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FRACTIONAL DERIVATIVES AS INVERSES 

GODFREY L. ISAACS 

1. Introduction. We write formally 

/

oo 

{t - x)k-'g(t)dt (k>0,p> - 1 ) , 

(C, p) indicating that the integral is summable (C, p), i.e., is 

lim (T(k)T(p + l ) ) " 1 / (1 - t/XYit - x)k-:g(t)dt 
X 

if this limit exists. We note here that all integrals over a finite range are 
taken in the Lebesgue sense, and all inversions of such iterated integrals 
are justifiable by Fubini's Theorem. 

In [3, Theorem 1] Bosanquet showed that if 

f(u) = I g(u) a.e. for u > some x, 
(CO) 

and if g is continuous at JC, then g(x) is given by g(x) = D f(x), the kth 
fractional derivative of / , where 

(1) Dkf(x) = (~d/dx)[k] lim (IX1 - i f ) ) " 1 

/
w 

x (t - x) k'f(t)dt. 

Here and below k = [k] 4- k\ where [k] is the integral part of k. 
In attempting to generalize this to (C, p) summability we replaced (C, 0) 

in the hypothesis by (C, p), for some p > 0. Perhaps surprisingly, the 
conclusion continued to hold if p was <k: 

THEOREM A. Iff(u) = Ikg(u) (k fractional >0 ) a.e. for u > some x, 
(C,P) 

where 0 < p < /c, and if g is continuous on the right at x, then g(x) = 
D f(x). The result is false ifp = k, in the sense that D f(x) need not exist in 
this case. 

From this we shall obtain Theorem B (below) which gives the integra­
tion of a fractional derivative, and Theorem C which provides a long-
outstanding converse to a well-known result (Lemma 1 below). 
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FRACTIONAL DERIVATIVES AS INVERSES 179 

Bosanquet's proof depended on the fact that if Ikg(u) is summable 
(C, 0) then 

/*oo 

/ (t - u)k~xg(t)dt = o(l) as w -» oo. 
(CO) 

This is unfortunately not true if (C, 0) is replaced by (C, p) for p > 0, as is 
illustrated by taking, say, p = 1, k = 2, g(/) = /~ V' . We find (Lemma 4 
below) that a true version of this arises if we insert the factor (1 — w/t)r in 
the second integral, as long as r ê p (r > p if p fractional), a result of 
some interest in summability theory. 

2. Lemmas. We have (see [5, Theorem 1] and for b integral [2, Theo­
rem 3] ): 

LEMMA 1. If a, b > 0 and if Ia g(x) is summable (C, p) for some 
p > b — 1 then 

ia+h
g(x) = r ib

 g(x) 
(C,p) (C,q) (C,p) 

where q = p — b for b integral, and q > p — b {not = p — b) for b 
fractional. 

In the following lemma, if the G ^ + 2 condition is replaced by the lesser 
requirement 

u[p]+lG[p]+2(u) e L[w, oo), 

we obtain a well-known 'summability-factor' result; see [4, Theorem 1, 
p. 56] for p fractional > 0 : 

LEMMA 2. Suppose /^° h(u)du is summable (C, p) (p > — 1). Then so 
is f™ h(u)G(u)du if for p fractional, G ( ^ + 1)(w) is absolutely continuous 
on w = u = W for all W > w and 

G{r\u) = 0 ( t T r ) , r = 0, l , . . . , [ /> ] + 1, 

G«^+2)(W) = 0(u~[p]-2~€) (c > 0) 

as w —» oo. (Forp integral the conditions are as above, with [p] + 1 replaced 
by p.) IfG(u) = G(u, y) and the above orders hold uniformly for 0 ^ y ^ x, 
for some x < w, then the summability of the second integral is uniform in 
0 ^ y ^ x. 

LEMMA 3. Let k > 0, p > — 1, and let Ikg(u) be summable (C, p) a.e. for 
u > some x. Then writing 

/

oo /*vv 

g(0<* J x (t ~ u)k~\u - xYk'du (w > x) 
<C/>> 
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180 GODFREY L. ISAACS 

we have, for C = T(k)/T(k'), 

(3) (d/dxf]+lH(x, w) 

/

OO 

w 
k I u _ „ , \ * / , \ - l , = C(w - x) k I w (t - w f ( r - x) f g ( 0 * . 

