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Abstract

Restriction is a natural quasi-order on d-way tensors. We establish a remarkable aspect
of this quasi-order in the case of tensors over a fixed finite field; namely, that it is a
well-quasi-order: it admits no infinite antichains and no infinite strictly decreasing
sequences. This result, reminiscent of the graph minor theorem, has important conse-
quences for an arbitrary restriction-closed tensor property X. For instance, X admits
a characterisation by finitely many forbidden restrictions and can be tested by look-
ing at subtensors of a fixed size. Our proof involves an induction over polynomial
generic representations, establishes a generalisation of the tensor restriction theorem
to other such representations (e.g., homogeneous polynomials of a fixed degree), and
also describes the coarse structure of any restriction-closed property.

1. Introduction and results

1.1 Tensor restriction

Let K be a finite field and let d be a natural number. This paper concerns properties of d-way
tensors that are preserved under taking linear maps. For a vector space V over K we denote
by V ⊗d the d-fold tensor product V ⊗ V ⊗ · · · ⊗ V over K, and for a linear map ϕ : V →W we
denote by ϕ⊗d : V ⊗d →W⊗d the linear map determined by

ϕ⊗d(v1 ⊗ · · · ⊗ vd) :=ϕ(v1)⊗ · · · ⊗ϕ(vd).

Definition 1.1.1. Let V,W be finite-dimensional vector spaces over K and let S ∈ V ⊗d and
T ∈W⊗d. We call T a restriction of S if there exists a linear map ϕ : V →W such that ϕ⊗dS = T .
We then write S � T .

The rationale for this terminology is that S can be thought of as a multilinear map (V ∗)d →K,
and composing this map with (ϕ∗)d : (W ∗)d → (V ∗)d gives the multilinear map T . In particular,
if ϕ∗ is injective, so that we can use it to identify W ∗ with a subspace of V ∗, then we can think
of T as the restriction of S to the subspace (W ∗)d.

Remark 1.1.2. Much of the literature on tensors considers tensor products V1 ⊗ · · · ⊗ Vd of
different vector spaces Vi, and for restriction allows the application of distinct linear maps
ϕi : Vi →Wi to the individual factors. The theorems that we will prove imply the corresponding
theorems for this setting (see Remark 1.6.3).
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1.2 The tensor restriction theorem over finite fields

The relation � is reflexive and transitive, so it is a quasi-order on tensors over K. We will prove
that this quasi-order is a well-quasi-order.

Theorem 1.2.1 (Tensor restriction theorem). Fix a natural number d. For every i∈N let Vi be
a finite-dimensional vector space over the finite field K and let Ti ∈ V ⊗di . Then there exist i < j
such that Tj � Ti.

As the following example shows, the requirement that K be finite is essential.

Example 1.2.2. If |K|=∞, then the statement of the theorem fails already for d= 2. Indeed, if
charK �= 2, then consider the matrices

Ma :=

[
1 a
−a 1

]
∈ (K2)⊗2

for a ranging through K. If Ma �Mb, then there exists a 2× 2 matrix g over K such that
gMag

T =Mb. Looking at the symmetric parts of Ma and Mb, we find that gIgT = I, so g is an
orthogonal matrix and Ma, Mb have the same characteristic polynomial. But the characteristic
polynomial of Ma equals (t− 1)2 + a2, so Ma �Mb holds (if and) only if a2 = b2. Since |K|=∞,
we have found infinitely many two-way tensors that are incomparable with respect to �. A
similar construction works when charK = 2. It is easy to see that the failure for d= 2 implies
the failure for all larger d.

1.3 Consequences of the tensor restriction theorem

The tensor restriction theorem is reminiscent of the celebrated graph minor theorem [RS04],
which says that finite graphs are well-quasi-ordered by the minor order. We are not aware of
any logical dependence between these theorems, but the tensor restriction theorem has similar
far-reaching consequences for tensors to those the graph minor theorem has for graphs. These
consequences are best formulated using the following notion.

Definition 1.3.1. A restriction-closed property of d-way tensors is a property such that if a
tensor S has it, and S � T holds, then T also has it. We can identify such a property with the
data of a subset X(V )⊆ V ⊗d for every finite-dimensional vector space V over K, such that if
ϕ : V →W is a linear map, then ϕ⊗d maps X(V ) into X(W ).

Example 1.3.2. Let T ∈W⊗d. Then the property of not having T as a restriction is restriction-
closed. We denote this property by X��T .

If X is a restriction-closed property, and T is a tensor that does not satisfy it, then we call
T a forbidden restriction for X.

Corollary 1.3.3. For d-way tensors over the fixed finite field K the following statements hold.

(1) Restriction-closed properties satisfy the descending chain condition: any chain
X1 ⊇X2 ⊇ · · · of such properties stabilises.

(2) Every restriction-closed property X is characterised by finitely many forbidden restric-
tions, i.e., we have X =

⋂k
i=1X ��Ti

for some k and some tensors Ti ∈ V ⊗di .

(3) For every restriction-closed property X there exists a finite-dimensional vector space U
such that for any V and any T ∈ V ⊗d, we have T ∈X(V ) if (and only if) ϕ⊗dT ∈X(U)
for all linear maps ϕ : V →U .
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(4) For every restriction-closed property X there exists a number n0 such that a tensor
T ∈ (Kn)⊗d satisfies X if and only if for every subset S ⊆ [n] := {1, . . . , n} of size n0 the
subtensor of T in (KS)⊗d satisfies X.

(5) For every restriction-closed property X there exists a polynomial-time deterministic
algorithm that on input n and a T ∈ (Kn)⊗d decides whether T satisfies X.

The proofs of (1), (2), and (3) are straightforward from the tensor restriction theorem, and
conversely the tensor restriction theorem follows from each of these.

Proofs of (1), (2), and (3) from the tensor restriction theorem and vice versa. Assuming the ten-
sor restriction theorem, we prove (1): whenever Xi and Xi+1 are not the same property, there
exists a tensor Ti that satisfies Xi but not Xi+1. For i < j we then have Tj �� Ti, and hence
Xi �=Xi+1 holds only finitely many times.

Next we prove (1) ⇒ (2). Start with k= 0. While X is strictly contained in Xk :=
⋂k

i=1X ��Ti
,

there is a tensor Tk+1 that does not satisfy X but does not have any of the tensors T1, . . . , Tk as a
restriction. This yields a strictly descending chain X0 �X1 � · · · , which by (1) must terminate,
so that X is equal to Xk for some k.

For (2) ⇒ (3), we take for U any space of dimension at least that of all of the spaces
Vi, i= 1, . . . , k, where Ti ∈ V ⊗di . If T ∈ V ⊗d does not lie in X(V ), then it has a restriction equal
to some Ti, so that ψ⊗dT = Ti for some linear map ψ : V → Vi. Now ψ factors via a linear map
ϕ : V →U , and it follows that ϕ⊗dT �∈X(U).

Finally, (3) implies the tensor restriction theorem: let Ti ∈ V ⊗di , i= 1, 2, . . . , and defineXn :=⋂n
i=1X ��Ti

and X :=
⋂∞

i=1X ��Ti
. Let U be as in (3) for X. Then, since X0(U) is a finite set, the

chain of subsets

X0(U)⊇X1(U)⊇ · · ·

stabilises after finitely many steps: Xn(U) =X(U). Then in particular Tn+1, which is not in
X(Vn+1), is not in Xn(Vn+1), which means that it must have some Ti with i≤ n as a restriction.

Example 1.3.4. Let d= 2, assume charK > 2, and let X(V )⊆ V ⊗ V be the set of tensors {c ·
v⊗ v | v ∈ V, c∈K} (symmetric matrices of rank 1). Clearly, X is a restriction-closed property.
If T ∈ V ⊗ V is not in X(V ), then write T = T1 + T2 with T1 symmetric and T2 skew-symmetric.
If T2 �= 0, then T2 has rank at least 2 and there exists a linear map ϕ : V →K2 with ϕ⊗2T2 =
e1 ⊗ e2 − e2 ⊗ e1. It follows that ϕ

⊗2T �∈X(K2). Similarly, if T1 has rank at least 2 , then there
exists a linear map ϕ : V →K2 such that ϕ⊗2T1 has rank at least 2 , and again ϕ⊗2T �∈X(K2).
So we obtain a (finite and minimal) set of forbidden minors characterising X by picking a
representative from each GL(K2)-orbit on elements in (K2 ⊗K2) \X(K2). This minimal set of
forbidden minors increases with |K|.

Note that the difference between (3) and (4) is that in (4) we only consider coordinate
projections Kn →KI . The proofs of (4) and (5) are slightly more involved and deferred to
§ 5.1.

Remark 1.3.5. Versions of (1), (3), (4), and (5) also hold for restriction-closed tensor properties
over an infinite field, provided that the tensor property can be expressed by polynomial equations
in the tensor entries. For (1) and (3) this follows from [Dra19]. For (4) and (5) this follows from
(1) and (3) and the technique in § 5.1 below.
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1.4 Restriction-monotone functions

Tensor restriction plays an important role in theoretical computer science, in particular through
many notions of tensor rank, of which we briefly discuss two here.

Definition 1.4.1. The rank rk(S) of S ∈ V ⊗d is the minimal r such that S can be written as

S =

r∑
i=1

vi,1 ⊗ · · · ⊗ vi,d

for suitable vectors vi,1, . . . , vi,d. The vertical tensor product of S ∈ V ⊗d =: V1 ⊗ · · · ⊗ Vd and
T ∈W⊗d =W1 ⊗ · · · ⊗Wd is the d-way tensor S � T obtained by regarding S ⊗ T as a tensor in

(V1 ⊗W1)⊗ · · · ⊗ (Vd ⊗Wd) = (V ⊗W )⊗d,

where we ‘forget’ the tensor product structure in each Vi ⊗Wi. One has rk(S � T )≤ rk(S) · rk(T ).
The asymptotic rank of S is the limit

lim
t→∞

t

√
rk(S�t),

where S�t ∈ (V ⊗t)⊗d is the t-fold tensor power of S with itself.

If S � T , then rk(S)≥ rk(T ) and S�t � T�t for every natural number t, so that also the
asymptotic rank of S is at least that of T . This shows that rank and asymptotic rank are both
monotone in the following sense.

Definition 1.4.2. A function f that assigns to any d-way tensor a real number is called
restriction-monotone if S � T implies that f(S)≥ f(T ).

Corollary 1.4.3. Let f be any restriction-monotone function on d-way tensors over the finite
field K. Then the set of values of f in R is a well-ordered set.

Proof. If not, then there exist tensors T1, T2, . . . on which f takes values a1 >a2 > · · · . Let
X≤ai

be the tensor property of having f -value at most ai. Since f is restriction-monotone, this
property is restriction-closed. Furthermore, since Ti ∈X≤ai

\X≤ai+1
, we have

X≤a1
�X≤a2

� · · · .
But this contradicts Corollary 1.3.3, part (1).

In particular, the set of asymptotic ranks of d-way tensors over a fixed finite field is well-
ordered.

Example 1.4.4. Take d= 3. By Corollary 1.4.3, the set S ⊆R≥0 of asymptotic ranks of three-way
tensors is well-ordered. This means that S \ [0, 4] contains a minimal element 4 + ε with ε > 0.
Hence in particular, the asymptotic rank of 2× 2 matrix multiplication, a tensor in K4 ⊗K4 ⊗
K4, is either 4 (which is equivalent to the well-known conjecture that the exponent of matrix
multiplication over K is 2; see [CGL+21]) or at least 4 + ε. We point out, though, that we do
not know whether asymptotic ranks of tensors over an infinite field are well-ordered, because
the property of having asymptotic rank at most some real number is not (evidently, at least) a
Zariski-closed property (see Remark 1.3.5).

Example 1.4.5. Another restriction-monotone function on tensors is the asymptotic subrank. In
[CGZ23], it is proved that a tensor in V ⊗d has asymptotic subrank 0 (in which case it is 0), 1
(in which case it is, up to a permutation of the tensor factors, of the form v⊗ T with v ∈ V and
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T ∈ V ⊗d−1), or at least 2h(1/d), where h : (0, 1)→R is the binary entropy function defined by

h(p) :=−p log2(p)− (1− p) log2(1− p);

in the latter case, it has a specific tensorWd as a restriction in the broader sense of Remark 1.1.2,
and Wd is known to have the asymptotic subrank above. Interestingly, this result holds over any
field. Our Corollary 1.4.3 only guarantees such gaps over a fixed finite field. It would be interesting
to see to what extent Corollary 1.4.3 extends to other fields.

