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Abstract

We study bound states in weakly deformed and heterogeneous waveguides, and
compare analytical predictions using a recently developed perturbative method with
precise numerical results for three different configurations: a homogeneous asymmetric
waveguide, a heterogenous asymmetric waveguide and a homogeneous broken strip. We
have found excellent agreement between the analytical and numerical results in all the
examples; this provides a numerical verification of the analytical approach.
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1. Introduction
The appearance of trapped modes (bound states) in open geometries under
perturbations has attracted much attention in both physical and mathematical literature
recently (see, for example, the books by Exner and Kovařı́k [12], Hurt, [15] and
Londergan et al. [17]). A classical example is the appearance of a bound state for
the one-dimensional Schrödinger operator perturbed by a small potential well [21].
In this situation, the unperturbed problem possesses a purely continuous spectrum
corresponding to plane waves exp(ikx) with energy E = k2, so that the continuous
spectrum occupies the positive ray 0 ≤ E < ∞. Under a perturbation by a potential
well εV(x) with ε → 0+ and a smooth and compactly supported function V , such that∫

V(x) dx < 0, the threshold E = 0 yields a bound state, whose energy Eε is located
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to the left of the continuous spectrum close to the threshold, Eε = −cε2. Here, the
constant c is proportional to the square of the area above the graph of V(x) (see Simon’s
paper [21] for details).

This mechanism of the generation of bound states by the threshold of the
continuous spectrum seems to be quite generic, and is analogous to many situations
of physical interest [12, 15, 17]. For example, Bulla et al. [8] discovered that a similar
phenomenon occurred in a slightly deformed waveguide described by the Laplace
operator with Dirichlet boundary conditions on the walls. They showed that, under
certain perturbations (which enlarge the waveguide), the threshold of the continuous
spectrum gave rise to an eigenvalue to the left of it. The distance of this eigenvalue
from the continuous spectrum is analytic in the perturbation parameter, when the latter
is sufficiently small. Bulla et al. [8] also gave an explicit formula for the leading term
in the expansion of the eigenvalue in the Taylor series with respect to this parameter.
They used the so-called Birman–Schwinger technique [19] to obtain these results.
Subsequently, many other approaches to problems of this kind were developed (see,
for example, the works of Borisov et al. [6], Exner and Kovařı́k [12] and Nazarov [18]).
For the most part, these techniques provide approximate formulae for the eigenvalues
up to a certain power of the perturbative parameter, but it is impossible to say whether
the formulae approximate the eigenvalues for a given fixed value of the parameter.
A goal of this paper is the investigation of this question for several examples from
waveguide theory by comparing precise numerical results, obtained by means of
the collocation method, with variational estimates and the first nonvanishing terms
provided by the theoretical formulae of different perturbative approaches.

The principal difficulty of the problems under consideration is that in each case
the nonperturbed problem does not have eigenvalues, so that the standard regular
perturbation theory is not applicable. Recently, yet another perturbative approach,
which extends a method previously developed by Gat and Rosenstein [13], was
proposed by Amore et al. [1, 2]. It has the advantage of using an auxiliary
“unperturbed” problem, which does possess an eigenvalue and is exactly solvable,
so that a standard perturbation procedure can be used to construct corrections up to
any order. A comparison of previously known theoretical results, as well as precise
numerical calculations, with this new perturbative approach constitutes the second goal
of this paper.

Note that the approach of Amore et al. [1, 2] is equally applicable to weakly
deformed or weakly heterogeneous waveguides. Therefore, we have chosen the
following three examples: (a) an asymmetrically deformed waveguide (this is exactly
the case considered by Bulla et al. [8]); (b) an asymmetrically deformed waveguide
with a localized heterogeneity (we are not aware of the existence of any results for this
case in the literature); (c) a broken strip (investigated by different methods of Avishai
et al. [4] and Granot [14]).