(C,p) 

Proof. We observe that the case k integral is immediate, the left and 
right sides of (3) being 0. For the case k fractional, now, it is clearly suffi­
cient to show that H equals 

( 4 ) P(X) ~ ^ /o (X - yf]dy 
[k] 

/*oo 
x J H. (w " y)"k{t ~ w)k(t ~ yy]s(odt 

(C,p) 

where P(x) is a polynomial in x of degree [A:]. Now in (2) the inner 
integral, with [x, w] = [x, /] — [w, t], becomes 

c(t - xf] - Jw(t - u)k-]u~k'du 

- k' fw (t - u)k-]du fi (u - yYk'-Xdy 

for some constant c. If the range of the second term is now split into 
[0, /] — [0, w] we see that the first two terms form a polynomial of degree 
[k] in x with t^~l and (7 — u)k~x the highest powers involving / in the 
polynomial. The last term, after [k] integrations by parts, becomes a poly­
nomial in x of degree [k] plus 

(kC/[k]\) f[ (t - uf-'du Jl (x - yf\u - yYk~Xdy. 

Inverting this pair and then applying 

g(t)dt r 
to all the terms obtained gives, by Lemma 2, the polynomial P(x) in (4) 
plus 

/

oo fx 

w g(t)dt J0(x - yf]dy 
(C,p) 

X J w(t - uf~\u - y)~k~ldu. 

We now apply the rather curious identity 

ft 

/ : (t - u)k~\u - y)~k~xdu 
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FRACTIONAL DERIVATIVES AS INVERSES 181 

= k~\t - w)k(t - y)-\w - y)~k, 

obtained by writing (u — y)~k~X as 

(t-y)-k-ii-— , 
\ t - y! 

and then expanding in a binomial series. Then the term above becomes 

/

oo fx 

w g(t)dt J0(x - yf\t - W)k{t - yy\w - yYkdt 
and inverting this gives the pair of integrals in (4); the inversion is justified 
because the inner integral of (4) is, by Lemma 2, uniformly summable on 
0 ^ y ^ x. 

LEMMA 4. Suppose /^° h(u)du is summable (C, p) for some fractional 
p > 0. Then 

Ax) 
I (1 — w/u) h(u)du — o(X) as w —> oo for any k > p. 

(C,p) 

The result is false for k = p, and in fact if k — p we can make the integral 
>cw-p* {say) as w —» oo through some sequence Tn. For p an integer the 
result holds with k = p. 

Proof for p fractional. We may assume the given integral has value 0, 
i.e., 

hp+x{u) = o(up) as u —> oo. 

Also, in the integral of the conclusion the (C, p) existence follows from 
Lemma 2, and we shall replace it by (C, [p] 4- 1) for convenience in 
the proof, this being permitted since '(C, pj implies '(C, qY (q > p) to 
the same value. Now we write for k > /?, 

Q(X, w) = J w { (1 - w/X)[/?1+1(l - w/uf}h(u)du 

= (~1) [ /Cl + 1 / ^ [ / ? ] + i ( t / ) 0 / 3 t / ) [ / ? ] + 1 { . . . } ^ . 

But 
/• 

(5) (3/3w)r(l - w/uf = 2 c.(w - w)k~Ju~k~rwJ (c0 = Oforr ^ 1) 

as is easily verified by induction on r. Thus 

[/>] + ! ' /** 
Q(X, w) = 2 2 c • / L(w, w, X)/zr ]+l(u)du 
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182 GODFREY L. ISAACS 

where 

L(u, w, X) = (1 - u/X)r(u - w)k-Ju~k-rXr-[p]~]wJ 

and j: â 1 for r = 1. Now, suppressing multiplicative constants (as we 
shall do in similar contexts below) we have 

II = IILdu II <« - oAw* = / I H / o + /I) 
= A + 5, say. 

