ON PROPERTIES POSSESSED BY SOLVABLE
AND NILPOTENT GROUPS

CHRISTINE AYOUB?
(Received 5 June 1967)

The object of this note is to study two properties of groups, which we
will denote by (*) and (**). The property (*) is possessed by solvable groups
(and in fact, by groups which have a solvable invariant system) and the
property (**) is possessed by nilpotent groups (and in fact, by groups
which have a central system).

It is quite easy to show that if a group satisfies (*) locally, then it
satisfies (*); this gives a short proof of Malcev’s theorem that a locally
solvable group cannot be simple unless it is cyclic of prime order. It should
be remarked, however, that the proof given is simply an adaption of Malcev’s
proof — its only virtue is that it is short and easy.

Theorem 2 states that a finitely generated group G satisfying (*) and
the minimum condition for normal subgroups is finite and solvable, and
Theorem 3 studies the connection between property (*) and a property
studied by Ore.

Theorem 5 states that if the group ¢ — with hypercentre C — satis-
fies (**), then G/C satisfies (**); from this we deduce that if G satisfies (**)
and the minimum condition for normal subgroups, G is hypercentral.

Notations
[a, 8] = alb'ab.
n(U) = normalizer of the subgroup U in G.
Z(G) = centre of the group G.

A < B: = : A is a subgroup of B.

A < B: = : A is a proper subgroup of B.

A < B: = : A is a normal subgroup of B.

E = trivial subgroup (consisting of the identity element).

Following Kurosh we call G an SI-group (SN-group) if it has an
invariant (normal) system with abelian factors (see Kurosh [5, p. 17173

1 This paper was written while the author held an NSF Science Faculty Fellowship.
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and p. 182]), and we call G a Z-group if it has a central system — see Kurosh
(5, p. 218]. We say that G is a ZA-group if the upper central chain for G,
possibly continued transfinitely, leads up to G - see Kurosh [5, p. 218—19].
(Baer calls such a group hypercentral and uses the equivalent definition
that G is hypercentral if every epimorphic image (7% E) has a non-trivial
centre.) G is an SI*-group if it has a solvable ascending invariant series
(this is what Baer calls hyperabelian; again an equivalent definition is that
the group G is hyperabelian if every epimorphic image (# E) has a non-
trivial normal abelian subgroup).

The property (*)

DEFINITION 1. The group G satisfies (*) if: given elements a, b (# 1, 1)
in G, there is a normal subgroup C = C(a, b) of G such that [4, b] isin C
but not both 4 and b are in C.

ReMARK. If G satisfies (*), and a, & (54 1, 1) are elements of G, we can
define
C,» = {n CIC < G, [a, b] € C and not both a and b are in C}.

Clearly C, , is normal in G, [a, 0] is in C, , but not both 4 and b are in C, ,.
C, 5 is the unique smallest normal subgroup of G with these properties.

LemMma 1. (i) If S is a subgroup of the group G and if G satisfies (*),
then S satisfies (*).

(ii) If N 1s a normal subgroup of the group G and if G satisfies (*),
then given elements a, b(# 1, 1) in N there exists a normal subgroup C of G
such that C < N, [a, b] € C and not both a and b are in C.

Thus if G has a local system each of whose subgroups satisfies (*),
the finitely generated subgroups of G satisfy (*).

ProposITION 1. If G is an SI-group, then G satisfies (*). In particular,
if G is solvable, G satisfies (*).
ProOF. Let X' be an invariant system for G with abelian factors. Let
a, b (# 1, 1) be any two elements of G and define
C = {n N|N € Z, a and b both € N}, and
C ={UK|KeZ, not both a and be K}.

Then C < Cis a jump in X; hence C/C is abelian so that [, b] € C. Clearly
C is a normal subgroup of G and not both & and b belong to C.

PROPOSITION 2. Let G be a group and assume that for each pair of elements
a, b(# 1, 1) a normal subgroup C,, can be chosen so that [a,b] e C,,, but
not both a and b are in C, , and that in addition these subgroups can be chosen
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in such a way that for a,b(# 1,1),¢,d(# 1,1) in G either C, » =C.q 07
C 0a = = Cop (36 90 such a way that the subgroups are linearly ordered) Then
G is an SI-group.

Proor. Complete the system of normal subgroups {C o.p} to @ system Z.
We show that if K < L is a jump in %, then LK is abelian. For suppose not;
then there are elements & and b in L with [, b] not in K. Now if L < Covs
a and b both lie in C, ,, which is impossible. Hence C,,5 < L, which implies
that C, , = K. But then [, b] e K, a contradiction.