Example 1.4.6. Another notion of rank that is restriction-monotone is analytic rank [Lov19].
Fix a nontrivial character (group homomorphism) χ : (K,+)→ (C∗, ·). Thinking of T ∈ V ⊗d as
a multilinear form (V ∗)d →K, the analytic rank of T equals

−log|K| E(χ(T (x1, . . . , xd))),

where E stands for expectation in the probabilistic model where (x1, . . . , xd) is picked uniformly
at random in (V ∗)d. The analytic rank is restriction-monotone by Lemma 1.4.7 below. Hence,
by Corollary 1.4.3, the set of analytic ranks of d-linear forms over K is a well-ordered subset of
the real numbers.

The following is well known to experts, but we did not find a proof in the published literature,
so we provide one here.

Lemma 1.4.7. The analytic rank is restriction-monotone.

Proof. It is convenient to see this in the more general setting of Remark 1.1.2, where we have
different vector spaces V1, . . . , Vd and T ∈ V1 ⊗ · · · ⊗ Vd is a regarded as a multilinear function
V ∗1 × · · · × V ∗d →K.

Consider a linear map ϕ : Vd →W and define T ′ := idV1
⊗ · · · ⊗ idVd−1

⊗ϕ. For fixed
(x1, . . . , xd−1)∈ V ∗1 × · · · × V ∗d−1, the linear form T (x1, . . . , xd−1, ·) is either zero, in which case
χ(T (x1, . . . , xd−1, xd)) = 1 for all |Vd| choices of xd, or it is nonzero, in which case, as xd varies
through V , T (x1, . . . , xd) takes all values equally often, and therefore the values of χ cancel out.
We conclude that the expectation in the analytic rank of T equals

a|Vd|/(|V1| · · · |Vd|)
where a is the number of tuples (x1, . . . , xd−1) for which the linear form is zero. By the same
reasoning, the expectation in the analytic rank of T ′ equals

a′|W |/(|V1| · · · |Vd−1| · |W |)
where now a′ is the number of tuples (x1, . . . , xd−1, ·) for which T (x1, . . . , xd−1) is zero on the
image of ϕ∗ :W ∗→ V ∗. Now a′ ≥ a and therefore the expression for T ′ is at least that for T .
Taking −log|K| on both sides, and repeating this argument with linear maps in the other d− 1
tensor factors, we are done.

1.5 Generic representations

Let Vec be the category of finite-dimensional vector spaces over the finite field K.

Definition 1.5.1. A generic representation is a functor F :Vec→Vec.

The terminology is explained by the observation that if F is a generic representation, then
for each n, F (Kn) is a representation of the finite group GLn(K) and of the finite monoid
End(Kn) of n× n matrices. Generic representations can therefore be thought of as sequences
of representations of End(Kn), one for each n, that depend in a suitably generic manner
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on n. Generic representations form an abelian category in which the morphisms are natural
transformations.

Example 1.5.2. Here are two rather different examples of generic representations:

(1) the functor T d that sends V to V ⊗d and ϕ : V →W to ϕ⊗d; and
(2) the functor that sends V to the K-vector space KV with basis {ev | v ∈ V } and ϕ : V →W

to the unique linear map KV →KW that sends the basis vector ev ∈ V to the basis vector
eϕ(v) ∈W .

The following beautiful theorem characterises a particularly nice class of generic
representations.

Theorem 1.5.3 [Kuh94a, Theorem 4.14]. For a generic representation F :Vec→Vec the
following properties are equivalent:

(1) F has a finite composition series in the abelian category of generic representations;

(2) the function dF :Z≥0 →Z≥0 defined by dF (n) := dim F (Kn) is (bounded above by) a
polynomial in n; and

(3) F is a subquotient of a finite direct sum T d1 ⊕ · · · ⊕ T dn for suitable d1, . . . , dn ∈Z≥0.

We call a generic representation satisfying any of the equivalent properties above polynomial.
Often, we will drop the adjective generic and just speak of polynomial representations.

Example 1.5.4. The generic representation V �→ V ⊗d is polynomial, and so is the generic repre-
sentation V �→ SdV . The generic representation V �→KV is not polynomial, because dimKV =
|V |= |K|dim V is exponential in dim V .

1.6 The restriction theorem for polynomial representations

The tensor restriction theorem generalises as follows.

Theorem 1.6.1 (The restriction theorem in polynomial representations). Let P be a polynomial
generic representation over the finite field K, and for i∈N let Ti ∈ P (Vi). Then there exist i < j
and a linear map ϕ : Vj → Vi such that Ti = P (ϕ)Tj .

We will use the term ‘restriction’ also in this more general context, i.e., the conclusion of the
theorem says that Ti is a restriction of Tj .

Remark 1.6.2. The condition that P be polynomial cannot be dropped. For instance, let P be
the functor that sends V to KV . For each n≥ 3 let Tn ∈ P (Kn−1) be the formal sum

Tn := ev1
+ · · ·+ evn

∈ P (Kn−1),

where {v1, . . . , vn} ∈Kn−1 is a circuit : any n− 1 of the vi are a basis of Kn−1. We claim that no
Tn is a restriction of any Tm with m �= n. Indeed, if it were, then writing Tm = ev′

1
+ · · ·+ ev′

m
,

there would be a linear map Km−1 →Kn−1 that maps the circuit {v′1, . . . , v′m} to the circuit
{v1, . . . , vn}. By basic linear algebra, such linear maps do not exist.

Corollary 1.3.3 generalises verbatim to polynomial representations, and so does
Corollary 1.4.3.

Remark 1.6.3. Versions of Theorem 1.6.1 and its corollaries also hold for multivariate polyno-
mial representations, defined as functors P :Veck →Vec for which dimK P (Kn1 , . . . , Knk) is a

polynomial in n1, . . . , nk. Indeed, given elements Ti ∈ P (V (1)
i , . . . , V

(k)
i ) for i= 1, 2, . . . , we can
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choose linear injections ι
(j)
i from V

(j)
i into a Ui ∈Vec (which depends only on i), and linear

surjections π
(j)
i :Ui → V

(j)
i with π

(j)
i ◦ ι(j)i = idV (j)

i
. Then define

T ′i := P (ι
(1)
i , . . . , ι

(k)
i )Ti ∈ P (Ui, . . . , Ui) =:Q(Ui)

where Q is now a univariate polynomial generic representation. Theorem 1.6.1 applied to Q says
that there exist i < j and a linear map ψ :Uj →Ui such that

Q(ψ)T ′j = P (ψ, . . . , ψ)T ′j = T ′i .

We then have

P (π
(1)
i ◦ψ ◦ ι(1)j , . . . , π

(k)
i ◦ψ ◦ ι(1)j )Tj = Ti,

as desired.

1.7 Proof strategy: the polynomial method

Rather than proving the restriction theorem for polynomial representations directly, we will
prove Noetherianity, corresponding to (1) in Corollary 1.3.3: if P is a polynomial representa-
tion, and X1 ⊇X2 ⊇ · · · are restriction-closed properties, then Xn =Xn+1 for all sufficiently
large n.

To establish Noetherianity, we adapt the proof method of [Dra19] for polynomial functors
over infinite fields to our current setting. This is far from straightforward. For instance, a poly-
nomial functor over an infinite field and its coordinate ring both have a Z≥0-grading, whereas a
polynomial representation over the finite field K and its coordinate ring only have a grading by
{0, 1, . . . , |K| − 1}. Nevertheless, after introducing the degree d of the polynomial representation
P , we show that P has a unique minimal subrepresentation P>d−1, the quotient by which has
degree at most d− 1. We think of P>d−1 as the top-degree part of P . We then take an irre-
ducible subrepresentation R in P>d−1, and assume that the Noetherianity statement holds for
P/R and various other polynomial representations that have the same top-degree part as P/R
and are therefore in a lexicographic sense smaller than P . This means that if X1 ⊇X2 ⊇ · · · is a
chain of restriction-closed properties in P , then their projections X ′1 ⊇X ′2 ⊇ · · · in P/R stabilise.
Therefore, it suffices to prove Noetherianity for properties X ⊆ P that have a fixed projection
X ′ ⊆ P/R. Then, to prove that any property X ⊆ P with projection X ′ is Noetherian, we think
of each X(V ) as a Zariski-closed subset of P (V ), i.e., as given by polynomial equations in the
finite vector space P (V ). We do induction on the minimal degree of an equation that vanishes
identically on X but not on X ′. Using spreading operators, we show that from such an equation
we can construct many equations of the same degree that are affine-linear in the R-direction.
This allows us to embed a certain subset of X into a strictly smaller polynomial functor, while
on the complement of that subset a polynomial of strictly smaller degree vanishes. Both subsets
can therefore be handled by induction.

We stress that this proof never actually looks at concrete tensors or elements of P (V ); all
reasoning uses polynomial equations, and exploits the fact that every subset of a finite vector
space is given by polynomial equations. In this sense, the proof can be regarded an instance of
the polynomial method.

We remark that polynomial generic representations are not the same thing as strict polyno-
mial functors in the sense of Friedlander and Suslin [FS97]. Roughly speaking, while former deal
with sequences of representations of the finite groups GLn(K), the latter deal with sequences
of algebraic representations of the group schemes GLn. Topological Noetherianity of strict poly-
nomial functors, over arbitrary rings with Noetherian spectrum and hence certainly over finite
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fields, was established in [BDD23], using the techniques from [Dra19]. However, strict poly-
nomial functors have a scheme structure built in and are therefore much more amenable to
the techniques of [Dra19] than the polynomial generic representations that we study here.
Furthermore, even if one is interested only in polynomial generic representations that come
from strict polynomial functors by forgetting some of the data (such as the functor V �→ V ⊗d)
our proof, in which we mod out an irreducible subrepresentation R, requires that one leaves the
realm of these special representations. This explains the need for the new ideas developed in this
paper.

1.8 Further relations to the literature

Restriction-closed properties of tensors are a rapidly expanding research area. Here is a very
small selection of recent research related to our work.

In [Kar22] it is proved, for various notions of rank including ordinary tensor rank, slice rank,
and partition rank, that a large tensor of rank r has a subtensor whose size depends only on
r and whose rank is at least some function of r. For finite fields, this result also follows from
Corollary 1.3.3, item (3); in fact, by that item, a subtensor of fixed size can be found of rank
equal to r. However, Karam also finds an explicit formula for the size, while our theorem does
not give such a bound. It would be very interesting to see whether the proof of our theorem
could shed further light on such bounds.

In [CM23] it is proved that over sufficiently large fields, partition rank is bounded by a linear
function of the analytic rank of a tensor; and in [MZ22] the condition on the field size is removed
at the cost of a polylogarithmic factor. This is the culmination of many years of research by many
authors into the relation between bias and rank of tensors, starting with [GT09] via polynomial
bounds in [Mil19] and linear bounds for trilinear forms in [AKZ21]. Using the proof of our tensor
restriction theorem and techniques from [BDE19], it is easy to recover the result that partition
rank is bounded from above by at least some function of the analytic rank. However, again, our
techniques do not yield bounds that can compete with the state of the art.

In [CGL+21], motivated by Strassen’s asymptotic rank conjecture that says that any tight
tensor has the minimal possible asymptotic rank, the authors study the geometry of various
varieties of tensors, such as the (closure of) the set of tight tensors. It would be interest-
ing to study these varieties from the perspective of this paper (over finite fields) and from
the perspective of [BDES23] (over infinite fields). In both cases, after a shift and a locali-
sation, these varieties become of the form a fixed finite-dimensional variety times an affine
space that depends on the size of the tensor. Over infinite fields this follows from the shift
theorem in [BDES23], and over finite fields it follows from the weak shift theorem in this
paper.

In [PS17] and [SS17], the long-standing Lannes–Schwartz Artinian conjecture was resolved,
which says that any finitely generated (not necessarily polynomial) generic representation F :
Vec→Vec is Noetherian in the module sense: it satisfies the ascending chain condition on
subrepresentations. Dually, this means that any descending chain of subrepresentations of F ∗ :
V ∗ �→ F (V )∗ stabilises. Interpreting the elements of F (V ) as linear functions on F (V )∗, one
may interpret this as Noetherianity for linear functorial subsets of F ∗. However, already for
F : V �→K · V , one can show that F ∗ does not satisfy the descending chain condition on nonlinear
subsets. So topological Noetherianity as we prove it seems restricted only to polynomial generic
representations. It would be nice to know a precise statement to this effect. For instance, is it true
that the only generic representations for which the restriction theorem holds are the polynomial
representations?
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In [Sno21], Snowden extends many results about GL-algebras from [BDES23] to modules
over GL-algebras equipped with a compatible GL-action. Along the way, he also gives a proof of
the shift theorem that differs slightly from the proof in [BDES23], and which uses the search for
an element of weight (1, . . . , 1) in a suitable GL-representation. This inspired the development
of weight theory in our current, different context in § 3 and the idea that a suitably spread-out
element in the vanishing ideal of a tensor property would have weight (1, . . . , 1), which is a key
insight in the proof of the embedding theorem in § 4.6.