But ,4 equals 

j\du(hp+x{w)(u ~ W)-P' - fl(u- tyP'-xhp + x(i)dt^ 

= Ax - A2, say. 

Since h +x(w) = o(wp) we see on separating the cases 1 ^ r ^ [/?], 
r = [/?] + 1, r = 0, that 

lim y4j = 6>(1) as w —> oo; 

in doing this we use 

(6) J ^ (II - w)5~~ V ( l - M/Z/rfu = 0(\)(Xs+q or log X or ws + q) 

for large A", where s > 0, r > — 1, and s + q is > 0 , =0 , or < 0 
respectively. Again, A2 is essentially Ax. For 5 we get 

B = ~hp+x(w) fl (u - w) r'Ldu 

/

x rx 

w hp+x(t)dt(d/dt) J t (u - t) pLdu 
Bx + B2, say. 

Now Bx = —Ax and for B2 we integrate the inner integral by parts and 
then differentiate. For r = 1 this gives 

h
P + \ B2 = X'-M-lwJ fX

whD + Y(t)dt 

fx 

J t (u - t) p(d/du)G(u, w, X)du, X 

where 

G(u, w, X) = (u - w)k~ju~k~\\ - u/xy. 

Each of the three terms of the derivative is ^(u — w)k~J~]u~k~r, and 
if this expression is inserted in B2 and the integrals inverted, (6) shows 
that 
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lim B2 = o(\) as w —> oo. 

The case r = 0 is similarly treated. 
For the negative part of Lemma 4 we let k = p and choose a sequence 

Tn such that 1 < Tn < Tn+x/2. Now let h(t) be such that ^ + , ( 0 is zero 
everywhere except for / between Tn and Tn+\\ here it is the constant 
7^/log Tn except in two small intervals at the endpoints where it is 
smoothed down monotonically to 0 so as to remain ( [/?] + 2)-fold 
differentiable. The two intervals have width zn — T~^ where 

Q = iip]+l. 

We go through the proof above with w = Tn, k = p, and h(t) as shown. 
All the terms work as before except for the contribution to B2 arising from 
the one term in (d/du)G which is 

(u - w)k~J-xu~k~\\ - u/XY 

with r = j = [/?]+ 1 (and k = p). 

This gives (with w = Tn = T, zn = z for short), 

lim B\ (say) 

> c<T~p f i l l (u " T)p,~2du f"T+z (u - typ'hP+x{t)dt 

= c2(\og T)~l jll] * (u - t/-\u - T - z)x-P'du 

> c3(log T)~] log(z~l) > cT{p]+x = cTJip]+l 

for all large n, by an integration by parts of the last integral followed by 
the substitution u — T = y, then expansion of (1 — z/y)~p in a power 
series. This completes the proof. 

3. Proof of theorem A. It is sufficient to prove the positive part for the 
case 0 < k < 1 since if k > 1 we have 

f(u) = Ik g(u) = Ik' I[k] g(u) a.e. for u > x 
(C,p) (C,p-[k]) (C/7) 

by Lemma 1 ; hence by the case 0 < k < 1 (assumed proved), 

I[k] g(x) = Dk'f(x) if p - [k] < k\ i.e., p < k, 
(C,p) 

and hence g(x) is given by 

(-d/dx)[k]Dk'f(x) 

https://doi.org/10.4153/CJM-1989-009-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-009-0


184 GODFREY L. ISAACS 

by routine arguments, since g is continuous on the right at x. Since the last 
expression is just Dkf(x) the result is proved. 

The argument below proves the case 0 < k < 1 and also gives a slight­
ly weaker version of the (proved) case k > 1, with p < k, namely that 
g(x) equals 

(7) /

w 
(u - x)~k'f{u)du; 

we have supplied the latter version since we shall use it in constructing the 
counterexample for the case p = k. 