THEOREM 1. If the group G satisfies (*) locally, then G satisfies (*).

Proor. Let X consist of all finitely generated subgroups of G. For
4in Zand a,b(#1,1) in 4 let C,,(4) be a fixed normal subgroup of 4
such that 4 and b are not both in C, ,(4) but [a, b] € C, ,(4).

For a, b(# 1,1) in G and S a finite subset of G define

K,»(S) = {0 C,p(d)ld € 5, {a, 5, S} C 4},

Clearly if S, C S, are finite subsets of G, K,,(S;) = K, ,(S;). Thus for
arbitrary finite subsets S; and S, of G, K, ,(S:) = K, (S, U So) fori =1, 2.

Let H,, = {U K, ,(S)IS a finite subset of G}. It is clear that H,, is
a subgroup of G which contains [, ] but does not contain both a and b.
It remains to verify that H,, is normal in G. So let ce H,, and d ¢ G.
Then ¢ e K, ,(S) for some finite subset S of &G and we can assume that
deS. Now ceC,,(d) for each 4 in X with {a, b, S} C A. Hence by the
normality of C,,(4) in 4, d¢cd is in C,,(4) for each A in X with
{a,b,S}C A. Hence dlcdeK,,(S) and this implies that dcde H,,.

COROLLARY 1. If G is locally solvable and mot cyclic of prime order, then

G s not simple.
As noted in the introduction the proof of Theorem 1 is just Malcev’s

proof adapted to the case considered. Malcev’s Theorem states that if a
group has the property SI locally then it is an SI-group. For a proof see
Kurosh [5, p. 183—87].

DEFINITION 2. Let V be a maximal normal subgroup of the group U;
then U/[V is a tor of U.

LEMMA 2. Let G be a group which satisfies (*) and the minimum conditio.n
for normal subgroups. Then if K is a normal subgroup of G, any tor of K 158
abelian.

ProoF. Assume that the lemma is false and let U be a minimal normal
subgroup of G with a non-abelian tor.2 Hence there exists ¥ < U such that

® j.e. U is a normal subgroup of G, has a non-abelian tor and is minimal with respect to
this property.
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U|V is simple non-abelian. Thus there exist elements @ and 4 in U such that
[a,b]¢V. Let C be a normal subgroup of G such that C < U, [4,b] eC
and not both @ and beC. Then VZE<VC LU and V % VC since
[a, b] € C but [a, b] ¢ V. Hence by the maximality of V, U = VC.

Now UV = VC[V =~ C/V A C. Thus C is a normal subgroup of G
with a non-abelian tor and C < U. This contradicts the minimality of U.

THEOREM 2. Let G be a finitely generated group which satisfies (*) and
the minimum condition for normal subgroups. Then G is a finite, solvable
group.

Proor. Let K be a normal subgroup of G and assume K is minimal
such that G/K is finite and solvable. Assume K # E. Then since K is finitely
generated, it possesses a maximal normal subgroup M. By Lemma 2, K/M
is abelian and hence cyclic of prime order. Let M = {n M=z € G}. Since
M is of finite index in G, M is also of finite index in G. Furthermore, M is
normal in G and G/M is solvable since K[M is solvable. But M < K so that
the minimality of K is contradicted. Hence K == E and G is finite and solv-
able.

COROLLARY 2. Let G be a group which satisfies (*) and the minimum
condition for subgroups U such that n(U) > U. Then G is locally finite and
locally solvable. Furthermore, G is an SI*-group.

Proor. If H is a finitely generated subgroup of G, H satisfies (*) and
the minimum condition for normal subgroups. Hence H is finite and solv-
able. In particular, H is an SI-group. By the local theorem for SI-groups,
G is an SI-group and by the minimum condition for normal subgroups,
G is an SI*-group.

We now consider a property which Kurosh denotes by (Q), and a
somewhat weaker one which will be denoted by (Q’). The property (Q) was
introduced by Ore (see Kurosh [5, p. 181] and Ore [7, p. 251, Theorem 9]).

DEFINITION 3. The subgroup 4 of G is almost normal in G if there
exists a normal subgroup N of G such that G = AN and 4 nN < G.

DEFINITION 4. The group G satisfies (Q) if A < B < G, and 4 maximal
in B, implies that 4 is almost normal in B.

DEFINITION 5. The group G satisfies (Q’) if A < B < G, and 4 maximal
in B, implies that either A <1 B, or there exists a proper normal subgroup
N of B such that B = AN.