1.9 Organisation of this paper

In § 2 we discuss the theory of generic polynomial representations, including the definition of
top-degree parts and shift functors. In particular, we will see that the ring of functions on a
polynomial representation is itself a countable union of polynomial representations.

In § 3 we develop a partial analogue of the classical weight theory for representations of
group schemes GLn. This includes the spreading operators alluded to above. Since functions
on a polynomial representation themselves live in a polynomial representation, these spreading
operators also act on functions.

In § 4 we prove Noetherianity for polynomial representations over the fixed finite field K,
which implies the restriction theorems for tensors and polynomial representations and items
(1)–(3) of Corollary 1.3.3, both for tensors and for polynomial representations, and also implies
the existence of a unique decomposition of a restriction-closed tensor property into irreducible
such properties (see Theorem 4.2.2). We do so by first deriving Noetherianity from an auxiliary
result that we call the embedding theorem, since it is the finite-field analogue of the embedding
theorem in [BDES23]. The proof of the embedding theorem, then, is the heart of the paper. We
also derive from it a version of the shift theorem in [BDES23].

Finally, in § 5 we use the theory of finitely generated FI-modules to prove item (4) from
Corollary 1.3.3; as we have seen, (5) is then a direct consequence.

2. Polynomial generic representations

Throughout the paper,K is a fixed finite field, with q elements. All linear and multilinear algebra
will be over K. We denote by Vec the category of finite-dimensional K-vector spaces, and for
V ∈Vec we denote the dual space by V ∗.

2.1 Functions as polynomials

We introduce the ring of functions on a vector space; we will also call this the coordinate ring.

Definition 2.1.1. Given V ∈Vec, we write K[V ] for the K-algebra of functions V →K. This
has a natural algebra filtration

{0}=K[V ]≤−1 ⊆K[V ]≤0 ⊆K[V ]≤1 ⊆K[V ]≤2 ⊆ · · ·
where K[V ]≤d is the set of functions f : V →K for which there exists an element of

⊕d
e=0 S

eV ∗

that defines the function f .

We stress that K[V ] is an algebra of functions, not of polynomials. More precisely, K[V ] is
the quotient of the symmetric algebra SV ∗ by the ideal generated by the polynomials xq − x
as x runs through (a basis of) V ∗. Since these polynomials are not homogeneous, K[V ] has no
natural grading ; however, as seen above, it does have a natural filtration.
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Note further that K[V ] is a finite-dimensional K-vector space, of dimension qdim(V ), the
number of elements of V .

Definition 2.1.2. Given a basis x1, . . . , xn of V ∗, every element f of K[V ] has a unique rep-
resentative polynomial in which all exponents of all variables are less than or equal to q− 1;
we will call this representative, which depends on the choice of basis, the reduced polynomial
representation for f relative to the choice of coordinates.

The following lemma is immediate; the natural isomorphisms in it will be interpreted as
equalities throughout the paper.

Lemma 2.1.3. For V,W ∈Vec we have K[V ×W ]∼=K[V ]⊗K[W ] via the K-linear map
from right to left that sends f ⊗ g to the function (v, w) �→ f(v)g(w); this is a K-algebra
isomorphism.

Similarly, the set of arbitrary maps V →W is canonically isomorphic to K[V ]⊗W via the
K-linear map from right to left that sends f ⊗w to the function v �→ f(v) ·w.

Furthermore, we write K[V ]0 =K for the sub-K-algebra of constant functions, and K[V ]>0

for the K-vector space spanned by all functions that vanish at zero.

2.2 Polynomial generic representations over K

Recall Theorem 1.5.3, which characterises polynomial representations among all generic repre-
sentations. We will use the following alternative characterisation instead.

Definition 2.2.1. A generic representation P :Vec→Vec is called polynomial if there
exists a d such that for all U, V ∈Vec the map P : Hom(U, V )→Hom(P (U), P (V )) lies in
K[Hom(U, V )]≤d ⊗Hom(P (U), P (V )). The minimal such d∈Z≥−1 is called the degree of P
and denoted deg(P ).

Polynomial representations form an abelian category, in which the morphisms are natural
transformations.

Any polynomial representation in the sense of Theorem 1.5.3 is a subquotient of a direct sum
T d1 ⊕ · · · ⊕ T dk , and this implies that it is polynomial in the sense of the definition above, of
degree at most the maximum of the di. In Remark 2.4.2, we will see that, conversely, any generic
representation that is polynomial in the sense of the definition above is polynomial in the sense
of Theorem 1.5.3.

Every finite-degree strict polynomial functor Vec→Vec in the sense of Friedlander-Suslin
[FS97] gives rise to a polynomial representation. But this forgetful functor is not an equiv-
alence of abelian categories. For instance, if Q is a strict polynomial functor of degree d
over K, then its q-Frobenius twist is a polynomial functor of degree dq over K and hence
not isomorphic to Q. However, Q and its q-Frobenius twist give rise to the same generic
representation.

2.3 Schur algebras over K

In spite of the discrepancy between strict polynomial functors and polynomial generic represen-
tations, a version of the theorem by Friedlander and Suslin that relates polynomial functors to
representations of the Schur algebra, does hold.

Fix a natural number d and a U ∈Vec. The composition map End(U)×End(U)→End(U)
gives rise, via pullback of functions, to a K-linear map

K[End(U)]≤d →K[End(U)]≤d ⊗K[End(U)]≤d.

1030

https://doi.org/10.1112/S0010437X25007067 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007067


A tensor restriction theorem over finite fields

We write A≤d(U) :=K[End(U)]∗≤d. Dualising the map above, we obtain a K-bilinear map

A≤d(U)×A≤d(U)→A≤d(U).

A straightforward computation, using the associativity of composition of linear maps, shows that
this turns A≤d(U) into a unital, associative algebra, with unit element f �→ f(idU ).

Definition 2.3.1. The unital, associative algebra A≤d(U) with the multiplication above is
called the Schur algebra over K.

We remark that this is in fact a subalgebra of the Schur algebra in [FS97], which is the dual
space to the space of polynomials of degree at most d on End(U). Our Schur algebra consists of
only those linear functions that vanish on the ideal of polynomials that define the zero function
on End(U).

The Schur algebra comes with a homomorphism of monoids (not of K-algebras) End(U)→
A≤d(U) defined by ϕ �→ (f �→ f(ϕ)). This homomorphism is an embedding if d≥ 1.

2.4 A finite-field analogue of the Friedlander–Suslin lemma

Given a polynomial generic representation P of degree at most d and a vector space U , we turn
P (U) into an A≤d(U)-module by a construction very similar to the construction of A≤d(U): first,
the map

End(U)× P (U)→ P (U), (ϕ, p) �→ P (ϕ)(p)

gives rise, via pullback, to a K-linear map

P (U)∗→K[End(U)]≤d ⊗ P (U)∗.

Dualising, we obtain a K-bilinear map

A≤d(U)× P (U)→ P (U)

that turns P (U) into a (unital) A≤d(U)-module.
The following proposition is proved exactly as Friedlander and Suslin’s corresponding

theorem, and it is also almost equivalent to [Kuh94a, Proposition 4.10].

Proposition 2.4.1. Fix a natural number d and a U ∈Vec of dimension at least d. Then
P �→ P (U) is an equivalence of abelian categories from the category of polynomial generic
representations Vec→Vec of degree at most d to the category of A≤d(U)-representations.

Remark 2.4.2. It follows from this proposition that every polynomial representation of degree
at most d in the sense of Definition 2.2.1 has finite length. Therefore, it is also polynomial in
the sense of Theorem 1.5.3.

Remark 2.4.3. If P is an irreducible polynomial generic representation, then for each U ∈Vec,
P (U) is (zero or) an irreducible End(U)-module. Indeed, ifM were a nonzero proper submodule,
then, for varying V ,

Q(V ) := {p∈ P (V ) | ∀ϕ∈HomVec(V, U) P (ϕ)p∈M}
would define a nonzero proper subrepresentation.

2.5 Filtering a polynomial representation by degree

A strict polynomial functor in the sense of Friedlander and Suslin has a grading by degree. In
contrast, we will see that a polynomial generic representation only has a filtration by degree.
One notable exception is the degree-zero part of a polynomial representation.
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Definition 2.5.1. Let P :Vec→Vec be a polynomial generic representation. Then we
define P0 :Vec→Vec by P0(V ) := P (0) =:U for all V ∈Vec and P0(ϕ) := idU for all ϕ∈
HomVec(V,W ). This is a direct summand of P in the abelian category of polynomial generic
representations, called the degree-zero part or constant part of P ; we will also informally say
that U is the constant part of P . The constant part P0 has a unique complement in P ,
namely,

P>0(V ) := {p∈ P (V ) |P (0 · idV )p= 0}.
A polynomial representation P of degree at most some e≤ d is in particular a polynomial

representation of degree at most d. On the Schur algebra side, this inclusion of abelian categories
is made explicit as follows. Take a vector space U of dimension at least d. Then the inclusion
K[End(U)]≤e →K[End(U)]≤d dualises to a linear surjection A≤d(U)→A≤e(U). This surjection
is an algebra homomorphism, and hence if M is a module over the latter algebra, then it is also
naturally a module over the former algebra.

This interpretation also shows which A≤d(U)-modules are also A≤e(U)-modules, namely,
those for which the kernel I of the surjection acts as zero. Furthermore, if M is an A≤d(U)-
module, and N is an A≤d(U)-submodule of M , then M/N is an A≤e(U)-module if and only if
I · (M/N) = 0, i.e., if and only if N contains the A≤d(U)-submodule I ·M . We conclude that
there is a unique inclusionwise minimal A≤d(U)-submoduleN ofM such thatM/N is an A≤e(U)-
module, namely, N = I ·M .

By Proposition 2.4.1 we may translate this back to polynomial representations.

Proposition 2.5.2. For any polynomial representation P and any e∈Z≥−1, there is a unique
inclusionwise minimal subrepresentation Q such that P/Q is a polynomial representation of
degree at most e.

Definition 2.5.3. Let P be a polynomial representation and let e∈Z≥−1. The unique inclu-
sionwise minimal subrepresentation Q of P such that P/Q has degree at most e is denoted
by P>e.

Example 2.5.4. Suppose that charK = 2. Consider the polynomial representation P : V �→ S2V
and the polynomial representation Q that sends V to the space of symmetric tensors in V ⊗ V .
Then P has as a subrepresentation the representation R that maps V to the space of squares of
elements of V , and this is the only nontrivial subrepresentation unequal to P itself. The quotient
P/R has degree 2, so P>1 = P . On the other hand, Q has the subrepresentation T that assigns
to V the set of skew-symmetric tensors in V ⊗ V (i.e., those in the linear span of tensors of
the form u⊗ v− v⊗ u as u, v range through V ) and the quotient Q/T is isomorphic to R. Now
if K = F2, then R has degree 1, so that Q>1 = T ; while if K �= F2, then R has degree 2, and
therefore Q>1 =Q.

We clearly have

P = P>−1 ⊇ P>0 ⊇ · · · ⊇ P>d = {0}
where d=deg(P ); and a straightforward check shows that P>0 in this definition agrees with the
direct complement P>0 of P0 in Definition 2.5.1.

Lemma 2.5.5. If α : P →Q is a morphism in the abelian category of polynomial representations,
then for each e we have α(P>e)⊆Q>e.

Proof. We compute

P/α−1(Q>e)∼= im(α)/(im(α)∩Q>e)⊆Q/Q>e.
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Since the latter representation has degree at most e, so does the first. The defining property of
P>e then implies that P>e ⊆ α−1(Q>e). This is equivalent to the statement in the lemma.

Lemma 2.5.6. Let P be a polynomial representation, let e∈Z≥−1, and let R be a subobject of
P>e, and hence of P . Then (P/R)>e

∼= P>e/R.

Proof. By Lemma 2.5.5, the morphism P → P/R maps P>e into (P/R)>e, and its kernel on P>e

is R, so that P>e/R maps injectively into (P/R)>e. To see that it also maps surjectively, we note
that

(P/R)/(P>e/R)∼= P/P>e

has degree at most e. Hence P>e/R contains (P/R)>e by definition of the latter object.