We may take p < k, [p] = [k]. We write 

fw -k* 
J = J (u — x) f{u)du 

/

w foo 

x (u - x)~k'du J (t - u)k~xg(t)dt (C,p) 

by hypothesis. (We again suppress multiplicative constants.) Splitting the 
inner integral into 

/

w foo 

+ / u J w (C,p) 

we get Jx + /2,.say. By inverting the integrals in Jx we get 

( - 9 / 3 x ) l ' l + 1/1 = g(x) 

by the right-continuity of g at x. It remains to show that 

( - 3 / 3 J C ) [ / , ] + 1 / 2 = o(l) as w -> oo. 

Splitting the inner integral of J2 into 

/

2w foo 

+ / , w J 2w 

we can show by Lemma 2 and (5) that the second integral is uniformly 
summable in x ^ u ^ w. Hence we may invert the integrals in J2 and get 
J2 = H(x9 w) ( (2) above). By Lemma 3, since [p] = [k]9 ( - 8 / 3 J C ) [ / ? ] + 1 / 2 

is given by (3). If we write u = t — x, uk~lg(u 4- x) = h(u) in (3) 
this gives 

foo 
(8) ( - 3 / 8 x ) [ ' ] + 1 / 2 = CW~k J w (1 - W/ufh(u)du 

(C,p) 

where W = w — x. By hypothesis /^° h(u)du is summable (C, p) 
and hence by Lemma 4 the expression in (8) is o(\) as W —» oo, i.e., as 
w —» oo. 

For the negative part we choose and fix x and write 
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g(u) = (u - x)1 ph(u - x)(u > x), = 0 (0 ^ u ^ JC) 

where p = k and h is the function used in the proof of the negative part of 
Lemma 4. Then Ikg(x) = f(x) is summable (C, p) ( = (C, &) ), and it is not 
difficult to show that g is continuous on the right at x. As in the proof of 
the positive part we again have 

- (3 /9x ) l ' ] + V, = g(x) 

and ( — d/dxfp^ + lJ2 is given by (8). By the negative part of Lemma 4 this 
-^oo as W —-> oo through a suitable sequence. Thus (7) does not exist. By 
splitting the range of the integral there into [JC, C] + [c, w] we see that the 
existence of Dkf(x) in (1) implies that of (7). Hence Dkf(x) does not exist 
either for p = k. 

4. Further results. We first define a more general concept of the /cth 
derivative: 

(9) Dkf(x) 
(O7)* 

= (-d/dx)[k] lim (-d/dx)c / (1 - //*)*(* - xyk'f(t)dt 

if this exists, where 

c = (T(q + l ) r ( l - fc'))"1-

For ^ = 0we obtain the definition (1). We now state: 

THEOREM B. Let a > 0, b fractional > 0, q > — 1, #A?<i to JC satisfy 

/

w 

u (t - uyb'f(t)dt 

absolutely continuous on x = u = w*, where w* < w, /or a// w > JC. 
Suppose Iaf(x) is summable (C, #). 77ze« D f(y) exists (C, #)* a.e. /or 

y > x. If further, E(u, w) = 0(w — u) as u —» w— w/ẑ w Z? > 1, <2/7J 
if f is continuous on the right at JC, then 

/ a + /? Dbf(x) 
(C/7) (C</)* 

exists for p > q + b, and 

(io) r + * ^ / ( x ) = iaf(X) (P>q + by 
(C/7) (O/)* (O7) 

The result is false for p = q + b. We observe that since an arbitrary 
constant may be added tof(x) on the left side, the result does not necessarily 
hold under the assumption that the left side exists. 
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Proof of Theorem B. We may assume 

/7(0) = o, 

so that with p(t) = ta~]f(t) we have 

p +](w) = o(wq) as w —> oo. 

The (C, q)* existence of Dhf(u) for u > 0 then follows by writing the 
integral in (9) as integrals with ranges [x, c] + [c, X] (x < c < X). In 
the proof we shall (as we may) use (C, r)* instead of (C, q)* where 
r > M + 2. We must show that 

J o (w - w y v ^ - 1 Dhf\u)du 

satisfies P = o(\) as w —» oo if E(u, w) = 0(w — u)x~h(b > 1) as 
u —> w— and /(w) is continuous on the right at u = 0. 

