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1

In the theory of multivalent functions there are several different levels of
postulates for p-valency. Perhaps the most well-known is the class of mean p-
valent functions in the sense of Spencer [8] (we shall refer to them as areally mean
p-valent functions), whose basic properties are found, e.g., in Hayman [4]. Re-
cently Eke [1, 2] extended to these functions a number of results which had been
known for circumferentially mean p-valent functions.

On the other hand, Garabedian-Royden [3] and Jenkins [5] have introduced
a wider class, for which they discussed the extension of Koebe’s 1/4-theorem.
Functions in this class are referred to as weakly mean p-valent functions by the
former, and logarithmically areally mean p-valent functions by the latter. There
are various other properties of areally mean p-valent functions which are satisfied
by those functions also.

In the present paper, we shall discuss a negative aspect of logarithmically
areally mean p-valent functions. It will be shown that the above mentioned result
of Eke cannot be extended to those functions.

We shall also give a glance at s-dimensionally mean p-valent functions, dis-
cussed in Spencer [8], which lie in between areally mean p-valent functions and
logarithmically areally mean p-valent functions.

2

Given a regular function f on the unit disc |z] < 1, let n(w) be the number of
w-points counted with multiplicity, and consider its circumferential mean

2r
p(R) =L f n(Re")do,
2nJ,

0 < R < oo. It is a non-negative lower-semicontinuous function and is such that
P(R) > 0 if and only if there exists z satisfying R = | f(2)|.
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If there exists a number p > 0 such that
R
() [ smyaee) < prv
(o]

for R > 0, fis called an areally mean p-valent function. It has at most [p] zeros and
satisfies the following basic inequality (see Hayman [4, p. 23]):

R2
p Rl R RP(R)

for every R,;, R, with 0 < R, < R;.
If there exists p > O such that

(L) [P0 ar = (10s 2 +4)

for every R; and R, with 0 < R, < R,, we shall call f logarithmically areally mean
p-valent. As appears implicitly in Hayman [4, p. 33], (A) implies (L). Further a
function with (L) has at most [p] zeros and, as Schwarz’s inequality

2 R Ry
(logR_z) é[ ’p(R)dR.f dR
R, g, R Ry Rp(R)

shows, satisfies (B). As a consequence, all the theorems in Chapter 2 of Hayman
[4] are true for logarithmically areally mean p-valent functions.

3
If p is a positive integer, a function f with expansion
™ f() = 2P+ apey 2

about the origin will be referred to as normalized.
Clearly for a function with (N) and (A) there exists an R, > 0 such that
p(R) = pfor Rwith0 £ R £ R, and

R
(B%) Srog s A

for every R = R,.
We shall call a function normalized logarithmically areally mean p-valent if it

satisfies (N) and, for some R,,

p(R) = p for every R with 0 < R < R,
L* R
(L%) f p(R)dR < plog ;?

Ro 0
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for every R = R,. It is to be noted that neither of the implications (N, L) =
(N, L*) holds (see 9°).

As before a function with (N, A) satisfies (L*). A function with (N, L*) has a
zero only at the origin and satisfies (B*). Therefore the theorems in Chapter 2 of
Hayman [4] continue to hold for normalized logarithmically areally mean p-valent

functions also.
Under the assumption (N), the condition (L*) is readily seen to be equivalent

to

R —_—
f AR)—de <0 for every R,
0

which is the definition adopted by Garabedian-Royden [3].

4
We shall say that a p-valent function f atzains maximum growth in the direction
o if
4] lim (1—r)*?|f(re*®)| > 0.
r—1

For circumferentially mean p-valent functions (i.e., p(R) < pforevery R > 0)
Hayman [4], and for areally p-valent functions Eke [1, 2] recently, proved that (1)
implies regularity of growth, namely the existence of the finite non-zero limit

(2) lim (1 —r)??|f(re'®)|.
r~1
We shall show that this conclusion does not hold for a function with (L) or
(N, L*):

THEOREM 1. There exists a logarithmically areally mean p-valent function as
well as a normalized logarithmically areally mean p-valent function which attain
maximum growth in direction ¢ yet do not have the limit (2).

S

To prove Theorem 1 by constructing counter-examples we need some prepara-
tion, which begins with the quotation of a result of Eke [1, Theorem 3] as follows:
If a regular function on |z| < 1 has only a finite number of zeros and satisfies

3) Tm 1f(re”)] = oo, [ —2R — o
r—1 Ro RP(R)
for some R, with p(R,) > 0, then the limit
| f(rei®)]
(4) a = lim (f R —2log —1—)
r>1 \Jp, Rp(R) 1-r
exists including the possibility of @ = — 0.
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Notice that, if (3) holds for some R,, then it does also for every R, with
P(Ry) > 0. The value of « depends on R,, but whether or not & > — oo is inde-
pendent of R,.