2.6 Shifting

Just as a univariate polynomial can be shifted over a constant, and then its leading term does
not change, a polynomial representation can be shifted over a constant vector space, and we will
see that its top-degree part does not change.

Definition 2.6.1. Given a U ∈Vec and a representation P :Vec→Vec, we define the repre-
sentation ShUP by (ShUP )(V ) := P (U ⊕ V ) and (ShUP )(ϕ) := P (idU ⊕ϕ) for ϕ∈Hom(V,W ).
We call ShUP the shift of P by U .

If P is polynomial of degree at most d, then ShUP is also polynomial of degree at most d;
below we will prove a more precise statement.

We have a morphism α : P → ShUP in the abelian category of polynomial generic repre-
sentations defined by αV = P (ιV ) : P (V )→ P (U ⊕ V ), where ιV : V →U ⊕ V is the inclusion
v �→ 0 + v. Indeed, that (αV )V is a morphism follows from the commutativity of the following
diagram, for any ϕ∈HomVec(V,W ).

P (V )
P (ιV )��

P (ϕ)
��

P (U ⊕ V )

P (idU ⊕ϕ)
��

P (W )
P (ιW )

�� P (U ⊕W )

This in turn follows from the fact that P is a representation and that

(idU ⊕ϕ) ◦ ιV = ιW ◦ϕ.
Similarly, we have a morphism β : ShUP → P defined by βV = P (πV ) : P (U ⊕ V )→ P (V ), where
π :U ⊕ V → V is the projection u+ v �→ v. The relation π ◦ ι= idV translates to β ◦ α= idP .
This implies that ShUP is the direct sum of im(α)∼= P and the polynomial representation
Q := ker(β).

The following lemma says, informally, that the top-degree part of a polynomial representation
is invariant under shifting.

Lemma 2.6.2. Assume that deg(P ) = d≥ 0. Then (ShUP )>d−1 ∼= P>d−1.

Proof. Using the notation α and β from above, we have α(P>d−1)⊆ (ShUP )>d−1 and
β((ShUP )>d−1)⊆ P>d−1 by Lemma 2.5.5. Combining these facts shows that α maps P>d−1
injectively into (ShUP )>d−1. To argue that it also maps surjectively there, it suffices to show
that (ShUP )/α(P>d−1) has degree at most d− 1.
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To see this, we recall that ShUP = im(α)⊕Q, where Q=ker(β). Accordingly,

(ShUP )/α(P>d−1)∼= (α(P )/α(P>d−1))⊕Q.

Here the first summand on the right is isomorphic to P/P>d−1, hence of degree at most d− 1.
So it suffices to show that Q has degree at most d− 1 as well. Consider a vector q ∈Q(V ) and
a linear map ϕ∈Hom(V,W ). Then we have

Q(ϕ)(q) = P (idU ⊕ϕ)(q) = P (idU ⊕ϕ)(q)− P (idU ⊕ϕ)(αV (βV (q)))

= (P (idU ⊕ϕ)− P (0U ⊕ϕ))(q)

where the second equality follows from βV (q) = 0 and the last equality follows from the definition
of α and β. Now, for ψ running through Hom(U ⊕ V, U ⊕W ), P (ψ) can be described by a
polynomial map of degree at most d. If in this map we substitute for ψ the maps idU ⊕ϕ and
0U ⊕ϕ respectively, we obtain the same degree-d parts in ϕ. Hence the map ϕ �→ P (idU ⊕ϕ)−
P (0U ⊕ϕ) is given by a polynomial map of degree at most d− 1 in the entries of ϕ. This shows
that Q has degree at most d− 1, as desired.

2.7 A well-founded order on polynomial representations

Definition 2.7.1. Given polynomial representations Q, P :Vec→Vec, we write Q� P if Q∼=
P or else for the largest e such that Q>e �∼= P>e the former is a quotient of the latter. We write
Q≺ P to mean Q� P and Q �∼= P .

Lemma 2.7.2. The relation � is a well-founded pre-order on polynomial representations.

Proof. Reflexivity is immediate. To see transitivity, assume R�Q� P . If one of the inequalities
is an isomorphism, it follows immediately that R� P . Suppose that they are both not isomorph-
isms. Let e be maximal such that Q>e �∼= P>e and let e′ be maximal such that R>e′ �∼=Q>e′ . If
e′ ≥ e, then e′ is maximal such that R>e′ �∼= P>e′ , and the former is a quotient of the latter. If
e′ < e, then e is maximal such that (Q>e

∼=)R>e �∼= P>e, and the former is a quotient of the latter.
In both cases, we find R≺ P , as desired.

To see that � is well-founded, suppose we had an infinite chain

P1 � P2 � · · · .
To each Pi we associate a length sequence 
(Pi)∈Z

{−1,0,1,2,...}
≥0 , where 
(Pi)(e) is the length

of any composition chain of (Pi)>e in the abelian category of polynomial representations; by
Proposition 2.4.1 this length is finite.

Note that 
(Pi)(e) = 0 for e≥ deg(Pi), i.e., 
(Pi) has finite support. Now Pi � Pi+1 implies
that 
(Pi+1) is lexicographically strictly smaller than 
(Pi). Since the lexicographic order on
sequences with finite support is a well-order, we arrive at a contradiction.

The following construction will play a crucial role in our proof.

Lemma 2.7.3. Let P �= 0 be a polynomial representation of degree d≥ 0, and let R be an
irreducible subobject of P>d−1. Let U ∈Vec and set Q := ShUP . Then Q/R≺ P .

Proof. By Lemma 2.6.2, R is also naturally a subobject of Q>d−1, which in turn is a subobject of
Q. This explains the notation Q/R. By Lemma 2.5.6, we have (Q/R)>d−1 ∼=Q>d−1/R, which in
turn is isomorphic to P>d−1/R, a quotient of P>d−1. Since P>e =Q>e = 0 for e≥ d, we conclude
that Q/R≺ P .
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2.8 The coordinate ring of a polynomial representation

Definition 2.8.1. Let P :Vec→Vec be a polynomial representation. We define K[P ] as the
contravariant functor from Vec to K-algebras that assigns to V the ring K[P (V )] and to a linear
map ϕ : V →W the pullback P (ϕ)# :K[P (W )]→K[P (V )]. We call K[P ] the coordinate ring
of P .

Note that P (ϕ)# is an algebra homomorphism; this is going to be of crucial importance in
§ 4.6. The coordinate ring comes with a natural ring filtration,

{0}=K[P ]≤−1 ⊆K[P ]≤0 ⊆K[P ]≤1 ⊆K[P ]≤2 ⊆ · · · ,
where K[P ]≤e assigns to V the space K[P (V )]≤e.

Lemma 2.8.2. If P is a polynomial representation of degree at most d, then V ∗ �→K[P (V )]≤e
is a polynomial representation of degree at most d.e.

Proof. This representation assigns to a linear map ϕ : V ∗→W ∗ the restriction of the pullback
P (ϕ∗)# :K[P (V )]→K[P (W )] to K[P (V )]≤e. Since P (ϕ∗) is a linear map, this pullback does
indeed map K[P (V )]≤e into K[P (W )]≤e, and it does so via a linear map that is polynomial of
degree at most e in P (ϕ∗), hence of degree at most d.e in ϕ∗, which in turn depends linearly
on ϕ.

Example 2.8.3. Let P = S2 and assume |K|> 2. Take V =Kn with basis e1, . . . , en, so that
P (V ) has basis eiej with i≤ j. For k > l, let gkl(s)∈End(V ) be the matrix with 1s on the
diagonal, an s in position (k, l), and 0s elsewhere. We have

P (gkl(s))
∑
i≤j

aijeiej =
∑
i≤j

aij(gkl(s)ei)(gkl(s)ej)

=
∑
i≤j

aij(ei + δilsek)(ej + δjlsek)

=
∑
i≤j

aij(eiej + s(δjleiek + δilekej) + s2δilδjle
2
k)

=

(∑
i≤j

aijeiej

)
+ s

(∑
i≤l

aileiek +
∑
j≥l

aljekej

)
+ s2alle

2
k.

Observe that by acting with gkl on (linear combinations of) the basis vectors eiej , indices l
either remain the same or turn into indices k.

We now look at the dual. Let {xij | i≤ j} be the basis of P (V )∗ dual to the given basis of
P (V ). Then, for instance, for l < i < k we have

P (gkl(s))
#xik = xik + sxli,

as can be seen by taking the coefficient of eiek in the expression above. We observe here that
indices k either remain the same or turn into indices l. We can also write the above as

P (glk(s)
T )#xik = xik + sxli.

Note that P (g)# is contravariant in g, and hence P (gT )# is again covariant. This explains the
V ∗ in Lemma 2.8.2.

3. Weight theory

In the representation theory of the group scheme GLn, the weight space decomposition of a
representation, i.e., its decomposition as a module over the subgroup of diagonal matrices, is of
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crucial importance. For the finite group G=GLn(K) with K = Fq, it was already observed in
[Ste16, p. 129, Remark] that weights alone do not suffice to distinguish the roles played by various
vectors in a representation. The example given there is that the highest weight vector 1 in the
trivial GLn(K)-representation K1 and the highest weight vector eq−11 in the (q− 1)th symmetric
power Sq−1Kn of the standard representation both have weight (0, . . . , 0). It is explained there
how to act with elements of the group algebra of G to distinguish the two.

In this particular example, we can distinguish these vectors by extending the action of (diag-
onal matrices in) GLn(K) to (diagonal matrices in) End(Kn), as we do in the context of generic
polynomial representations: the first highest weight vector then has weight (0, . . . , 0), while the
latter has weight (q− 1, 0, . . . , 0); see the definitions below. However, the vector e⊗q1 in the qth
tensor power cannot be distinguished from the vector e1 in the standard representation via
diagonal matrices. Therefore we, too, will act with suitable elements of the monoid algebra of
End(Kn) to get a better grasp on weight vectors. However, our focus will not be on highest
weight vector; rather, we will look for middle weight vectors, i.e., weight vectors whose weight
is maximally spread out in a sense that we will make precise below.

We are by no means the first to study weights in this context. For instance, they also feature
as reduced weights in [Kuh94b]. However, the procedure of maximally spreading out weight that
we introduce below does seem to be new.

3.1 Multiplicative monoid homomorphisms K →K

A monoid homomorphism (K, ·)→ (K, ·) is a map ϕ :K→K with ϕ(1) = 1 and ϕ(ab) =ϕ(a)ϕ(b)
for all a, b∈K. In particular, ϕ restricts to a group homomorphism from the multiplica-
tive group K× :=K \ {0} to itself. Since K× is cyclic, say with generator g, the monoid
homomorphism ϕ is uniquely determined by its values on g and on 0. Write ϕ(g) = ge for
a unique exponent e∈ {1, . . . , q− 1}. If e �= q− 1, so that ϕ(g) �= 1, then ϕ(0) is forced to
be 0, since otherwise ϕ(g) ·ϕ(0) does not equal ϕ(g · 0) =ϕ(0). If e= q− 1, then there are
two possibilities for ϕ(0), namely, ϕ(0) = 1 and ϕ(0) = 0. In the first case we will denote
ϕ by c �→ c0, and in the second case we denote by c �→ cq−1. The following lemma is now
straightforward.

Lemma 3.1.1. The monoid of monoid homomorphisms K→K is isomorphic to the monoid
{0, . . . , q− 1} with operation i⊕ j defined by i⊕ j = i+ j if i+ j ≤ q− 1 and i⊕ j = i+ j −
(q− 1) otherwise.

Note that this monoid is not cancellative, since 0⊕ j = (q− 1)⊕ j for all j ∈ {1, . . . , q− 1}.
Nevertheless, it will be convenient to have a notation for subtracting elements in the follow-
ing sense: for i∈ {1, . . . , q− 1} and j ∈ {0, . . . , q− 1} we write i� j for the unique element in
{1, . . . , q− 1} that equals i− j modulo q− 1.

3.2 Acting with diagonal matrices

Let P :Vec→Vec be a polynomial representation and set V :=Kn, so that we may identify
End(V ) with the space of n× n matrices. Then the monoid End(V ) acts linearly on P (V ) via
the map End(V )→End(P (V )), ϕ �→ P (ϕ), and hence so does its submonoid Dn ⊆End(V ) of
diagonal matrices.

