0(O-2np)d£.
b^ooJ 0

An example of a function 0(0 with these properties is obtained by consider-
ing a step function as follows: Prepare sequences {£v} and {EV} with 0 = £0 < ^ <
• • • -> oo andO < ev < 1, and set 0(0 = 2TI/J if <J < 0, 0(0 = 2np(l + (-If ev)
if <!;„_! < ^ < £v, v = 1, 2, • • •, and ©(£„) suitably so that the resulting function
0(0 on — oo < t, < oo is positive and lower-semicontinuous. If the sequences
satisfy, e.g.,

£v < co, ev(£v-£v- i) = i, v = 1, 2,
v = l

then it is not difficult to see that 0(0 satisfies (12), (12*), (13)-(16). The proof of
Theorem 1 is herewith complete.

Incidentally, for a positive integer p, we can construct a 0(0 with (12) but
not (12*), and also one with (12*) but not (12). Thus neither of (N, L) and
(N, L*) implies the other.

10

Spencer's paper [9] contains a suggestion for another possible extension of
areal mean /?-valency. Let us call a regular function / on the unit disc \z\ < 1
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s-dimensionally mean p-valent (s > 0) if

(A.) f Rp(R)d(Rs) ^ pnRs

Jo
for R > 0.

Spencer [9] showed (As) => (As.) if 0 < s' ^ s. On the other hand, by an
argument similar to Hayman [4, p. 33] we see that (As) implies

for every i?j, R2 with 0 < R1 < R2. On disregarding the last constant of (Ls),
we may say that s-dimensionally mean p-valent functions with 0 < s < 2 are
more general than areally mean p-valent functions, and essentially less general
then logarithmically areally mean p-valent functions.

Observe that (Ls) implies as before

so that the theorems in Chapter 2 of Hayman [4] are true for these functions.
For a function with (As) the reasoning of Eke [2, Theorem 1] is applicable

mutatis mutandis to prove

THEOREM 2. For an s-dimensionally mean p-valent function (0 < s ^ 2) which
attains maximum growth in direction q>, the finite non-zero limit (2) exists.

REMARK. W. K. Hayman has informed the authors that closely related results
have been obtained independently by V. R. Eke.
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