It is clear that if G satisfies (Q), it satisfies (Q’).

THEOREM 3. (i) If the group G satisfies (*), it satisfies (Q’).

(ii) If the group G satisfies (*) and the minimum condition for subgroups
U such that n(U) > U, then G satisfies (Q).
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(iii) Ifthe group G satisfies (Q’) and the minimum condition for subgroups,
then G satisfies (*).

Proor. (i): Let 4 < B = G with 4 maximal in B. If 4 is not normal
in B, let a and b be elements of B with [a, b] not in 4. By (*) there is a
subgroup C < B which does not contain both 2 and & but which contains
[(@,b]. Then A < AC < B but C £ A. Hence by the maximality of
4,4C = B.

(ii): By Corollary 2, G is an SI*-group and from this fact it follows
that G satisfies (Q) (see Kurosh [5, p. 183]). However, it is easy to give a
proof which does not use the local theorem for SI-groups (which is needed
for Corollary 2): Let A < B < G with 4 maximal in B. Since the normal
subgroups of B satisfy the minimum condition, we can choose a mini-
mal subgroup K such that K < B and B = AK. Now A nK < 4; if
AnKdaK, then A nK <4 B. So assume that A n K is not normal in K
and let @ and & be elements K such that [a, ] ¢ A n K. By (*) there exists
a subgroup C of K such that C < B, [a, b] € C, but not both a4 and b
are in C. Hence A < AC < B since [a, b] ¢ A. Thus B = AC and the
minimality of K is contradicted.

(iii): Assume that the group G satisfies the hypotheses of (iii) but does
not satisfy (*). Let H be a minimal subgroup of G which does not satisfy (*).
If H is not finitely generated, all the finitely generated subgroups of H
satisfy (*); but this implies that H satisfies (*) by Theorem 1. Hence H
is finitely generated.

If H contains a maximal subgroup M which is normal, then H/M is
cyclic of prime order. Hence M is finitely generated and satisfies (*) by
the minimality of H. Therefore, by Theorem 2, M is (finite and) solvable.
But this implies that H is solvable so that by Proposition 1, H satisfies
(*) — a contradiction.

So assume that every maximal subgroup of H is not normal and let 4
be a maximal subgroup of H. Then by (Q’) there is a proper normal subgroup
N of H such that H = NA. Let M be a maximal normal subgroup of H
containing N. Then H = MA. H[M is simple and non-abelian. Also
HIM = MA/M ~ AJM n A so that A has a non-abelian tor. But A4
satisfies (*) since it is a proper subgroup of H, and hence by Lemma 2, any
tor of 4 is abelian. Thus we have a contradiction and the theorem is proved.

COROLLARY 3. Let G be a group which satisfies the minimum condition
for subgroups. Then the following are equivalent:

(1) G is solvable.

(2) G satisfies (*).

(3) G satisfies (Q).

(4) G satisfies (Q').
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Proor. By Proposition 1, (1) implies (2). (2) implies (3) by Theorem 3
(ii). Clearly (3) implies (4). So assume (4). Then by Theorem 3 (iii) G
satisfies (*). Hence by Corollary 2, G is an SI*-group. Therefore, by a
theorem of Cernikov, G is solvable (see Kurosh [5, p. 191]).

REMARK: Since submitting this paper it has been drawn to my attention
that Baer has two papers to appear shortly ([1] and [2]) in which he con-
siders among other things the properties (Q) and (Q’). The main theorem of
[1] gives a number of criteria for a group G to be artinian and solvable.
One of these is:

(@) Abelian subgroups of G are artinian.
(V) (b) If Fis a finitely generated subgroup of G, then

(b’) the normal subgroups of F satisfy the minimum condition
and (b”) if Sis a maximal subgroup of F, S is almost normal in F.

This criterion implies that if G is artinian, then G is solvable if, and only if
G satisfies (Q). But, of course, it is a much stronger result.
In the same spirit we could prove: G is artinian and solvable if, and
only if
(@) Abelian subgroups of G are artinian.
(b) If F is a finitely generated subgroup of G, then
(b’) the normal subgroups of F satisfy the minimum condition
and (b"’) F satisfies (*).
This follows from our Theorem 2 and the theorem of Cernikov (see [4])
which states: Let G be locally finite and locally solvable. Then if abelian
subgroups of G are artinian, G is artinian and solvable.
In Baer’s paper ‘Normalizatorreiche Gruppen’ there is another proof of
the fact that an artinian group G is solvable if, and only if it satisfies (Q’)
(see [2] Hilfsatz 3.6).