Lemma 3.2.1. We have

P (V ) =
⊕

χ:Dn→K

P (V )χ
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where χ runs over all monoid homomorphisms (Dn, ·)→ (K, ·) and where

P (V )χ := {p∈ P (V ) | ∀ϕ∈Dn : P (ϕ)p= χ(ϕ)p}.
Proof. Each element ϕ∈Dn satisfies ϕq =ϕ, and therefore also P (ϕ)q = P (ϕq) = P (ϕ).
Consequently, P (ϕ) is a root of the polynomial h= T · (T q−1 − 1)∈K[T ]. This polynomial is
square-free, so that P (ϕ) is diagonalisable over a separable closure of K. But also the eigenval-
ues of P (ϕ) are roots of h, i.e., elements of K, so P (ϕ) is diagonalisable over K. Moreover, all
elements of Dn commute, and therefore so do all elements of P (Dn). Hence the latter are all
simultaneously diagonalisable. We therefore have

P (V ) =
⊕

χ:Dn→K

P (V )χ

where, a priori, χ runs through all maps Dn →K.
Now if P (V )χ �= 0, then it follows that χ(diag(1, . . . , 1)) = 1 and χ(ϕψ) = χ(ϕ)χ(ψ), i.e., χ is

a monoid homomorphism Dn →K.

Note that monoid homomorphisms Dn →K can be naturally identified with n-tuples of
monoid homomorphisms K→K, and hence, by Lemma 3.1.1, with elements of {0, . . . , q− 1}n.
Explicitly, χ is identified with the tuple (a1, . . . , an) if χ(diag(t1, . . . , tn)) = ta1

1 · · · tan
n for all

(t1, . . . , tn)∈Kn.
In analogy with the theory of representations of algebraic groups, we will use the word weight

for monoid homomorphisms χ :Dn →K, and we call a vector in P (V )χ a weight vector of weight
χ.

We use the notation ⊕ also in this context: if χ, μ∈ {0, . . . , q− 1}n are weights, then χ⊕ μ
is their componentwise sum with respect to ⊕. Note that

(χ⊕ μ)(diag(t1, . . . , tn)) = χ(diag(t1, . . . , tn)) · μ(diag(t1, . . . , tn)).
Example 3.2.2. If U is the subspace of V spanned by the first k basis vectors, then P (U),
regarded as a subspace of P (V ), is the direct sum of all P (V )χ where χ runs over the characters
in {0, . . . , q− 1}k × {0}n−k. In particular, the constant part of P is P (0) = P (V )(0,...,0).

Lemma 3.2.3. Let χ= (a1, . . . , an)∈ {0, . . . , q− 1}n be a weight such that P (Kn)χ is nonzero.
Then

∑
i ai is at most deg(P ).

Proof. Choose a nonzero p∈ P (Kn)χ. Then P (diag(t1, . . . , tn))p= ta1

1 · · · tan
n p, and we note that

ta1

1 · · · tan
n is a reduced polynomial in t1, . . . , tn. On the other hand, P (diag(t1, . . . , tn)) can be

expressed as a reduced polynomial of degree at most deg(P ) in t1, . . . , tn with coefficients that
are linear maps P (Kn)→ P (Kn). Evaluating this at p yields a reduced polynomial of degree at
most deg(P ) in t1, . . . , tn whose coefficients are elements of P (Kn). But we already know which
polynomial that is, namely ta1

1 · · · tan
n p. Hence

∑
i ai ≤ deg(P ).

3.3 Acting with additive one-parameter subgroups

Let P :Vec→Vec be a polynomial representation, n∈Z≥2, and i, j ∈ [n] distinct. Then we have
a one-parameter subgroup

gij : (K,+)→GLn(K), gij(s) := I + sEij ,

where Eij is the matrix with zeros everywhere except for a 1 in position (i, j). For b= 0, . . . , q− 1
we define the linear map Fij [b] : P (K

n)→ P (Kn) by

Fij [b]p = the coefficient of sb in P (gij(s))p,
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where we write P (gij(s))p as a reduced polynomial in s with coefficients in P (Kn).

Lemma 3.3.1. For any subrepresentation Q of P , the linear space Q(Kn) is stable under Fij [b].

Proof. Let p∈Q(Kn). Then for all s∈K the element

P (gij(s))p= Fij [0]p+ sFij [1]p+ · · ·+ sq−1Fij [q− 1]p

lies in Q(Kn). The Vandermonde matrix (se)s∈K,e∈{0,...,q−1} is invertible, and this implies
that each of the Fij [e]p above are linear combinations of the P (gij(s))p, and therefore
in Q(Kn).

Lemma 3.3.2. Let p∈ P (Kn) be a weight vector of weight a= (a1, . . . , an), let b∈ {0, . . . , q− 1},
and set p̃ := Fij [b]p. Then the following statements hold.

(1) We have p̃= p for b= 0.

(2) If aj = 0, then p̃= 0 for b �= 0.

(3) If 0<aj �= b, then p̃ is a weight vector of weight a� (bej)⊕ (bei).

(4) If 0<aj = b, then p̃ is a sum of a weight vector of weight

a� bej ⊕ bei = (a1, . . . , ai ⊕ b, . . . , q− 1, . . . , an)

and a weight vector of weight

a− bej ⊕ bei = (a1, . . . , ai ⊕ b, . . . , 0, . . . , an).

Proof. We write

P (gij(s))p= p0 + sp1 + · · ·+ sq−1pq−1,

where the pb ∈ P (Kn) are uniquely determined by the fact that the identity above holds for all
s∈K.

By setting s equal to zero we obtain P (gij(0))p= P (idKn)p= p on the left-hand side, and p0
on the right-hand side. This proves the first item.

If aj = 0, then

P (diag(1, . . . , 1, 0, 1 . . . , 1))p= p

where the 0 is in position j. Therefore

P (gij(s))p= P (gij(s) diag(1, . . . , 1, 0, 1, . . . , 1))p= P (diag(1, . . . , 1, 0, 1, . . . , 1))p

does not depend on s and hence Fij [b]p= 0 for b �= 0.
We now assume aj > 0. We have Fij [b]p= pb. To determine the weight(s) appearing in pb, we

act on pb with diagonal matrices. For t= (t1, . . . , tn)∈Kn and tj �= 0 we have

diag(t1, . . . , tn) · gij(s) = gij(tist
−1
j ) · diag(t1, . . . , tn)

and therefore
q−1∑
d=0

sdP (diag(t1, . . . , tn))pd = P (diag(t1, . . . , tn)gij(s))p

= P (gij(tist
−1
j ) diag(t1, . . . , tn))p

= ta1

1 · · · tan
n · P (gij(tist−1j ))p

= ta1

1 · · · tan
n ·

q−1∑
d=0

(tist
−1
j )dpd.
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Comparing coefficients of sb, we find

P (diag(t))pb = ta−bej+beipb

for all t∈Kj−1 ×K× ×Kn−j =:D. Hence pb is a linear combination of weight vectors with
weights that on D agree with the weight a� bej ⊕ bei. If aj �= b, then there is only one such
weight, namely, a� bej ⊕ bei. If aj = b, then there are two such weights, namely, a� bej ⊕ bei
and a− bej ⊕ bei.

3.4 Spreading out weight

Retaining the notation from § 3.3, suppose we are given a nonzero weight vector p∈ P (Kn) of
weight (a1, . . . , an)∈ {0, . . . , q− 1}n and a j ∈ [n] with aj > 0. We construct vectors p̃∈ P (Kn+1)
by identifying p with P (ι)p, where ι :Kn →Kn+1 is the embedding adding a 0 in the last position.
Then p is a vector of weight a= (a1, . . . , an, 0) in P (K

n+1), and we compute

p̃ := Fn+1,j [b]p

for various b. The vector p̃ is guaranteed to be nonzero for at least two values of b, namely, for
b= 0 (in which case p̃= p), and, as we will now see, for b= aj . Indeed, in the latter case, by
Lemma 3.3.2, p̃ is the sum of a weight vector p̃0 of weight a− ajej + ajen+1 and a weight vector
p̃1 of weight a+ (q− 1− aj)ej + ajen+1.

Lemma 3.4.1. In the case where b= aj , we have p̃0 = P ((j, n+ 1))p, where (j, n+ 1) is
shorthand for the permutation matrix corresponding to the transposition (j, n+ 1).

Proof. The vector p̃0 is obtained by applying P (πj) to p̃, where πj is the projectionK
n+1 →Kn+1

that sets the jth coordinate to zero. Furthermore, we have P (πn+1)p= p, where πn+1 sets the
(n+ 1)th coordinate to zero. We can then compute p̃0 as the coefficient of saj in

P (πj)P (gn+1,j(s))p= P (πjgn+1,j(s)πn+1)p

= P ((j, n+ 1))P (diag(1, . . . , 1, s, 1, . . . , 1, 0))p

= P ((j, n+ 1))sajp.

If Fn+1,j [b]p �= 0 for some b �= 0, aj or if Fn+1,j [aj ]p �= P ((j, n+ 1))p, then we find a new vector
p′ in the subrepresentation of P generated by p whose weight has strictly more nonzero entries;
we have spread out the weight of p.

Definition 3.4.2. A nonzero weight vector p∈ P (Kn)⊆ P (Kn+1) of weight a∈ {0, . . . , q− 1}n
is called maximally spread out if for all j ∈ [n] with aj > 0 we have

P (gn+1,j(s))p= p+ sajP ((j, n+ 1))p.

Proposition 3.4.3. For any nonzero polynomial representation P , there exist an n and a
nonzero weight vector p∈ P (Kn) that is maximally spread out.

Proof. Let p∈ P (Km) be a nonzero weight vector. As long as p is not maximally spread out,
by the above discussion we can replace p by a nonzero weight vector in P (Km+1) whose
weight has strictly more nonzero entries. But by Lemma 3.2.3, the number of nonzero entries is
bounded from above by deg(P ). Hence this process must terminate, with a maximally spread-out
vector.

Example 3.4.4. It is not true that every polynomial representation is generated by its maximally
spread-out vectors. Consider, for instance, K of characteristic 2 and the representation Q that
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sends V to the space of symmetric tensors in V ⊗ V . The weight vectors in Q(Kn) are of the
forms ei ⊗ ei and ei ⊗ ej + ej ⊗ ei ∈Q(Kn) with i �= j. Only the latter are maximally spread
out. But they generate the subrepresentation of Q consisting of all skew-symmetric tensors in
V ⊗ V .

3.5 The prime field case

In this section we assume that q is a prime, so that K is a prime field. We retain the notation
from above.

Definition 3.5.1. Let ι :Kn →Kn+1 be the standard embedding and Fn+1,j := Fn+1,j [1] :
P (Kn)→ P (Kn+1) be the operator that sends p to the coefficient of s1 in P (gn+1,j(s) ◦ ι)(p).
Lemma 3.5.2. Assume that K is a prime field. Then the operator Fn+1,j : P (K

n)→ P (Kn+1)
is injective on the direct sum of all weight spaces corresponding to weights χ= (a1, . . . , an) with
aj > 0, and it is zero on the weight spaces corresponding to weights with aj = 0.

Proof. The last part follows immediately from Lemma 3.3.2; we now prove the first part. The
operator Fn+1,j maps the weight space of χ into that of χ� ej + en+1 if aj > 1 and into the sum
of the weight spaces with weights χ− ej + en+1 and χ� ej + en+1 if aj = 1. Since these weights
are distinct for distinct χ, it suffices to show that Fn+1,j is injective on a single weight space,
corresponding to the weight (a1, . . . , an), where aj > 0. Let p be a nonzero vector in this weight
space.

Define ϕ :Kn+1 →Kn by

ϕ(c1, . . . , cn+1) := (c1, . . . , cj + cn+1, . . . , cn).

We then have

ϕ ◦ gn+1,j(s) ◦ ι=diag(1, . . . , 1 + s, . . . , 1)

and therefore

P (ϕ)P (gn+1,j(s))P (ι)p= (1+ s)aj · p.
The coefficient of s1 in the latter expression is aj · p, which is nonzero since aj < q and q is prime.
That coefficient is also equal to P (ϕ)p̃, where p̃ := Fn+1,jp. Hence p̃ �= 0.

By Lemma 3.5.2, if χ= (a1, . . . , an) with aj > 1, then Fn+1,j maps P (Kn)χ injectively into
P (Kn+1)χ′ , where χ′ = χ− ej + en+1. On the other hand, if aj = 1, then by Lemma 3.4.1, Fn+1,j

followed by the projection to the weight space of χ′ = (a1, . . . , 0, . . . , an, 1) agrees on P (Kn)χ
with the map P ((n+ 1, j)), which of course we already knew is injective.

Example 3.5.3. We note that Lemma 3.5.2 is false for nonprime fields. Indeed, take K =
F4 and P = S2. Consider the element p := e21 ∈ P (K1), of weight (2). Now P (g21(s))p=
(e1 + se2)

2 = e21 + s2e22, and hence F21p= 0. On the other hand, if K = F2, then s2 = s, and
F21p= e22.