The paper is organized as follows. In Section 2, we summarize the results of Amore
et al. [1, 2]. In Section 3, we present a comparison of the results of different approaches
to the three examples mentioned. We draw some conclusions in Section 4.
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2. Method

The problem of calculating the emergence of trapped states in infinite slightly
heterogeneous waveguides was recently considered by Amore et al. [1, 2], who
obtained exact perturbative formulae that use the density inhomogeneity as a
perturbation parameter. This approach extends a method previously developed by Gat
and Rosenstein [13] for calculating the binding energy of threshold bound states.

In particular, Amore et al. [2] gave a calculation up to third order, while Amore [1]
extended the calculation to fourth order. These formulae have been tested on two
exactly solvable models, reproducing the exact results up to fourth order.

Although the examples considered by Amore et al. [1, 2] were limited to the case
of heterogeneous straight waveguides, the perturbative expressions apply to the case
of homogeneous and slightly deformed waveguides, and to the more general case of
slightly heterogeneous and slightly deformed waveguides. This paper focuses on these
last two cases. Incidentally, while the effect of small deformations on infinite and
homogeneous waveguides has been studied before by different authors using different
techniques (see, for example, the book by Exner and Kovařı́k [12] and the references
therein), the effect of weak heterogeneities on infinite (either straight or deformed)
waveguides is much less well known. In this paper, we compare the theoretical
predictions of the formulae obtained by Amore et al. [1, 2] with numerically precise
results for different models.

We refer the reader to the perturbative expansion of Amore et al. [1, 2], and here
we give only the general formulae for the perturbative corrections to the energy of the
fundamental mode of a heterogeneous waveguide up to fourth order, as follows:

E(1)
0 = 0,

E(2)
0 = −

π2

b2 ∆2
2,

E(3)
0 = −2

π2

b2 ∆2(Λ1 − ∆3),

E(4)
0 = −

π2

b2

[
−2∆4

2 − ∆2
2∆4 + 2∆2∆5 + ∆2

3 − 2Λ2 − ∆3Λ1 + 2∆2Λ3 + Λ2
1

]
.

Here we use the following definitions of Amore [1]:

∆1 ≡
π

b2

∫
σ(x, y) dx dy,

∆2 ≡
π

b2

∫
σ(x, y) cos2 πy

b
dx dy,

∆3 ≡
π3

b5

"
σ(x1, y1)σ(x2, y2)|x1 − x2| cos2 πy1

b
cos2 πy2

b
dx1 dy1 dx2 dy2,

∆4 ≡
π4

b6

"
σ(x1, y1)σ(x2, y2)x1(2x2 − x1) cos2 πy1

b
cos2 πy2

b
dx1 dy1 dx2 dy2,
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∆5 ≡
π5

b8

$
σ(x1, y1)σ(x2, y2)σ(x3, y3)|x1 − x2||x2 − x3|

× cos2 πy1

b
cos2 πy2

b
cos2 πy3

b
dx1 dy1 dx2 dy2 dx3 dy3,

Λ1 ≡
π3

b4

"
σ(x1, y1)σ(x2, y2) cos

πy1

b
cos

πy2

b
g(0,0)

2 (x1, y1, x2, y2) dx1 dy1 dx2 dy2,

Λ2 ≡
π6

b9

&
σ(x1, y1)σ(x2, y2)σ(x3, y3)σ(x4, y4)|x1 − x3| cos

πy1

b
cos

πy2

b

× cos2 πy3

b
cos2 πy4

b
g(0,0)

2 (x1, y1, x2, y2) dx1 dy1 dx2 dy2 dx3 dy3 dx4 dy4,

Λ3 ≡
π5

b6

$
σ(x1, y1)σ(x2, y2)σ(x3, y3) cos

πy1

b
cos

πy3

b
× g(0,0)

2 (x1, y1, x2, y2)g(0,0)
2 (x2, y2, x3, y3) dx1 dy1 dx2 dy2 dx3 dy3.

The correction to the energy of the fundamental mode up to fourth order can be put
in the form

∆E0 ≈ E(2)
0 + E(3)

0 + E(4)
0 = −

π2

b2

{
(∆2 + (Λ1 − ∆3)2)2 + Γ

}
, (2.1)

where
Γ ≡

[
−2∆4

2 + ∆2∆3 − ∆2
2∆4 + 2∆2∆5 − ∆3Λ1 − 2Λ2 + 2∆2Λ3

]
.