The property (**)

DEFINITION 6. The group G satisfies (**) if: given an element a(# 1) in
G, there is a normal subgroup N = N(a) of G such that [¢,2]eNVzeG
but a ¢ N.

ReMARK. If G satisfies (**) and a(s# 1) is an element of G, we can
defineN, = {nNIN < G,a¢N and [a,2] e NVzeG}then N, < G,a ¢ N,
and [a, ] € N,. N, is the unique smallest normal subgroup of G with these
properties.

As in the case of (*) we have:

LemMA 3. (i) If S is a subgroup of the group G, and if G satisfies (**),
then S satisfies (**).
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(ii) If K is a normal subgroup of the group G, and if G satisfies (**),
then given an element a(~ 1) wn K there exists a normal subgroup N of G
such that N < K,a ¢ N but [a, 2] e N Vz e G.

It is clear that (**) implies (*). For if a, (s 1, 1) are elements of the
group G, then if a # 1 we can find a normal subgroup N of G such that
a ¢ N but [a, z] e N for all z e G. Thus [a, b] e N but not both & and b are
inN. If a =1, b # 1 and we interchange the rdles of a and b.

ProrosiTION 3. If G is a Z-group, then G satisfies (**). In particular,
if G is nilpotent, G satisfies (*¥*).

Proor. Let 2 be a central system for G. Let a(# 1) be an element of
G and define
N={nK|KeZ aecK}
N={UL|lLeZ a¢ L}

Then N < N is a jump in Z; hence N/N < Z(G/N) and this implies that
[4,z] e NVzeG.

PROPOSITION 4. Let G be a group and assume that for each element a(# 1)
a normal subgroup N, can be chosen so that a ¢ N, but [a,x]eN,VzeG
and that in addition these subgroups are linearly ordered. Then G is a Z-group.

The proof of this proposition is quite similar to the proof of Proposition
2 and will be omitted.

THEOREM 4. If the group G satisfies (**) locally, then G satisfies (**).

Proor. Let X consist of all finitely generated subgroups of G. For H
in 2 and a(# 1) in H let N,(H) be a fixed normal subgroup of H such that
a¢N,(H)but [a,z) e N,(H) Vz e H.

For a(#1) in G and S a finite subset of G containing a, define
K,(S)={nN,H)|He X SCH} Let K, = {U K, (S)|S a finite subset of
G containing a}. It is easy to verify that K, is a normal subgroup of G such
that a ¢ K, but [a, 2] e K, Vz e G.

LEMMA 4. Let G be a group which satisfies (**) and Z a subgroup of the
centre of G. Then G|Z satisfies (**).

ProoF. Let aeG\Z and let N, be the minimal normal subgroup
of G such that a ¢ N, but [4,2)eN,,VzeG. Then ZN,Z <4 G/Z and
[Za, Zx] € ZN,[Z, V% € G. We have to verify that Za ¢ ZN,[Z.

So suppose that 2 e ZN,. Then we can write: 4 = zc, where z € Z and
ceN,. v

Now let N, be a normal subgroup of G such that c¢N,, but
[c,#]eN,VzeG. Then N.AnN,< Gand N,nN, < N, since ¢ ¢ N, but
ceN,. Clearly a ¢ N,n N, since a ¢ N,. For any element « € G, we have:
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(@, ] = [z¢, 2] = [z, z]°[c, =]
= [c, ] since z is a central element.

Hence [a,z] e N, n N,, and the minimality of N, is contradicted. Thus
a¢ ZN, so that Za ¢ ZN,|Z.

THEOREM 5. If the group G satisfies (**) and if C is the hypercentre of G,
then G|C satisfies (**).

Proor. We define the ascending central chain of G by Z,= E,
Z2,=2(G), ", Zy1]Z, = Z(G|Z,) and Z, = {U Z,|f < «} for « a limit
ordinal. Then there is an ordinal » such that Z,=Z2,,. C = Z, is the
hypercentre of G.

We prove by transfinite induction that each G/Z, satisfies (**). Clearly
G|Z, satisfies (**).

CAsE 1. a = f+-1, and G/Z, satisfies (**). Then
G|Z, G|Z,

Gz = 7 17, Z(GIz,)

satisfies (**) by Lemma 4.