Remark 3.5.4. Note that, as a consequence of the lemma, if a weight vector p of weight
(a1, . . . , an) is maximally spread out, then aj ∈ {0, 1} for all j, and moreover Fn+1,jp=
P ((n+ 1, j))p for all j with aj = 1. Indeed, if aj > 1, then Fn+1,jp is a weight vector of weight
(a1, . . . , aj − 1, . . . , an, 1), and if aj = 1 but Fn+1,jp �= P ((n+ 1, j))p, then the left-hand side has
a component of weight (a1, . . . , q− 1, . . . , an, 1). In either case, p was not maximally spread
out.
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4. Noetherianity for polynomial representations

4.1 The main result

We recall that the tensor restriction theorem, its generalisation to polynomial representations,
and Corollary 1.3.3 concern restriction-closed properties. We will simply use the term subset for
such a property.

Definition 4.1.1. Let P be a polynomial representation. A subset of P is the data of a subset
X(V ) of P (V ) for every V ∈Vec, subject to the condition that for all V,W, ϕ∈HomVec(V,W ),
P (ϕ)X(V )⊆X(W ).

Theorem 4.1.2 (Noetherianity). Let P be a polynomial representation over the finite field K.
Then any descending chain

P ⊇X1 ⊇X2 ⊇ · · ·
of subsets stabilises.

Example 4.1.3. For polynomial functors of the form P = Sd1 ⊕ · · · ⊕ Sdk with all di < charK,
Theorem 4.1.2 can be derived from [KZ20, Theorem 1.4 and Remark 1.8] as follows. Assume
that d1 ≤ · · · ≤ dk. Let X =X1 be a proper subset of P , and consider a descending chain
X1 ⊇X2 ⊇ · · · of subsets. Then by the results in [KZ20], the Schmidt rank of tuples (p1, . . . , pk)
in X is uniformly bounded. This means that, for some i∈ {1, . . . , k}, some l, and some positive
integers e1, . . . , el < di, X is contained in the image of the map

P ′ := Se1 ⊕ Sdi−e1 ⊕ · · · ⊕ Sel ⊕ Sdi−el ⊕
⊕
j �=i

Sdj → Sd1 ⊕ Sd2 ⊕ · · · ⊕ Sdk ,

(g1, h1, . . . , gl, hl, p1, . . . , pi−1, pi+1, . . . , pk) �→
(
p1, . . . , pi−1,

l∑
j=1

gjhj , pi+1, . . . , pk

)
.

Let X ′i ⊆ P ′ be the pre-image of Xi. Since the tuple of degrees in P ′ is lexicographically smaller
than that in P , we may assume by induction that the chain X ′1 ⊇X ′2 ⊇ · · · stabilises. And since
the map X ′i →Xi is surjective, so does the chain (Xi)i.

The proof for general P uses a similar induction along a well-founded order introduced in
§ 2.7, but it is considerably more subtle. Moreover, rather than parameterising subsets of P by
smaller P ′, we embed subsets of P into smaller P ′.

4.2 Irreducible decomposition of restriction-closed tensor properties

Before proceeding with the proof of Noetherianity, we deduce from it the fact that any subset
of P admits a unique decomposition into irreducible subsets.

Definition 4.2.1. Let P be a polynomial generic representation over the finite field K and let
X be a subset of P . We call X irreducible if X(0) �= ∅ and if whenever X1, X2 are subsets of P
such that X(V ) =X1(V )∪X2(V ) holds for all V ∈Vec, it follows that X =X1 or X =X2.

Theorem 4.2.2. For any subset X of a polynomial representation P over the finite field K,
there is a unique decomposition

X =X1 ∪ · · · ∪Xk

where all Xi are irreducible and none is contained in any other.
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Proof. This is an immediate consequence of Noetherianity (Theorem 4.1.2), and the proof is
identical to the proof that any Noetherian topological space admits a unique decomposition into
irreducible closed subspaces.

For an instructive example, we need the following lemma.

Lemma 4.2.3. Suppose that P (0) = 0. Then the subset X := P is irreducible in the sense above.

We note that the requirement that P (0) be zero is necessary for irreducibility; otherwise, one
can take any partition S1 � S2 of the finite set P (0) into two nonempty parts, define Xi(V ) to
be the set of elements in P (V ) that map into the Si, and note that P =X1 ∪X2.

Proof. Suppose that X =X1 ∪X2 where Xi �X for i= 1, 2. Then X1 has at least one forbidden
restriction T1 ∈ P (V1), and X2 has at least one forbidden restriction T2 ∈ P (V2). Let ιi : Vi →
V1 ⊕ V2 be the canonical inclusion, and write T := P (ι1)(T1) + P (ι2)(T2). Let πi : V1 ⊕ V2 → Vi be
the projection. Then P (π1 ◦ ι2) = P (0V2→V1

), which is the zero map since it factors via P (0) = 0;
and similarly P (π2 ◦ ι1) = 0. We conclude that

T1 = P (π1 ◦ ι1)T1 = P (π1)(P (ι1)T1 + P (ι2)T2) = P (π1)T,

so T1 is a restriction of T . Similarly, T2 is a restriction of T . It follows that T lies neither in
X1(V1 ⊕ V2) nor in X2(V1 ⊕ V2), a contradiction. Hence X is irreducible as claimed.

Example 4.2.4. For any r ∈R≥0, let Xr be the locus in T d where the partition rank is at most
r, and let Yr be the locus in T d where the analytic rank is at most r.

For Xr (with r an integer) it is easy to write down a decomposition into irreducible subsets:
for any of the 2d−1 − 1 unordered partitions {I, J} of [d] into two nonempty sets, choose a
number r{I,J} such that these numbers add up to r. This choice gives a natural map

∏
{I,J}

(T |I| × T |J |)r{I,J} → T d (fI,k, gJ,k){I,J},k �→
∑
{I,J}

r{I,J}∑
k=1

fI,k ⊗ gJ,k

where fI,k and gJ,k are tensors in the copies of V labelled by I and J , respectively. This param-
eterises the locus in Xr of tensors with a partition rank at most r decomposition of a fixed type;
this image is irreducible by virtue of Lemma 4.2.3 applied to the left-hand side above. The total
number of components of Xr that we find is the number of ways of partitioning r into 2d−1 − 1
nonnegative integers, which is polynomial in r.

Given the (almost) linear relation between partition rank and analytic rank [CM23, MZ22],
it is natural to ask whether the number of components of Yr, too, is polynomial in r.

4.3 The vanishing ideal of a subset

We will prove Noetherianity by looking at functions that vanish identically on a subset.

Definition 4.3.1. Given a subset X ⊆ P , we denote by IX(V )⊆K[P (V )] the ideal of all
functions P (V )→K that vanish identically on X(V ).

We stress that conversely, since K is finite, X(V ) is also the set of all common zeros of IX(V )
in P (V ).

4.4 Shifting and localising

Definition 2.6.1 can be extended to subsets of polynomial representations.
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Definition 4.4.1. Given a subset X of a polynomial representation P and a U ∈Vec, the shift
ShUX is the subset of ShUP defined by (ShUX)(V ) :=X(U ⊕ V ).

Definition 4.4.2. Given a subset X of P and a function h∈K[P (0)], we can think of h as
a function on any P (V ) via pullback along the linear map P (V )→ P (0), and hence also as a
function on X(V ). We define X[1/h] as the functor

V �→X[1/h](V ) := {p∈X(V ) | h(p) �= 0}.
Clearly, X[1/h] is a subset of P .
We will often combine a shift and a localisation: given a function h∈K[P (U)], we can think

of h as a function on K[(ShUP )(0)], and hence localise.

Example 4.4.3. Let P : V → V ⊗ V and let X(V ) be the set of tensors (matrices) of rank at most
n in P (V ). Let h∈K[P (Kn)] be the n× n determinant and set U :=Kn. Then (ShUX)[1/h] is
isomorphic to the functor that sends V to B × V 2n, where B :=X(U)[1/h] is the set of invert-
ible n× n matrices, and the isomorphism (ShUX)[1/h](V )→B × V 2n comes from observing
that

(ShUX)[1/h](V )⊆ P (U ⊕ V ) = (Kn ⊗Kn)× (Kn ⊗ V )× (V ⊗Kn)× (V ⊗ V ),

and realising that the V ⊗ V component of a matrix of rank at most n is completely determined
by its remaining three components, provided that the Kn ⊗Kn component has nonzero deter-
minant. This phenomenon, that X becomes an affine space up to shifting and localising, holds
in greater generality, at least at a counting level (see Corollary 4.9.1).

4.5 Reduction to the prime field case

Proposition 4.5.1. Suppose that Theorem 4.1.2 holds when K is a prime field. Then it also
holds when K is an arbitrary finite field.

Proof. Let F be the prime field of K and set e := dimF K. For an n-dimensional K-vector
space U , we write UF for the e · n-dimensional F -vector space obtained by restricting the scalar
multiplication on U from K ×U →U to F ×U →U .

Now let P be a polynomial representation over K. Define a generic representation PF over F
by setting, for a finite-dimensional F -vector space U , PF (U) := (P (K ⊗F U))F , and sending an
F -linear map ϕ :U → V to the map PF (ϕ) := P (idK ⊗ϕ), which is K-linear and therefore also
F -linear. It is easy to see from the definitions that PF is polynomial of the same degree as P .

For a subset X of P , we define a subset of PF via XF (U) :=X(K ⊗F U). If X1 ⊇X2 ⊇ · · · is
a chain of subsets in P , then (X1)F ⊇ (X2)F ⊇ · · · is a chain of subsets in PF . By assumption,
the latter stabilises, say at (Xn0

)F . Then it follows that, for any n≥ n0 and any m,

Xn(K
m) =Xn(K ⊗F F

m) = (Xn)F (F
m) = (Xn0

)F (F
m) =Xn0

(Km),

and this suffices to conclude that Xn =Xn0
.

In view of Proposition 4.5.1, from now on we assume that K is a prime field. An important
reason for this assumption is that we can then use Lemma 3.5.2. We believe that the proof
below can be adapted to arbitrary finite fields, and this might actually give more general results.
In particular, in the proof below we will act with the operators Fn+1,j = Fn+1,j [1]; and in the
general case we would have to work with the operators Fn+1,j [b] for b∈ {1, . . . , q− 1}. But the
reasoning below is already rather subtle, and we prefer not to make it more opaque by the
additional technicalities coming from nonprime fields.
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4.6 The embedding theorem

We will prove Theorem 4.1.2 via an auxiliary result of independent interest. Let P be a poly-
nomial representation of positive degree d and let R an irreducible subobject of P>d−1. Let
π : P → P/R=: P ′ be the projection. Dually, this gives rise to an embedding K[P/R]⊆K[P ].
For a fixed V ∈Vec, if we choose elements y1, . . . , yn ∈ P (V )∗ that map to a basis of R(V )∗,
then we can write elements of K[P (V )] as reduced polynomials in y1, . . . , yn with coefficients
that are elements of K[P ′(V )]. We note, however, that R is typically not a direct summand
of P . This implies, for instance, that when acting with End(V ) on yi, we typically do not
stay within the linear span of the y1, . . . , yn but also get terms that are linear functions in
K[P ′(V )].

Let X be a subset of P , and let X ′ be the image of X in P/R, i.e., X ′(V ) := π(X(V )) (to
simplify notation, we write π instead of πV ).

Now there are two possibilities:

(1) X = π−1(X ′), i.e., X(V ) = π−1(X ′(V )) for all V; in this case, IX is generated by IX′ ⊆
K[P ′]⊆K[P ];

(2) There exist a space V and an element f ∈ IX(V ) such that f does not lie in K[P ] · IX′ .

Theorem 4.6.1 (Embedding theorem). Assume, as above, that K is a prime field. From any
f ∈ IX(V ) \K[P (V )] · IX′(V ), we can construct a U ∈Vec and a polynomial h in K[P (U)]
of degree strictly smaller than that of f , such that also h does not vanish identically on
π−1(X ′(U)) and such that the projection ShUP → (ShUP )/R restricts to an injective map on
(ShUX)[1/h].

Here (ShUX)(V ) :=X(U ⊕ V )⊆ P (U ⊕ V ) = (ShUP )(V ) and (ShUX)[1/h] is the subset
of ShUP consisting of points p where h(p) �= 0. A warning here is that h may actually
vanish identically on X(U)⊆ π−1(X ′(U)), in which case the conclusion is trivial because
(ShUX)[1/h] is empty. But in our application to the Noetherianity theorem, this will be
irrelevant.