We split the integral of range [w, .¥] in Dbf(u) into integrals of ranges 
[w, w] + [w, X] (X > H>), obtaining P = (2 + P, say. In £) we integrate by 
parts [b] times, then write 

(t - uyb'f(t) = ((t ~ uyh' - rV~ f lp(0 + ^^-^ (o , 
giving g = Qx + (22,

 s a v - It *s easY to show that Q2 = 0(1) as w —» oo. 
For <2t we integrate once more by parts, obtaining 

fw 

/ ; 0 ( 3 / 3 M r | T , ( ( H ' - ufua^n~')du 

X Ju({t- u)~b' - rh)t^ap(t)dt. 

We now invert the pair of integrals, put u = ts and then integrate by 
parts [q] + 1 times: 

/

I [</] 

((1 - s)'" - \)ds 2 ( - l ) r w - V r + 1 ( t v ) 
U r = 0 

X [(3/30 r(3/3*) I f c ]+ lM(w, /, s))l=w 

+ ( _ i ) M + 1 ^ ( ( 1 _ , ) - / > ' _ 1 ) d s 

X MT> / ^ w + 1 ( f X 3 / 3 / ) l , ] + ,(3/35) [ ' ' ]+,A/d/ 

= G', + er. 
say, where 

M = (w - tsfsa + h~]. 
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In Q\ we differentiate only with respect to t, and then make t —» w— ; 
then integrating by parts [Z>] + 1 times we obtain 

Q\ = (-i) [ / , ]+1(£'Wi 2 (-i)r(-Hw-7v+1(M0 
r = 0 

/ ^ ( l - s)p'r-b-x^h-x+rds X 

where 

(JC)* = JC(JC + 1) . . . (x + A: - 1) (k ^ 1), = 1(A: = 0). 

In <2" we differentiate only with respect to / and then write 

(11) Plq] + m = c fQ(t - yyq'pq(y)dy. 

Inversion of a pair of integrals plus an integration by parts of Q'[ gives 

Q" = c II( (1 ~ s)~h' ~ l)ds w~p / o pq+\(yw> 

/

w 

v (t - yyq\d/ds)[h]+]N(w, t, s)dt 

where 

N = (w - ts)p-[q]-xsa + hnq\ 

Performing the last differentiation and then replacing the factor / 
by (w — (w — t) ) and expanding in powers of (w — t), then writing 
t = y + (w — y)r and finally differentiating with respect to y, we get 
Q\ = Q* + Ô**» where Q* is given by 

Gf = 2 2 c m J o ( ( i - , ) ^ - i K ^ ^ ^ 

X J\r~q\\ - r)m+XT{w,s,r), 

where 

X (w - s(y + (w - y)r))p~[q]~2~kdy, 

and <2f* is the same double sum with w, k replaced by m — 1, k — 1 in 
each term. 

We write 

(w - s(y + (w - y)r))p~[q]~2~k 
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^ w[h]+x~k(w - yf'~m+t~\\ ~ r)*-m+€-2S(w,s) 

where S is (w(l — s) y~q+m~t~\.b}~x
 o r the same expression with 

w(l — s) replaced by w according as the power is < 0 or i^O. Then we 
obtain 

Q\ = o(\) as w —> oo. 

Similarly for Qf*. For the term R we put u = ws. 
Then 

R = w«+b y^(i - S)
psa+b-xds 

rx 
X lim / (1 - t/X)r{t - wsyb~xtx~ap(t)dt. 

Integrating the last integral by parts [q] 4- 1 times and then taking the 
limit in the sum of terms not involving an integral we obtain R = S + T 
where 

tel 
S = (-lf] + 1(6'Wi 2 HT*A + 1(HO 

X 2 (*)(* + 1 ) > - l)k-nB(p - b - n 9 a + b) 

where 5 is the Beta function. This cancels with the term Q\ by an identity 
(see [5, Lemma 5, p. 219] ). For [q] = — 1 both S and Q\ are 0. Now 

T = wa + h fo(\ - s)psa+h-xds 

X ( - l ) [ ^ ] lim' / pla] + ](t)(d/dt)[q] + xS(t, X,w,s)dt 
A^oo J w m 

where 

S = (1 - tlX)\t - ws)~h~XtX~~a (r > [q] 4- 2). 