CASE 2. « is a limit ordinal, and G/Z, satisfies (**) for § < «. Thus
if a e G\Z,, there exists U[Zz <1 G|Z, such that a ¢ U but [a, 2] e U for
all z in G. Hence Z, <U <4 G,a¢U but [a,2]eU for all x in G. Let

Vo) ={nUlZ,=U<G,a¢U, faz]eUVreG}

Then Z; <Vy(a) > G, a¢Vy(a) and [a, 2] e Vy(a) Ve e G, and Vy(a) is
the unique minimal subgroup of G with these properties.

We verify that if § <y <« and a e G\Z,, then V (a) =<V ,(a). For
Zy=Z,=V,a),a¢V,(a) and [a,z]eV, (a) VxeG. Hence by the
minimality of Vy(a), V,(a) =V, (a).

Now let a e G\Z,. Then aeG\Z; for all § < «. Define V(a) =
{U V,(a)|p < a}. Since the V,(a) are linearly ordered and normal, V(a)
is a normal subgroup of G; a¢V(a) but [a,2]eV(a) VzeG. Also,
ZgSVha)forp<a=Z,=uZs=<uUVya)=V(a).

Hence G/Z, satisfies (**) in this case also.

LeMMA 5. If the group G(5% E) satisfies (**) and the minimum condition
for normal subgroups then for E < H <4 G,H n Z(G) +# E.

ProorF. Let N be a minimal normal subgroup of G contained in H. If
N £ Z(G), there are elements a € N and x € G such that [a, ] # 1. By (**)
and Lemma 3 (ii) we can find a normal subgroup N, of G such that
N,<N,a¢N, but [a,y]eN,VyeG. Hence 15 [a,x]eN, so that
E < N, < N contrary to the minimality of N. Thus N < H n Z(G).
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THEOREM 6. If the group G satisfies (**) and the minimum condition for
normal subgroups, then G is a ZA-group.

Proor. Let C be the hypercentre of G. If C £ G, G/C satisfies (**) by
Theorem 5. Hence since G/C satisfies the minimum condition for normal
subgroups, Z(G/C) # E (provided G # C) by Lemma 5. But this is
impossible. Hence G = C and G is a ZA-group.

COROLLARY 4. If G is a finitely generated group satisfying (**) and the
minimum condition for normal subgroups, then G is finite and nilpotent.

Proor. By Theorem 2, G is finite and by Theorem 6, G is a ZA4-group.
Hence G is finite and nilpotent.
Finally we recall two further conditions which may be imposed on

groups:
DEFINITION 7. The group G is an N-group if the normalizer condition
holds in G, i.e. if every proper subgroup of G is distinct from its normalizer.

DEFINITION 8. A group G is an N-group if in every subgroup B of G
every maximal subgroup 4 is normal.

THEOREM 7. Let G be a group satisfying the minimum condition for
subgroups. Then the following are equivalent:

(1) G is a ZA-group.

(2) G is an N-group.

(8) G is an N-group.

(4) G satisfies (**).

(8) G s locally finite and locally nilpotent.

Proor. It is well-known that (1) implies (2) (see e.g. Kurosh p. 215
and p. 219). A group G is an N-group if and only if through each subgroup
of G there passes an ascending normal series, while G is an N-group if for
every subgroup of G there is some normal system passing through it (see
Kurosh pp. 220—21). Hence (3) follows from (2).

Now assume that G is an N-group which does not satisfy (**), and let
H be a minimal subgroup of G which does not satisfy (**). By Theorem 4,
H is finitely generated. Let M be a maximal subgroup of H. Then M is
normal in H, and hence of finite index. Thus M is a finitely generated sub-
group of G which satisfies (**). By Corollary 4, M is finite. But this implies
that H is finite and a finite N-group is nilpotent (see Kurosh p. 216).
Hence by Proposition 3, H satisfies (**) — contrary to the choice of H.
Therefore, (3) implies (4).

(6) follows from (4) by Corollary 4. Finally if G satisfies (5), it is a
Z-group and hence a ZA-group since it satisfies the minimum condition for
subgroups.
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REMARK. It should be noted that the (equivalent) conditions in
Theorem 7 do not imply that G is nilpotent. For example, let 4 be a group
of type p* and let B be cyclic of order p. Then G = 4 wr B (the wreath
product of 4 and B) is solvable and satisfies the minimum condition. Any
finitely generated subgroup H of G is solvable and satisfies the minimum
condition. Hence H is a finite p-group and so nilpotent. Therefore, G is
locally nilpotent. But G is not nilpotent since 4 is not bounded (see
Baumslag [3, § 3]).
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