We will now first prove Theorem 4.1.2 using the embedding theorem. The proof of the
embedding theorem itself is given in § 4.8.

4.7 Proof of Noetherianity from the embedding theorem

Proceeding by induction on P along the partial order from § 2.7, we may assume that
Noetherianity holds for every representation Q≺ P ; we call this the outer induction hypothesis.

Let d be the degree of P . If d= 0, then P (V ) is a fixed finite set independent of V , and
clearly any chain of subsets of this set stabilises. So we may assume that d > 0.

Let R be an irreducible subrepresentation in the subrepresentation P>d−1 of P . Given a
subset X of P , we write X ′ for its projection in P ′ := P/R.

We define δX ∈ {1, 2, . . . ,∞} as the minimal degree of a polynomial in IX \K[P ] · IX′ ; this
is ∞ if IX =K[P ] · IX′ .

For X, Y subsets of P we write X >Y if we either have a strict inequality X ′ � Y ′ among the
projections of X, Y in P ′, or else X ′ = Y ′ but δX > δY . Since, by the outer induction assumption,
P ′ is Noetherian, this is a well-founded partial order on subsets of P . To prove that a given
subset X ⊆ P is Noetherian, we may therefore assume that all subsets Y ⊆ P with Y <X are
Noetherian; this is the inner induction hypothesis.

Now if δX =∞, then any proper subset Y of X satisfies Y <X, so we are done. We are
therefore left with the case where δX ∈Z≥1.
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Then let V ∈Vec and f ∈ IX(V ) \ (K[P (V )] · IX′(V )) be an element of degree δX . By
the embedding theorem, there exists an element h∈K[P (U)] \ IX(U) of degree < δX such
that (ShUX)[1/h]→ (ShUP )/R is an injective map. Since (ShUP )/R≺ P by Lemma 2.7.3,
(ShUX)[1/h] is Noetherian by the outer induction hypothesis.

Define Y as the subset of X defined by the vanishing of h. Explicitly,

Y (V ) := {p∈X(V ) | ∀ϕ∈HomVec(V, U) : h(P (ϕ)p) = 0}.
Let Y ′ ⊆X ′ be the projection of Y in P/R. If Y ′ �X ′, then Y <X and hence Y is Noetherian
by the inner induction hypothesis. If Y ′ =X ′, then h∈ IY (U) \ (K[P (U)] · IY ′(U)) and hence
δY ≤ deg(h)< δX . So then, too, Y <X, and Y is Noetherian by the inner induction hypothesis.

Now consider a chain

X ⊇X1 ⊇X2 ⊇ · · ·
of subsets. By the above two paragraphs, from some point on both the chain (Xi ∩ Y )i and the
chain ((ShUXi)[1/h])i have stabilised. We claim that then the chain (Xi)i has also stabilised.

Indeed, take p∈Xi(W ). If p∈Xi(W )∩ Y (W ), then also p∈Xi+1(W )∩ Y (W ) by the first
chain, and we are done. If not, then let ϕ :W →U be a linear map such that h(P (ϕ)p) �= 0. Let
ι :W →U ⊕W be the embedding w �→ (ϕ(w), w). Then we find that

P (ι)p∈Xi(U ⊕W )[1/h] = (ShUXi)(W )[1/h]

= (ShUXi+1)(W )[1/h]⊆Xi+1(U ⊕W ).

Now if ρ :U ⊕W →W is the projection, then we find that p= P (ρ)P (ι)p∈ P (ρ)Xi+1(U ⊕W ) =
Xi+1(W ), as desired.

4.8 Proof of the embedding theorem

Recall that P has degree d > 0, X ⊆ P is a subset, R an irreducible subrepresentation of P>d−1,
π : P → P/R is the projection, X ′ = π(X), X �= π−1(X ′), and f ∈ IX(V ) \ (K[P (V )] · IX′(V )).
Assume that f has degree δ. Recall from Lemma 2.8.2 that V ∗ �→K[P (V )]≤δ is a polynomial
representation. Furthermore, this has subrepresentations V ∗ �→ IX(V )≤δ and V ∗ �→ (K[P (V )] ·
IX′(V ))≤δ.

We may assume that V =Kn and, without loss of generality, f is a weight vector. We will
act on f with elements gn+1,j(s)

T (see Example 2.8.3 for an explanation of the transpose). The
part of degree b in s is then captured by the operator Fn+1,j [b].

After acting repeatedly with operators Fn+1,j [b] (for increasing values of n and possibly j
and observing that this does not increase the degree of f), we may assume that the image of
f ∈K[P (Kn)] in the quotient representation

IX(Kn)≤δ/(K[P (Kn)] · IX′(Kn))≤δ
is maximally spread out (see Proposition 3.4.3). After passing to a coordinate subspace, by
Remark 3.5.4, this implies that the weight of f is (1, . . . , 1). Moreover, it implies that if we split,
for any j ∈ {1, . . . , n}, f̃ := Fn+1,jf as f̃0 + f̃1 where f̃0 has weight (1, . . . , 0, . . . , 1, 1) and f̃1
has weight (1, . . . , q− 1, . . . , 1, 1), then f̃1 vanishes identically on X ′(Kn+1); indeed, otherwise
f̃1 would be a more spread-out polynomial that vanishes identically on X but not on X ′.

Choose a basis x of P ′(Kn)∗ ⊆ P (Kn)∗ consisting of weight vectors, and extend this to a
basis x, y of P (Kn)∗ of weight vectors. This means that y maps to a weight basis of R(Kn)∗.
Relative to these choices, we can write f as a reduced polynomial

f =
∑
α

fα(x)y
α (1)
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for suitable exponent vectors α and nonzero functions fα ∈K[P ′(Kn)]. We choose this expression
minimal relative to IX′(Kn) in the following sense: no nonempty subset of the terms of any fα
add up to a polynomial in IX′(Kn). This implies that no fα is in the ideal of IX′(Kn), but the
requirement is a bit stronger than that.

Let y0 be one of the elements in y that appears in f ; we further choose y0 such that the
support in {1, . . . , n} of its weight is inclusionwise minimal. Consider the expression (coarser
than (1))

f = f0(x, y \ {y0})y00 + · · ·+ fc(x, y \ {y0})yc0
where every fe is a reduced polynomial in x and the variables in y except for y0, and where fc �= 0
and c∈ {1, . . . , q− 1}. Note that f0 is a weight vector of the same weight as f . A priori, the
coefficients fe with e > 0 need not be weight vectors, since the weight monoid ({0, . . . , q− 1}n,⊕)
is not cancellative. However, all terms in fe have the same weight up to identifying 0 and q− 1,
and upon adding e times the weight of y0 to any of the weights of a term in fe (using the
operation ⊕), one obtains the weight (1, . . . , 1) of f .

Lemma 4.8.1. We have c= 1, f1 is a weight vector, and after a permutation f1 has weight
(1m, 0n−m) and y0 has weight (0m, 1n−m) for some m.

Proof. To prove the claim, let j ∈ [n] be such that the weight χ= (a1, . . . , an) of y0 has aj > 0.
We partition the variables y into three subsets: those whose weight has an entry 0 in position

j are collected in the tuple y0; those with a 1 in position j in the tuple y1; and those with an
entry greater than 1 there in the tuple y>1.

We construct a weight basis of P (Kn+1)∗ consisting of:

– x, y0, y1, and y>1;
– the tuple (n+ 1, j)y1 obtained by applying (n+ 1, j) to each variable in y1 (we suppress in
this notation the polynomial generic representation in which these variables live);

– the tuple Fn+1,jy>1 obtained by applying Fn+1,j to each variable in the tuple y>1;
– weight elements that together with x form a basis of P ′(Kn+1)∗; and
– weight elements that along with y0, y1, y>1, (n+ 1, j)y1, Fn+1,jy>1 project to a weight basis
of R(Kn+1)∗.

The only nonobvious thing here is that the elements in Fn+1,jy>1 can be chosen as part of
a set mapping to a basis of R(Kn+1)∗, and this follows from Lemma 3.5.2. Note that none
of the variables in the tuples (n+ 1, j)y1 and Fn+1,jy>1 has a q− 1 in position j of its
weight.

Either y0 belongs to y1 or to y>1. In the first case we define y1 := (n+ 1, j)y0, and in the
second case we define y1 := Fn+1,jy0. In both cases, y1 is the (nonzero) weight-(a1, . . . , aj − 1,
. . . , an, 1) component of Fn+1,jy0 and one of the chosen variables. (In the first case, this uses
Lemma 3.4.1.)

Consider

gn+1,j(s)
T f =

c∑
e=0

(fe(gn+1,j(s)
Tx, gn+1,j(s)

T (y \ {y0})))(gn+1,j(s)
T y0)

e, (2)

where on both sides we have suppressed the polynomial generic representations where f and the
coordinate tuples live (see Lemma 2.8.2 and Example 2.8.3). From the term with e= c we get a
contribution

c · (fc + Fn+1,j [q− 1]fc) · s · yc−10 · y1. (3)
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There is no cancellation in the + in (3): the weights of monomials in fc are distinct from
the weights of monomials in Fn+1,j [q− 1]fc, because the latter have a positive entry on posi-
tion n+ 1. Furthermore, we have 0< c< q and q is prime, so the term c · fc · s · yc−10 · y1 is
nonzero.

Rewriting (2) as a reduced polynomial in s, y0, y1 with coefficients that are reduced polyno-
mials in the remaining chosen variables in P (Kn+1)∗, we claim that the coefficient of s · yc−10 · y1
is precisely that in (3). Indeed, y0, y1 only appear in the terms y0 = Fn+1,j [0]y0 and Fn+1,jy0
from gn+1,j(s)

T y0 and nowhere in fe(gn+1,j(s)
Tx, gn+1,j(s)

T (y \ {y0})) or in Fn+1,j [b]y0 with
b > 0 because:

– gn+1,j(s)
T maps the coordinates x into linear combinations of x and the further chosen

variables in P ′(Kn+1)∗;
– y0, y1 do not appear in Fn+1,j [b]y for b > 1 for weight reasons; expressing the elements in
the latter tuple on the basis of the chosen variables, all variables have weights with a b > 1
at position n+ 1, while y0, y1 have a 0 and 1 there, respectively;

– y0 does not appear in Fn+1,jy for any variable y in y, again by comparing the weights in
position n+ 1;

– y1 is different from all variables Fn+1,jy where y ranges over the variables in y>1 (other than
y0, if y0 is in y>1);

– y1 is different from all variables (n+ 1, j)y where y ranges over the variables in y1 (other
than y0, if y0 is in y1); and indeed,

– y1 does not appear in the weight component y′ = Fn+1,jy− (n+ 1, j)y of any variable y in y1.
Indeed, if (a′1, . . . , 1, . . . , a′n) is the weight of y, then y′ has weight (a′1, . . . , q− 1, . . . , a′n, 1).
But, as remarked earlier, the variable y1 constructed from y0 does not have a q− 1 on
position j in its weight.

This proves the claim. We conclude that, when writing f̃ = Fn+1,jf as a polynomial in all of the
chosen variables, the terms divisible by yc−10 y1 are precisely those in

c · (fc + Fn+1,j [q− 1]fc) · yc−10 y1.

Now in fc, expanded as a reduced polynomial in y \ {y0} with coefficients that are reduced
polynomials in x, consider any nonzero term 
(x) · (y \ {y0})α.

Group the terms in 
(x) into two parts: 
(x) = 
0(x) + 
1(x), in such a manner that 
0(x) · (y \
{y0})αyc−10 y1 is the part of 
(x) · (y \ {y0})αyc−10 y1 that has weight (1, . . . , 0, . . . , 1, 1) and hence
is part of (1/c)f̃0; and 
1(x) · (y \ {y0})αyc−10 y1 has weight (1, . . . , q− 1, . . . , 1, 1) and hence is
part of (1/c)f̃1.

For the same exponent vector α, Fn+1,j [q− 1]fc may also contain a term 
̃ · (y \ {y0})α, where

̃ is a polynomial in x and the remaining chosen coordinates on P ′(Kn+1). We can similarly
decompose 
̃= 
̃0 + 
̃1, where 
̃0 · (y \ {y0})αyc−10 y1 is part of (1/c)f̃0 and 
̃1 · (y \ {0})αyc−10 y1 is
part of (1/c)f̃1.