Applying (11) and splitting the range [0, t] into [0, w] 4- [w, f] we get 
T = Tx 4- r2, say. On integrating 7} by parts we then get 

r , = Cwa + h
Pq+x(W) j\{\ - s)»sa + h-'ds 

X lim / (/ - w)~tfVàmiq] + xSdt 

+ CW+b jW
0pq+](y)dy fQ (1 - Sysf+b-xds 
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X lim jw(t - y)~q'~\d/dt)[q]+]Sdt 
Z-*oo 

7] + 77, 

say. Performing the differentiation in T" we get 

[q}+\ k p 

k = 0 v=0 J 

X lim Xk'[q]~x I J(t)dt 

where 

/ ( 0 = (1 - t/X)r'[q]~l+k(t - w)'q\t - wsyh~l'vt]~a~k + v. 

Suppose q = 0. The terms 1 = k ^ [q] are easily shown 0. For the 
terms k = 0, k = [q] + 1 we split [w, Jf] into [w, 2w] -f [2u>, Jf], giving 
7]' = Tf + 7"**, say. Now Tf* is easily shown to be o(\) as w —> 00; and 
in 7f we write 

* - l - V < • / _ uAV'-l+e{u, - u,^'h~ (12) (t - wsyn~'~v ë (/ - iv)* - 1 V - ws) 

Then 7]* is seen to be o(\) as w —> 00. 
Finally in T2 we invert the order of the second and third integrals and 

then integrate by parts, obtaining X + Y, say, X being the term involving 
pq+x(w). Now X is seen to be just —7] above, and in Y we integrate by 
parts and then perform the /-differentiation. Then 

s)psa + h~]ds Y = 
for]+ 2 

w = 0 w = 0 

c V+" / I n -
X lim 

A^oo 

^ m - - [ ? ] • - > / ; Ï 

v ^(0^ 

K(t) = (' — ws) -/>-!- nA—a — m + 
e - )̂ V i ( ^ > 

the last integral being o(tq(t — w)] q) uniformly for t > w, as w —-> 00 for 
g > — 1, the case q < 0 being dealt with by expanding 

v y 

in a power series. The cases 0 ^ w ^ [q] + 1 are straightforward and give 
just 0. For m = [g] + 2 we split [w, X] into [w, 2vv] + [2w, X\. The second 
term is easily dealt with, and in the first we apply (12) with v = n and q' 
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replaced by q' — 1; then the contribution to Y is again o(\) as w —> oo. 
This completes the proof for q ^ 0. For the case q < 0 of T" a more 

careful analysis appears to be required; we write 
/*oo 

J w 
(t - ws)~b"\t - yy

q'~xtx~adt 

as 
/*oo 

J w (1 - (wj/0)~ f r_1(l - {y/t))~tf~'[rb~'f~a~xdt 

and expand the binomials in power series. Writing 

/ ; 0 \Pq+i(y) \fdy < (A()" + ewl+n+]/(q + n + 1) 

where A€ is a constant depending only on e, we get for the contribution B, 
say, to rf of the second term, 

B < a | | (* + O-Cg' + i ) , ( w + „ + a + b + qTx 
m=o n=o m\n\ 

X (q 4- « 4- I ) - 1 / ^ (1 - ^ ) V + / > ~ 1 + m ^ . 

After considerable simplifications and the use of the formula for a 
hypergeometric series F (a, b; c, 1) with positive index ( [8, p. 282] ) we 
see that B is majorized by Ce times a hypergeometric series of type 
F(a, by c; d, e) of index p — b — q (>0) and therefore convergent. 