Equation (2.1) will be applied in the next section to different waveguides.

3. Application to deformed waveguides

The perturbative formulae obtained by Amore et al. [1, 2] apply to the general case
of heterogeneous and deformed waveguides, although the applications considered in
those papers were concerned only with slightly heterogeneous straight waveguides.

An appropriate conformal map w ≡ u + iv = F(z) can map an infinite strip, y ∈
(b−, b+), with b− < b+, and −∞ < x < ∞, onto a deformed waveguide, u ∈ (−∞,∞)
and f−(u) < v < f+(u). Here f±(u) are the upper and lower borders of the deformed
strip, respectively, over which the Dirichlet boundary conditions are assumed.

Suppose that one has to solve the Helmholtz equation for the deformed strip
assumed to be heterogeneous, and with a physical density varying at each point,
ρ(u, v) > 0. We also require that the density variations are small and localized around
one (or more) points internal to the domain or, equivalently, that ρ(u, v) tends
sufficiently rapidly to a constant value ρ0, as |u| → ∞.

One then has to solve the eigenvalue equation

−∆u,vφ(u, v) = Eρ(u, v)φ(u, v), (3.1)

with φ(u, f±(u)) = 0, and ∆u,v ≡ (∂2/∂u2) + (∂2/∂v2). Here, E and φ are, respectively,
the eigenvalues and eigenfunctions of the Helmholtz equation on the original domain.
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If we map the deformed strip back to the straight waveguide, equation (3.1)
transforms into

−∆x,yψ(x, y) = EΣ(x, y)ρ(u(x, y), v(x, y))ψ(x, y), (3.2)

where Σ(x, y) = |dF/dz|2 (we will refer to it as the “conformal density”), and ψ(x,b±) =

0. In this case, ψ are the eigenfunctions of equation (3.2) on the transformed domain.
From a physical point of view, equation (3.1) can be interpreted as the Helmholtz
equation for a straight waveguide with a physical density

ρ̃(x, y) ≡ Σ(x, y)ρ(u(x, y), v(x, y)).

Under the assumptions of small deformations and weak heterogeneity,

ρ̃(x, y) = ρ0 + σ̃(x, y),

where |σ̃(x, y)| � 1, and lim|x|→∞ σ̃(x, y) = 0. In this case, equation (3.2) has precisely
the same form given by Amore et al. [1, 2], and one can straightforwardly apply
their perturbative formulae to calculate the corrections to the lowest eigenvalue for a
waveguide that is both deformed and heterogeneous. (Finding the conformal map that
sends a given deformed waveguide into a straight waveguide may still be a difficult
challenge, but we are not concerned with this issue here.)

In the following, we examine three examples: an asymmetric homogeneous
waveguide with a local enlargement, an asymmetric heterogeneous waveguide with
a local narrowing, and a slightly broken strip with a homogeneous density.

3.1. Asymmetrically deformed waveguide Bulla et al. [8] considered the
waveguide on the domain

Ωλ = {(x, y) ∈ R2 | 0 < y < 1 + λ f (x)} (3.3)

and found that the fundamental mode of the Laplacian on this domain, for the Dirichlet
boundary conditions at the border, behaves as

E(λ) = π2 − π4λ2
( ∫
R

f (x) dx
)2

+ O(λ3). (3.4)

Note that λ in equation (3.3) is a parameter controlling the deformation (in particular,
for λ = 0 one has a straight waveguide).

Since the formulae of Amore et al. [1, 2] apply to this domain as well, we consider
the conformal map

F(z) = z + a tanh
( z
z0

)
, (3.5)

which transforms a straight waveguide of unit width into a waveguide of the kind
considered by Bulla et al. [8]. The waveguide obtained using this map for a = 1/5 and
z0 = 1 is displayed in Figure 1. Observe that F(z) has simple poles at z = i(2k + 1)πz0/2
with k = 0,±1,±2, . . .
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Figure 1. Asymmetric waveguide corresponding to the map in equation (3.5). The waveguide is oriented
along the x-axis. Note that b is the width of the waveguide at |x| → ∞.