This result indicates that if the growth is measured by means of the integral
in (4), then the growth is regular whenever « > — 0, and the case « > — oo cor-
responds to the case where f attains maximum growth so measured in direction ¢.

6

We now compare these with (2) and (1).

LEMMA 1. For a function f satisfying (B), a necessary and sufficient condition
Jor (1) is the validity of

— |f(ret®)|
5) lim (f _dR_ —2log L) > —©
r—1 Ro Rp(R) l—r
and
R
(6) lim (i logR—f _dR_) > —
R-o \ p ro RP(R)

for every, of equivalently some, R, with p(R,) > 0.

For a function f satisfying (B*), the same is true with respect to the R, involved
in (B*).

Proor. It is immediate if we compare (4) with

1 Yo 1 i ].
(1 lim { — log [f(re'?)]—2 log ——] > —oo0,
r-1 \p 1—r

which is equivalent to (1). Notice that either (1) or (5), (6) implies (3), so that the

limit of (5) always exists.

LeMMA 2. For a function f satisfying (1) and (L), the existence of the finite
non-zero limit (2) is equivalent to the existence of the finite limit

@) lim (.[Rp—(lii)dR—plogR)

R— o0 Ro

Jor every, or equivalently some, Ry with p(R,) > 0.
For a function f satisfying (1) and (L*), the same is true with respect to the R,
involved in (L*).

PRrOOF. On comparing (4) with

) lim (—1~ log | f(re®)|—2 log L) > —oo,
r>1\p 1—r
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which is equivalent to the existence of the finite non-zero limit (2), we conclude as
before that (2') is equivalent to the existence of the finite limit

R
(8) lim (l log R—f ﬂ~) .
Roo \ D Ro RP(R)
On the other hand, the right-hand side of

" (P(R)-p)’* o
r, Rp(R)

(oA ) o ([ )

Ro 0 Ro RP(R) p R,

is bounded since (6) and either (L) or (L*) are satisfied. Since the integrand of the
left-hand side is non-negative, the limit for R — oo of the integral exists. According-
ly the existence of (8) is equivalent to that of the first term of the right-hand side
of (9). Q.E.D.

Actually Eke [2, Theorem 1] showed the existence of (7) for areally mean
p-valent functions with (1), and proved that (1) implies (2).

©)

7

In order to prove Theorem 1, it suffices to construct a function f which
satisfies (5), (6), and either (L) or (L*), yet does not have the limit (7).

Except for (5), these conditions are geometric properties of the Riemann sur-
face covering the w-plane. There is a case, even though very limited, where a suffi-
cient condition for (5) (i.e., « > — o0 in (4)) also is obtained in geometric terms.

Suppose a regular function f on |z| < 1 has only a finite number of zeros.
Take r, > O such that f does not vanish on the annulus 4 < |z| < 1. Let D be
the domain obtained from this annulus cut along the ray arg z = ¢ + . Clearly

¢ =logf(2)

is single valued and regular on D. We assume that this function is univalent.
Furthermore we require the image domain to have the following shape: there exist
positive lower-semicontinuous functions 6; and 8, on — 0 < & < oo having the
property that the image domain is contained in 4 = {{ = ¢é+ip|—00 < & < o,
—0,(&) < n < 0,(&)}, contains {{ €d|&, < &} for some &y, and such that the
point z = €'® corresponds to { = + c0.

LemMma 3. If a function f with the above properties satisfies in addition the follow-
ing conditions, then (5) holds: There exist 0 < m and M < oo such that

(10) m< 0, <M k=12
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Sfor & = &,, and there exists V < oo such that the total variation V,(¢,, £;) of 0,
over the interval [£,, &,] satisfies

(11) Vk(§19 62) é Va k = 172
Sor every &;, &, with &y < & < &,
PROOF. Map the unit disk cut along the radius arg z = ¢ +n by

ze™'®

Z=13%log———
: g(l—ze_'"’)2

onto the strip S = {Z| [Im Z| < 4r}. Apply the Second Fundamental Inequality
of Ahlfors (see Jenkins-Oikawa [6]) to the conformal mapping Z — {. On setting
X'(€) = inf {Re Z|Re {(Z) = &}, X"'(¢) = sup {Re Z|Re((Z) = ¢}, and O =
0,+0,, we obtain
"(E)—X'(&* ¢ VM  4M
XQ-XE) [P de VM 4M
T 0 m m
for every ¢ and &* such that &, +2M < &* < &. Observe that O(¢) = 2np(R) if

& =1logR and }log (r(1—r)"2) < X’(¢) if R = |f(re”®)l. On taking R, with
&y < log R, and then &* with log R, < £*, we obtain

o lreein)l 4

2 log — §f ——— +-const,
1-r Ro Rp (R)

which implies (5).

8

Now we are in a position to prove Theorem 1. Consider a positive lower-semi-
continuous function @(¢) on —o0 < ¢ < oo such that @(£) = 2np = const. for
& < 0. Let g be a conformal mapping of |z| < 1 onto the domain 4 = {{ =
E+igl—o0 < & < o0, |n] < O(&)/2} such that z = €' corresponds to { = + 0.