A similar, but simpler, argument goes through for the contribution A, 
say, to T" from the term (Ae)

n above. 
For the negative part of the theorem we put 

m = tx-°P(t) 

where p(t) = h(t) is used in the negative part of Lemma 4, with q for 
p and 

A careful scan of the proof above (replacing p > q 4 b by p = q 4 b) 
shows that for the chosen function p(t) (or any of the functions a.e. equal 
to this) the term m = n = [q] + 2 in Y (above) 'blows up' and we get, 
after considerable details, and taking w = Tn, that 

Y > CT^b + 2 

for all large n\ an application of [8, p. 299, Example 18] is made in the 
final calculation, where a hypergeometric series has index p — q — b = 0. 
To ensure that / satisfies the conditions on E(u, w) we may assume that 
pq+\(t) is differentiable [q] 4 [b] 4 4 times at every t\ cf. [5, p. 230 
(87) ]. 
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THEOREM C. Let a > 0, b fractional > 0, q > — 1, —1 < r < b. 
Then 

(13) Ia+bg(x) = Ia Ih g(x) (p>q + b) 
{C,p) (C,q) (C,r) 

if the right side exists and g is continuous on the right at x. The result is false 
with p = q + bifq<a and r > q + b. (If b is integral the result is 
true with r = p, q > —\,p = q + b; see [5, p. 217, line 22].) 

Proof Put 

f(u) = Ih g(u) a.e. for u > x. 
(Cr) 

Then by Theorem A, g(x) = Dhf(x) (since r < b), and also, by the proof 
of Theorem A with k = b and the fact that (3) is 0(w — x)~k^as x —» w—, 
the conditions on E(u, w) in Theorem B are satisfied. By hypothesis Ia 

f(x) is summable (C, q) and the result then follows from Theorem B 
since 

Dhf(x) = Dhf(x) 
(CO)* (C?)* 

and g continuous on the right implies the same property for / . 
For the negative part of Theorem C let / be a function chosen for the 

negative part of Theorem B above. Writing down (10) with this function 
/ , putting 

g(u) = Dhf(u) 
(C,q)* 

and then splitting Ia+h into IaIh by Lemma 1 we are then able to 
obtain 

f(u) = Ihg(u) a.e. for u > x (e > 0) 
(Of + /> + €) 

by an application of Theorem A (using q < a). This gives that 

Ia Ibg(x) 
(C,q) (C,q + b + e) 

exists but Ia^bg(x) does not exist in the (C, q + b) sense. 

Remarks, (a) In early attempts to prove Theorem C it was not realized 
that fractional derivatives would enter, since these do not appear explicit­
ly, nor are they used in the proof of the converse, Lemma 1. From the 
development above, however, we see that g(x) on the left side of (13) is 
'really' Dhf(x) which becomes g(x) when 

f(x) = Ibg(x) with r < b. 
(Cr) 
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(b) It would be of interest to obtain a counterexample to Theorem C in 
which p = q + b but the order r is less than b. 

(c) For results in fractional differences analogous to Lemma 1 and Theo­
rem B see [6, Theorem 1, p. 431] and for results analogous to Theorem A 
(with p = 0) and Theorem C (with r = 0) see [6, Theorem 3] and 
[1, Theorem 1] or, for Theorem A with p = 0, [7, (11), p. 934]. The 
definitions for positive order in the fractional differences correspond to (7) 
rather than (1). It seems likely that results analogous to the general cases 
of Theorems A and C would hold. 

(d) If, in the second integral of the Introduction, g(t)dt is replaced 
by dG(t), where G(t) is of bounded variation on x = t ^ X for every 
X > x, and if the total variation of the resulting integral is bounded 
on x ^ X < oo then we say that 

(t - x)k~]dG(t) 

is summable |C, p\ (this implies (C, p) to some value). If, in Lemma 1, 
g(t)dt is replaced by dG(t) as above, then Lemma 1 is true with (C, . . . ) 
replaced by |C, . . . | throughout. The case b integral was given by David 
Borwein (see [5, pages 215-218] for discussion) and the case b fractional is 
given in unpublished notes by the author, the failure in the 'negative' case 
q = p — b being particularly severe in that the left side of the conclusion 
can exist in the |C, p\ sense without the right side's being summable 
(C, q) (q = p — b). It would be of interest to find a \C\ analogue of 
(C, /?)* (see (9) above) and hence of Theorems A, B, C, with b fractional 
in Theorem C. 
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