The lower side of the waveguide is not deformed, whereas the upper side is
deformed to the parametric curve

u(x) = x +
a sinh(2x/z0)

cos(2/z0) + cosh(2x/z0)

v(x) = 1 +
a sin(2/z0)

cos(2/z0) + cosh(2x/z0)
with x ∈ (−∞,∞). In this case, the conformal density is given by Σ(x, y) = 1 + σ(x, y),
where

σ(x, y) =
4a{cosh(2x/z0) cos(2y/z0) + 1}
z0{cosh(2x/z0) + cos(2y/z0)}2

+
4a2

z2
0{cosh(2x/z0) + cos(2y/z0)}2

.

The area corresponding to the enlargement, that is, the area 1 < y < 1 + a tan 1/z0,
is obtained by the formula

δA =

∫ ∞

−∞

f (u) du =

∫ ∞

−∞

a sin(2/z0)
cosh(2x/z0) + cos(2/z0)

dx + O(a2)

= 2a + O(a2).

For δA > 0, one can apply the formula of Bulla et al. [8]; in this case, the lowest
eigenvalue of the deformed waveguide

E ≈ π2 − 4π4a2 + O(a3).

(Observe that in this case we are not allowed to calculate the enlargement using the
formula

∫ ∞
−∞

dx
∫ 1

0 (Σ(x, y) − 1) dy, since both integrals
∫

Σ(x, y) dx dy and
∫

1 dx dy are
divergent.)

We now calculate the dominant behaviour of the lowest eigenvalue of the waveguide
using the expression for the second-order contribution of Amore et al. [2]; in this case,

∆2 = π

∫ ∞

−∞

dx
∫ 1

0
σ(x, y) sin2(πy) dy = 2πa + O(a2),

E(2)
0 = −π2∆2

2 = −4π4a2 + O(a3),

which agrees with the result obtained using the formula of Bulla et al. [8], as it should.
To assess the quality of the perturbative estimates, we have also obtained variational

bounds on the energy of the fundamental mode, using the ansatz

Ψ(x, y) =
√

2γ sin(πy)e−γ
√
δ2+x2

(
1 + η

1 − y
1 + ε2x2

)
,
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Figure 2. Variational wave function for the asymmetric waveguide obtained with the conformal map of
equation (3.5), with a = 1/3 and z0 = 1.

where γ, δ, η and ε are variational parameters. The variational bound is

E ≤ E(var)
0 =

〈Ψ| − ∇2|Ψ〉

〈Ψ|Σ|Ψ〉
. (3.6)

The wave function in Figure 2 was obtained using the variational ansatz (3.6), for the
case of a waveguide with a = 1/3 and z0 = 1, and minimizing the Rayleigh quotient
in equation (3.6) with respect to the variational parameters. Note that this case is
nonperturbative and the perturbative formulae cannot be applied.

Additionally, we calculate the lowest eigenvalue by a collocation (pseudospectra,
discrete ordinates) method. As a check, we employ both the rational Chebyshev
basis [7] and the sinh-Fourier (Cloot–Weideman) basis [3]. Both imply a domain
that is a strip of uniform width, conformally mapped from the asymmetric
waveguide. Conformal mapping has fallen out of favour as a grid generation scheme
for numerical partial differential equation solvers because of uncontrollable and
sometimes extreme nonuniformity (this is the “Geneva effect”, so named because,
like the diplomatic talks so frequent in that city, conformal mapping of a highly
deformed region can bring distant groups together). Here, the conformal map is a small
perturbation of the identity transformation and no such difficulties arise. Nonconformal
coordinate changes introduce many metric factors into the transformed partial
differential equation, in contrast with the single metric factor 1 + σ(x, y) displayed in
equation (3.2).

In Table 1, we compare the variational bounds obtained using the ansatz (3.6) with
results obtained using collocation and with the second-order perturbative estimate for
different values of a, keeping z0 = 1. For a→ 0, the results obtained using the different
methods (variational, collocation and perturbative) are very close. Note that for very
small values of a, the wave function decays extremely slowly as |x| → ∞, and the
application of the collocation method becomes more challenging.
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Figure 3. Asymmetric waveguide with a < 0. The waveguide is oriented along the x-axis.