Since f̃1 vanishes identically on π−1(X ′(Kn+1)) (this was the point of choosing f such that
its image in a suitable representation is maximally spread out) we find that 
1(x) + 
̃1 vanishes
identically on X ′(Kn+1). Furthermore, since the weight of every monomial in Fn+1,q[q− 1]fc
has a positive entry in position n+ 1 and the weight of (y \ {y0})α has a zero in that position,
the weight of every term in 
̃1 has a positive entry in position n+ 1. This implies that 
̃1
vanishes identically on the linear subspace P ′(Kn)⊆ P ′(Kn+1). We conclude that 
1(x) vanishes
identically on X ′(Kn). However, by minimality of the expression for f relative to IX′(Kn), no
nonempty subset of the terms of 
(x) add up to a polynomial that vanishes identically onX ′(Kn).
So we have 
1(x) = 0 and 
(x) = 
0(x). It follows that 
(x)(y \ {y0})αyc−10 y1 is a weight vector
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of weight (1, . . . , 0, . . . , 1, 1). Since the term 
(x)(y \ {y0})α in fc(x, y \ {y0}) was arbitrary, we
find that fcy

c−1
0 y1 is a weight vector of weight (1, . . . , 0, . . . , 1, 1). As the weight of y0 has a

positive entry in position j, we find that c− 1 = 0 and all weights appearing in fc have a 0 in
position j.

Now j was arbitrary in the support of the weight of y0, so the weights appearing in fc all
have disjoint support from that of y0. But the only way, in the weight monoid {0, 1, . . . , q− 1}n,
to obtain the weight (1, . . . , 1) as a ⊕-sum of two weights with disjoint supports is if, after a
permutation, one weight is (1m, 0n−m) and the other weight is (0m, 1n−m). Hence fc is a weight
vector that, after that permutation, has the former weight, and then y0 has the latter.

Now we have found that

f = f0 + f1 · y0
where f1 does not vanish identically on π−1(X ′(Kn)); f1 has weight (1m, 0n−m), y0 has weight
χ= (0m, 1n−m), and f0 does not involve y0. It might be, though, that f0 still contains other
variables y in y of the same weight χ= (0m, 1n−m). Therefore, among the y-variables, let y0 =
ŷ1, ŷ2, . . . , ŷN be those that have weight equal to χ; so N is the multiplicity of χ in R(Kn)∗.
Then the above implies that

f = f̂1ŷ1 + · · ·+ f̂N ŷN + r (4)

where each f̂i has weight (1m, 0n−m) and where the y-variables that appear in r have weights
with at least one nonzero entry in the first m positions (here we use that y0 had a weight vector
of minimal support). Note that f̂1 equals f1, and does not vanish identically on π−1(X ′(Kn)).

Now set U :=Km, W :=Kn−m, and h := f̂1. Note that h∈K[P (U)], since its weight is
(1m, 0n−m). Also, h has lower degree than f , as desired, and does not vanish identically on
π−1(X ′(U)). In fact, all f̂i are polynomials in K[P (U)], the ŷi map to coordinates on R(W ),
and r is a polynomial in K[(ShUP )(W )/R(W )] because every y-variable in r has at least one
nonzero entry among the first m entries of its weight.

We claim that (ShUX)[1/h]→ (ShUP )/R is injective. We first show that this is the case when
evaluating atW =Kn−m. Consider two points p, p′ ∈ (ShUX)[1/h](W ) with the same projection
in (ShUP )(W )/R(W ), so that p− p′ ∈R(W ). Then f vanishes at both p and p′ and, in (4), we
have f̂i(p) = f̂i(p

′) =: ci ∈K for all i, as well as r(p) = r(p′). Then (4) shows that

c1ŷ1(p) + · · ·+ cN ŷN (p) = c1ŷ1(p
′) + · · ·+ cN ŷN (p′).

This can be expressed as L(p− p′) = 0 for a linear form L∈R(W )∗ which is nonzero because
c1 = h(p) = h(p′) �= 0. Now act with an element ψ ∈End(Kn−m) on (4), and then substitute p
and p′. This yields the identity L(R(ψ)(p− p′)) = 0. Hence we obtain a nonzero End(Kn−m)-
submodule of linear forms in R(Kn−m)∗ that are zero on p− p′. But since R(Kn−m), and hence
R(Kn−m)∗, are irreducible End(Kn−m)-modules by Remark 2.4.3, this means that p− p′ = 0.
The same argument applies when W is replaced by Ks for any s. This completes the proof of
the embedding theorem.

4.9 The weak shift theorem

The embedding theorem can be used to show that the behaviour of Example 4.4.3 is typical.

Corollary 4.9.1 (Weak shift theorem). Suppose, as in the embedding theorem, that K is a
prime field of cardinality q. For any nonempty subset X of some polynomial generic represen-
tation P , there exist a U ∈Vec, a nonzero function h on X(U), and a polynomial A(n)∈Q[n]
such that for all n∈N the cardinality of (ShUX)[1/h](Kn) equals qA(n).
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In other words, at least in a counting sense, (ShUX)[1/h](Kn) is an affine space of dimension
A(n) over K. We expect there to be a stronger version of this theorem, similar to the shift
theorem in [BDES23], which says that this affine space is functorial in V . But we do not yet
know the precise statement of this stronger theorem. Note that, by applying the weak shift
theorem to the subset Y of X defined by the vanishing of h, and so on, we obtain a kind of
stratification of X by finitely many affine spaces. A stronger version of the weak shift theorem
would therefore give deeper insight into the geometric structure of general restriction-closed
properties of tensors.

Proof of the weak shift theorem from the embedding theorem. If P has degree 0, then X =X(0)
is a finite set, and we can choose U = 0 and h to vanish on all but one point of X(0), so that
(ShUX)[1/h] is that remaining point.

Now assume that P has degree d > 0 and that the result holds for all polynomial represen-
tations Q≺ P . Let R be an irreducible subobject of P>d−1 and let X ′ be the projection of X in
P ′ := P/R.

There are two cases. First assume that X is the pre-image of X ′. Since P ′ ≺ P , by the
induction assumption there exist a U and an h∈ P ′(U) that does not vanish on X ′(U) such
that |(ShUX ′)[1/h](Kn)|= qA(n) for some polynomial A(n). Now (ShUX)[1/h](Kn) is the pre-
image of (ShUX

′)[1/h](Kn), with fibres (ShUR)(K
n). The fibre is a finite-dimensional vector

space over K whose dimension is a polynomial B(n). Hence |(ShUX)[1/h′](Kn)|= qA(n)+B(n), as
desired.

If X is not the pre-image of X ′, then we have seen that there exist a U1 ∈Vec, a polynomial
h1 ∈K[P (U1)] that does not vanish on X, and an injection

(ShU1
X)[1/h1]→ ((ShU1

P )/R) =:Q.

Let Y be the image of this injection. Since Q≺ P , there exist U2 ∈Vec and h2 ∈K[Q(U2)] such
that |(ShU2

Y )[1/h2](K
n)|= qA(n) for some polynomial n. Now set U :=U1 ⊕U2 and h := h1 · h2

and we find that

|(ShUX)[1/h](Kn)|= qA(n),

as desired.

5. Relations to FI and algorithms

5.1 FI and testing properties via subtensors

We recall from [CEF15] that FI is the category of finite sets with injections and that an FI-
module over K is a functor from FI to Vec. The central result that we will use is the following
theorem.

Theorem 5.1.1 [CEF15]. For any field K, any finitely generated FI-module M over K is
Noetherian in the sense that every FI-submodule is finitely generated.

We now use this to establish items (4) and (5) in Corollary 1.3.3. Their generalisation to
arbitrary polynomial generic representations is as follows.

Theorem 5.1.2. Let P be a polynomial generic representation over the finite field K, and let
X ⊆ P be a subset. Then there exists an n0 such that for any n∈Z≥0, an element p∈ P (Kn)
lies in X(Kn) if and only if, for every subset S of [n] of size n0, the image of p in P (KS) under
the linear map corresponding to the coordinate projection Kn →KS lies in X(KS).
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Consequently, there exists a polynomial-time algorithm that on input an n∈Z≥0 and a
T ∈ P (Kn) decides whether T lies in X(Kn).

Proof. Noetherianity for subsets of P (Theorem 4.1.2) implies that the ideal IX is finitely gener-
ated. In particular, IX is generated by (IX)≤e for some finite degree e. Now consider the functor
F from FI to Vec that assigns to any finite set S the space K[P (KS)]≤e and to every injection
ι : S→ T the embedding K[P (KS)]≤e →K[P (KT )]≤e coming from the pullback along the linear
map P (KT )→ P (KS) associated to ι. Since weights in K[P (KS)]≤e have at most de nonzero
entries, where d=deg(P ) (see Lemma 2.8.2), F is generated by F ([de]), hence a finitely gener-
ated FI-module. By Theorem 5.1.1, the FI-submodule S �→ IX(KS) is also finitely generated,
say by IX(Kn0). This n0 has the desired property.

Now for the last statement. By the above, testing whether T lies in X(Kn) boils down to
testing whether the image of T in P (KS) lies in X(KS) for each subset S ⊆ [n] of size n0. Each
of these tests takes constant time, and there are

(
n
n0

)
of these subsets, which is a degree-n0

polynomial in n.

Remark 5.1.3. In the latter theorem and proof, we have not specified how elements of P (Kn)
are represented on a computer, and it can depend on this representation how fast the image
of T in P (KS) is computed. But since P is a subquotient of a generic representation of the
form V �→ V ⊗d1 ⊕ · · · ⊕ V ⊗dk (Theorem 1.5.3), a natural such representation is as a k-tuple of
arrays. Then computing the image boils down to looking up the entries of T in positions all of
whose indices are in S. In this representation, the algorithm explained in the last paragraph is
polynomial-time even in the setting where each tensor is given as a sparse array, i.e., as a list of
pairs consisting of a position (i1, . . . , idl

) and an entry in K.

5.2 Infinite tensors

We conclude with a theorem about infinite tensors. Let P :Vec→Vec be a polynomial generic
representation over the finite field K. Define

P∞ := lim←n
P (Kn)

where the limit is along the projections P (Kn+1)→ P (Kn) coming from the projections Kn+1 →
Kn forgetting the last entry. In the case where P (V ) = V ⊗d, P∞ can be thought of as the space
of N× · · · ×N tensors (with d factors N). The space P∞ carries the inverse limit of discrete
topologies, or, equivalently, the Zariski topology in which closed subsets are defined by the
vanishing of (possibly infinitely many) functions in the ring

K[P∞] := lim
n→∞K[P (Kn)].

The monoid Π of matrices that differ from the identity matrix only in finitely many positions
acts on P∞ and K[P∞]. Let X ⊆ P be a subset in the sense of Definition 4.1.1. Then X∞ :=
lim←nX(Kn) is a subset of P∞.

Proposition 5.2.1. The correspondence that sends X ⊆ P to X∞ ⊆ P∞ is a bijection between
subsets of P and closed, Π-stable subsets of P∞.

Proof. The subset X∞ is clearly closed and Π-stable. Conversely, let Y ⊆ P∞ be closed and
Π-stable. Define Yn ⊆ P (Kn) as the image of Y under the projection P∞→ Pn, and for any
V ∈Vec define X(V ) to be the image of Yn under P (ϕ) for any linear isomorphism Kn → V ;
this is independent of the choice of ϕ.
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We claim that X is a subset of P . Indeed, if ψ : V →W is any linear map and ϕ :Kn → V a
bijection, then we have to show that P (ψ)P (ϕ)Yn is contained in P (ϕ′)Ym where ϕ′ :Kn′ →W
is a bijection. Now the map (ϕ′)−1ψϕ :Kn →Kn′

extends to a linear map α :Km →Km, where
m :=max{n, n′} and we regard Kn and Kn′

as the subspaces of Km where the last m− n
and m− n′ entries, respectively, are zero. The map α, in turn, can be regarded an element
of Π. Consequently, Y is invariant under α, and therefore so is Ym. This shows that the map
P ((ϕ′)−1ψϕ) maps Yn into Yn′ , so that P (ψ) maps X(V ) into X(W ), as desired.

Next we claim that X∞ = Y . Indeed, the fact that Y is closed means precisely that to test
whether (y0, y1, y2, . . .) lies in Y , it suffices to check whether yn lies in Yn for all y. And on the
other hand, this is precisely the definition of X∞.

Theorem 4.1.2 now implies the following corollary.

Corollary 5.2.2. Closed, Π-stable subsets of P∞ satisfy the descending chain condition.
Dually, Π-stable ideals of K[P∞] satisfy the ascending chain condition.

The latter, ring-theoretic Noetherianity is not known in the context of infinite fields [Dra19],
except in characteristic 0 for a few polynomial functors of degree 2 [NSS16, SS22]. However, in
the current context, all ideals are radical, since in K[P∞] every element f satisfies the identity
f q = f . This implies that the two statements in the corollary are equivalent.
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