Set

f=expg.
Next, let g* be a conformal mapping of |z|] < 1 cut along the radius argz = ¢+=
onto 4 such that z = 0, € correspond to { = — 00, + oo, respectively, and that

the radius arg z = ¢ corresponds to the real-axis in the {-plane. If p is a positive
integer, the symmetry of g* guarantees the regularity of exp g* on |z| < 1, which
then has a zero of multiplicity p at the origin. On taking a constant ¢, suitably we
can make

* = exp (g*+¢o)
satisfy the condition (N).
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For both these functions f and f*, we have
2np(R) = O(¢)  if & = logR.

Accordingly the conditions (L), (L*), (6), (10), and (11) with respect to R, = 1
for fand R, = exp ¢, for f* are respectively expressed as follows:

b
(12) J (O()—2np)dé Emp for0<a<b<w
b
(12%) f(@(é)—znp)dé <0 for0<b< oo
0
b
(13) fim (—1———1~)d§<oo
bmwd o \@(E)  2mp
(14) 0 < infO(&), sup O(¢) < ©
(15)  The total variation of @(¢) on any closed subinterval is bounded by a
constant V.

The non-existence of the limit (7) is equivalent to

b
(16) Non-existence of lim | (@(&)—2rp)dé.
]

b—

An example of a function @(&) with these properties is obtained by consider-

ing a step function as follows: Prepare sequences {&,} and {g,} with0 = &, < €, <

> oand0 <¢, < 1,andset @) = 2npif & < 0, O() = 2np(1+(—1)"s,)

ifé,_, <&<&,v=12,---, and @(&,) suitably so that the resulting function

O(&) on —w0 < ¢ < oo is positive and lower-semicontinuous. If the sequences
satisfy, e.g.,

Zev < o, 8v(év_év—*l) = %’ V= 1’ 2’. i
v=1

then it is not difficult to see that @(&) satisfies (12), (12*), (13)~(16). The proof of
Theorem 1 is herewith complete.

9

Incidentally, for a positive integer p, we can construct a ©(¢) with (12) but
not (12*¥), and also one with (12*) but not (12). Thus neither of (N, L) and
(N, L*) implies the other.

10
Spencer’s paper [9] contains a suggestion for another possible extension of

areal mean p-valency. Let us call a regular function f on the unit disc |z| < 1
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s-dimensionally mean p-valent (s > 0) if

(A) [ swaey s e

for R > 0.
Spencer [9] showed (A,) = (A) if 0 < 5’ £ 5. On the other hand, by an

argument similar to Hayman [4, p. 33] we see that (A,) implies

(L) | R’£<R£?dn < p(logR2 1 1)

Ry 1 N

for every R,, R, with 0 < R; < R,. On disregarding the last constant of (L),
we may say that s-dimensionally mean p-valent functions with 0 < s < 2 are
more general than areally mean p-valent functions, and essentially less general
then logarithmically areally mean p-valent functions.

Observe that (L) implies as before

R>
P Rl s R RP(R)

so that the theorems in Chapter 2 of Hayman [4] are true for these functions.
For a function with (A,) the reasoning of Eke [2, Theorem 1] is applicable
mutatis mutandis to prove

THEOREM 2. For an s-dimensionally mean p-valent function (0 < s < 2) which
attains maximum growth in direction @, the finite non-zero limit (2) exists.

REMARK. W. K. Hayman has informed the authors that closely related results
have been obtained independently by V. R. Eke.

References

[1] B. G. Eke, ‘Remarks on Ahlfors’ distortion theorem’, J. Anal. Math. 19 (1967), 97— 134.

[2] B. G. Eke, ‘The asymptotic behaviour of areally mean valent functions’, J. Anal. Math. 20
(1967), 147—212.

[3] P. R. Garabedian and H. L. Royden, ‘The one-quarter theorem for mean univalent functions’,
Ann. of Math. 59 (1954), 316—324.

[4] W. K. Hayman, Multivalent functions (Cambridge Univ. Press, 1958).

[5] J. A. Jenkins, ‘On a conjecture of Spencer’, Ann. of Math. 63 (1957), 405 —410.

[6] J. A. Jenkins and K. Oikawa, ‘On results of Ahlfors and Hayman’, to appear in Ilinois J.
Math.

[71 J. A.Jenkins, ‘On the growth of slowly increasing unbounded harmonic functions’, Acta Math.
124 (1970), 37—63.

[8] D. C. Spencer, ‘On finitely mean valent functions’, Proc. London Math. Soc. 47 (1941),
201 —211.

[9] D. C. Spencer, ‘On finitely mean valent functions’, II, Trans. Amer. Math. Soc. 48 (1940),
418—435.

Washington University, St. Louis and
University of Tokyo

https://doi.org/10.1017/51446788700010260 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010260