Table 1. Comparison between variational bounds, numerical results obtained using a collocation approach
and perturbative corrections for the asymmetric waveguide corresponding to the map of equation (3.5)
with z0 = 1 for different values of a. Underlined digits in the third column are believed to be stable.

a E(var)
0 − π2 E(collocation)

0 − π2 E(2)
0

10−5 −3.89390 × 10−8 −3.895 × 10−8 −3.89636 × 10−8

10−4 −3.88415 × 10−6 −3.8846 × 10−6 −3.89636 × 10−6

10−3 −3.78211 × 10−4 −3.78322 × 10−4 −3.89636 × 10−4

10−2 −3.03276 × 10−2 −3.033396 × 10−2 −3.89636 × 10−2

10−1 −1.08811 −1.0886487 −3.89636

3.2. Asymmetrically deformed waveguide with a localized heterogeneity We
consider now the case of the waveguide discussed in Section 3.1 in the presence of a
localized inhomogeneity, represented by the density

ρ(u, v) = 1 + ρ0e−ζu2
,

where it is assumed that |ρ0| � 1 and ζ > 0.
After applying the conformal map, we convert the original problem to an equivalent

problem with density

ρ̃(x, y) ≈ 1 +
4a{1 + cos(2y) cosh(2x)}
{cos(2y) + cosh(2x)}2

+ e−x2ζρ0,

where we assume that |a| ≈ |ρ0| � 1, neglecting the term depending on aρ0 otherwise
present. In this case, one can apply the method of Amore et al. [1, 2] to calculate the
leading-order correction to the lowest eigenvalue using the density ρ̃ as

∆2 = π

∫ ∞

−∞

dx
∫ 1

0
ρ̃(x, y) sin2 πy dy ≈ π

(
2a +

√
πρ0

2
√
ζ

)
.

As discussed by Amore et al. [2], the condition ∆2 > 0 implies the existence of a
bound state. In particular, when a < 0 and ∆2 > 0, we consider a waveguide with a
small entering deformation of the upper border and a weak inhomogeneity, which,
however, is sufficient to provide binding. Interestingly, an arbitrarily small ρ0 still
provides binding, if the inhomogeneity is distributed over a sufficiently large region,
that is, if ζ is sufficiently small. The case of a waveguide with a < 0 is represented in
Figure 3. Now the leading correction to the lowest eigenvalue is

E(2)
0 = −π2∆2

2 ≈ −π
4
(
2a +

√
πρ0

2
√
ζ

)2
. (3.7)
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Figure 4. ∆E0 for an asymmetric waveguide with a = −0.001 and ζ = 0.1, as a function of ρ0. The
dashed line corresponds to the theoretical prediction of equation (3.7); the “+” symbols correspond to the
numerical values obtained using collocation with mapped Chebyshev functions (a set with 101 functions
along the horizontal direction and 11 along the vertical direction).

Note that the excess mass distributed on the waveguide can be calculated as

δM =

∫
ρ(u, v) du dv ≈

√
π

ζ
ρ0,

and the energy in equation (3.7) can thus be written in a form similar to equation (3.4),
as

E(2)
0 ≈ −π

4
(
δA +

δM
2

)2
.

The accuracy of this formula is demonstrated in Figure 4 for an asymmetric
waveguide with a = −0.001 and ζ = 0.1, calculating the energy shift, ∆E0 = E0 − π

2,
as a function of ρ0. The dashed line is the theoretical prediction of our second-order
formula, whereas the “+” symbols correspond to the numerical results obtained using
mapped Chebyshev functions (the scale L = 9 has been used in all calculations and
a set of 101 functions along x and 11 functions along y was used). Observe that
the critical value of ρ0 is quite similar in both calculations; there is, however, a
mild discrepancy between the numerical and theoretical values for ρ0 sufficiently
close to the critical value. The explanation of this discrepancy is straightforward: as
ρ0 approaches the critical value, the wave function decays more and more slowly
for |x| → ∞; therefore, the numerical calculation should use larger sets of functions
to maintain the same accuracy. Conversely, for sufficiently large ρ0 (not shown in
the figure), we also expect a discrepancy between the two curves, owing to the
nonperturbative nature of the solution.
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Figure 5. Broken strip of unit width, with the arms forming an angle α (the angle φ in the figure is defined
by α + 2φ = π).

3.3. Broken strip Our third example is a broken strip, that is, an infinite waveguide
of constant unit width, where the two semi-infinite arms form an angle α, as displayed
in Figure 5. This problem has been studied in numerous papers [4, 5, 9–11, 14, 16, 20].
In particular, Avishai et al. [4], Duclos and Exner [11] and Granot [14] have studied
the case of a weak bend, corresponding to the limit φ→ 0. Avishai et al. [4] found that,
in this regime, the energy of the bound state behaves as

E0 ≈ π
2 − cbφ

4

with cb ≈ 2.10.
The regime corresponding to sharp bends has been studied recently by Bittner

et al. [5] and Sadurnı́ and Schleich [20] using an effective potential approach, and
tested experimentally using electromagnetic waveguides. This theoretical approach
relies on the use of a conformal map, which transforms the broken strip into an
infinite straight waveguide, and the original Helmholtz equation into a Schrödinger-
like equation with an effective potential [5, equation (19)]. The conformal map
considered [5, 20] is given by

F(z) =
1
π

B
(

sin2
(
πz
2

)
,

1
2
−
φ

π
,

1
2

+
φ

π

)
,

where

B(x, p, q) ≡
∫ x

0
up−1(1 − u)q−1 du

is the incomplete beta function. Note that F(z) maps the unit strip x ∈ (0, 1) onto a
broken strip of unit width with the arms forming an angle α = π − 2φ.

Using this conformal map, we may transform the original equation into the form of
equation (3.2), where

Σ(x, y) =

∣∣∣∣∣dF
dz

∣∣∣∣∣2 =

(
1 +

2
sec(πx) cosh(πy) − 1

)2φ/π
≡ 1 + σ(x, y)

is the “conformal density”, x ∈ (0, 1) and |y| <∞. Note that, in this case, the waveguide
is arranged vertically and, therefore, the perturbative expressions of Amore et al. [1, 2]
should be adapted.
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For small bends, we may expand this density about φ = 0 and obtain

Σ(x, y) ≈ 1 +
2
π
φ log

(
1 +

2
sec(πx) cosh(πy) − 1

)
+

2
π2φ

2 log2
(
1 +

2
sec(πx) cosh(πy) − 1

)
+

4
3π3φ

3 log3
(
1 +

2
sec(πx) cosh(πy) − 1

)
+ · · ·,

where the density perturbation σ can now easily be read from this expression.
Under these conditions, we are in a position to apply, directly, the approach

developed by Amore et al. [1, 2]. In particular, the second-order correction to the
perturbative expansion reads E(2)

0 = −π2∆2
2, where

∆2 ≡ π

∫ 1

0
dx

∫ ∞

−∞

σ(x, y) sin2(πx) dy

= π
2
π2φ

2
∫ 1

0
dx

∫ ∞

−∞

log2
(
1 +

2
sec(πx) cosh(πy) − 1

)
sin2(πx) dy + · · ·

= 0.290713φ2 + O(φ4).

Note that there is no contribution of order φ, since the terms in σ corresponding
to odd powers of φ are odd with respect to the change x→ 1 − x. As a consequence
of this behaviour, the second-order term in σ in the perturbative expansion provides
a leading contribution of order φ4 (this is consistent with the leading behaviour found
by Avishai et al. [4] and Granot [14]):

E2 = −π2∆2
2 ≈ −0.834119φ4.

As a result, to evaluate the dominant contribution to the energy of the fundamental
mode for φ→ 0, one needs to take into account the contributions of order φ4 arising
from the third- and fourth-order perturbative expansions in σ (the second-order
contribution accounts for only about 40% of the energy).

We need to consider the third-order contribution, calculated by Amore et al. [2]
E(3)

0 = −2π2∆2(Λ1 − ∆3). (3.8)

Using the properties of the component of σ of order φ under the change x→ 1 − x, we
notice that

∆3 = π3
"
|y1 − y2|σ(x1, y1)σ(x2, y2) sin2(πx1) sin2(πx2) dx1 dy1 dx2 dy2

= O(φ4)

and, therefore, we can neglect this term in the expression for E(3)
0 in equation (3.8).

The remaining expression contains the integral

Λ1 ≡ π
3
∫ ∞

−∞

dy1

∫ 1

0
dx1

∫ ∞

−∞

dy2

∫ 1

0
sin(πx1) sin(πx2)

× σ(x1, y1)σ(x2, y2)G(0)
2 (x1, y1, x2, y2) dx2
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Table 2. Asymptotic coefficient cb estimated for φ = π/104 with nb border points.

nb cb

100 2.101101624
200 2.105792895
300 2.10677075
400 2.107135377
500 2.10731157
600 2.107410434
700 2.107471611
800 2.10751218
900 2.107540509

1000 2.107561099
Theoretical 2.1077

= π3 4φ2

π2

∫ ∞

−∞

dy1

∫ 1

0
dx1

∫ ∞

−∞

dy2

∫ 1

0
sin(πx1) sin(πx2)G(0,odd)

2 (x1, y1, x2, y2) dx2

× log
(
1 +

2
sec(πx1) cosh(πy1) − 1

)
log

(
1 +

2
sec(πx2) cosh(πy2) − 1

)
+ O(φ3)

≈ 0.171407φ2

and the third-order correction to the energy

E3 = −2π2∆2Λ1 + O(φ5) ≈ −0.983607φ4,

providing approximately 47% to the leading-order correction.
The calculation of the fourth-order contribution involves selecting the contributions

of order φ4 for use in the expression for E(4)
0 , using the explicit expressions for ∆i and

Λi provided. Simple inspection proves that there is only one term contributing to the
leading order, and the energy reduces to

E4 = −π2Λ2
1 ≈ −0.289971φ4,

corresponding to roughly 13% of the total correction. When we combine the three
contributions

∆E ≈ −π2[∆2 + Λ1]2 ≈ −2.1077φ4,

which is extremely close to the value of cb estimated by Avishai et al. [4].
In Table 2, we compare this theoretical value with the values obtained numerically,

following the approach of Granot [14] for φ = π/104, using an increasing number of
points nb at which the continuity of the solution is imposed.

In Figure 6 we plot the values in the table, and compare the asymptotic coefficient
obtained from the best fit of these values with the theoretical values obtained from
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Figure 6. Comparison between numerical and theoretical estimates of cb.

the explicit formulae. The best fit of the numerical values shows an excellent
agreement with the theoretical value calculated using the perturbative formulae of
Amore et al. [1, 2].

4. Conclusions

We have considered three examples of infinite waveguides, where the exact
perturbative formulae of Amore et al. [1, 2] apply. In particular, for the cases of an
infinite homogeneous and asymmetric waveguide and a broken strip, our results agree
with the analogous results obtained by applying a formula derived by Bulla et al. [8]
for an asymmetric waveguide and with the numerical results obtained by Avishai et al.
[4] and Granot [14] for a broken strip. Note that the formula of Bulla et al. [8] is
limited to the case of asymmetric homogeneous waveguides, whereas the formulae
of Amore et al. [1, 2] apply to more general geometries (the broken strip is just one
example), even in the presence of heterogeneities. This latter case has been studied
in the second example, an asymmetric heterogeneous waveguide, demonstrating that
the theoretical results obtained using the formulae of Amore et al. [2] are in perfect
agreement with the numerical results obtained using a collocation scheme. To the best
of our knowledge, Amore et al. [1, 2] provide the only calculation in which the effect
of both deformations and heterogeneity is derived; this paper provides a numerical
verification of those formulae.

An important problem related to the problem considered in this paper is the study
of the transport problem in waveguides that are weakly deformed or contain small
heterogeneities (or both). The study of this problem, however, cannot be accomplished
with the method of Gat and Rosenstein [13], which only works when the reference
state belongs to the discrete part of the spectrum.
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