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The object of this note is to study two properties of groups, which we
will denote by (*) and (**). The property (*) is possessed by solvable groups
(and in fact, by groups which have a solvable invariant system) and the
property (**) is possessed by nilpotent groups (and in fact, by groups
which have a central system).

It is quite easy to show that if a group satisfies (*) locally, then it
satisfies (*); this gives a short proof of Malcev's theorem that a locally
solvable group cannot be simple unless it is cyclic of prime order. It should
be remarked, however, that the proof given is simply an adaption of Malcev's
proof — its only virtue is that it is short and easy.

Theorem 2 states that a finitely generated group G satisfying (*) and
the minimum condition for normal subgroups is finite and solvable, and
Theorem 3 studies the connection between property (*) and a property
studied by Ore.

Theorem 5 states that if the group G — with hypercentre C — satis-
fies (**), then GjC satisfies (**); from this we deduce that if G satisfies (**)
and the minimum condition for normal subgroups, G is hypercentral.

Notations

[a, b] = a^b^ab.
n(U) = normalizer of the subgroup U in G.
Z(G) = centre of the group G.
A 5g B: = : A is a subgroup of B.
A < B: = : A is a proper subgroup of B.
A < B: — : A is a normal subgroup of B.
E = trivial subgroup (consisting of the identity element).

Following Kurosh we call G an S/-group (SiV-group) if it has an
invariant (normal) system with abelian factors (see Kurosh [5, p. 171—73

1 This paper was written while the author held an NSF Science Faculty Fellowship.
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and p. 182]), and we call G a Z-group if it has a central system — see Kurosh
[5, p. 218]. We say that G is a ZA -group if the upper central chain for G,
possibly continued transfinitely, leads up to G — see Kurosh [5, p. 218—19].
(Baer calls such a group hypercentral and uses the equivalent definition
that G is hypercentral if every epimorphic image (^ E) has a non-trivial
centre.) G is an S/*-group if it has a solvable ascending invariant series
(this is what Baer calls hyperabelian; again an equivalent definition is that
the group G is hyperabelian if every epimorphic image (^ E) has a non-
trivial normal abelian subgroup).

The property (*)

DEFINITION 1. The group G satisfies (*) if: given elements a, b ( ^ 1,1)
in G, there is a normal subgroup C = C(a, b) of G such that [a, b] is in C
but not both a and b are in C.

REMARK. If G satisfies (*), and a, b ( # 1, 1) are elements of G, we can
define

Cab = {n C\C < G, [a, b]eC and not both a and b are in C}.

Clearly Cab is normal in G, [a, b] is in Cab but not both a and b are in Cab.
Ca b is the unique smallest normal subgroup of G with these properties.

LEMMA 1. (i) / / 5 is a subgroup of the group G and if G satisfies (*),
then S satisfies (*).

(ii) / / N is a normal subgroup of the group G and if G satisfies (*),
then given elements a, b(=£ 1, 1) in N there exists a normal subgroup C of G
such that C < N, [a, b] eC and not both a and b are in C.

Thus if G has a local system each of whose subgroups satisfies (*),
the finitely generated subgroups of G satisfy (*).

PROPOSITION 1. If G is an Si-group, then G satisfies (*). In particular,
if G is solvable, G satisfies (*).

PROOF. Let Z be an invariant system for G with abelian factors. Let
a, b (=£ 1, 1) be any two elements of G and define

C = {n N\N eS.a and b both eN}, and
C = {u K\K e Z, not both a and b e K).

Then C < C is a jump in Z; hence CjC is abelian so that [a, b] e C. Clearly
C is a normal subgroup of G and not both a and b belong to C.

PROPOSITION 2. Let Gbea group and assume that for each pair of elements
a, b(=£ 1, 1) a normal subgroup Cab can be chosen so that [a, b] e Cab, but
not both a and b are in Cab and that in addition these subgroups can be chosen
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ea orin such a way that for a, 6(# 1, 1), c, d(^ 1, 1) in G either Cab ^ Cea or
Ce,a = Q.6 (i-e- in such a way that the subgroups are linearly ordered). Then
G is an Si-group.

PROOF. Complete the system of normal subgroups {COj6} to a system Z.
We show that if K < L is a jump in Z, then LjK is abelian. For suppose not;
then there are elements a and b in L with [a, b] not in K. Now if L ^ Co „,
a and b both lie in Cab, which is impossible. Hence Ca b < Z., which implies
that Ca b ^ if. But then [a, b]eK,a. contradiction.

THEOREM 1. If the group G satisfies (*) locally, then G satisfies (*).

PROOF. Let Z consist of all finitely generated subgroups of G. For
A in Z and a, b(=£ 1, 1) in A let Ca>b{A) be a fixed normal subgroup of A
such, that a and b are not both in C0l)(A) but [a, 6] e Cab{A).

For a, b(^ I, 1) in G and S a finite subset of G define

Clearly if Sj^QS^ are finite subsets of G.K^Sj) ^Ka>b{S2). Thus for
arbitrary finite subsets Sx and S2 of G, ̂ ( S , ) ^ •K'a.ftlSi u s*) iov { = *> 2-

Let H0_fc = {u ifOI,(S)|S a finite subset of G}. It is clear that #„_„ is
a subgroup of G which contains [a, b] but does not contain both a and 6.
It remains to verify that Hab is normal in G. So let c e Ho „ and d e G.
Then c el£Oi(l(S) for some finite subset 5 of G and we can assume that
d e S. Now c e Ca>!)(4) for each A in 27 with (a, 6, S} £ A Hence by the
normality of Ca>b'{A) in A, d~xcd is in Cab{A) for each 4 in Z with
{a, 6, S } C 4 . Hence d'1 cd e Kab(S) and this implies that d^cdeHaib.

COROLLARY 1. If G is locally solvable and not cyclic of prime order, then
G is not simple.

As noted in the introduction the proof of Theorem 1 is just Malcev's
proof adapted to the case considered. Malcev's Theorem states that if a
group has the property SI locally then it is an S7-group. For a proof see
Kurosh [5, p. 183-87].

DEFINITION 2. Let V be a maximal normal subgroup of the group U;
then XJ\V is a tor of U.

LEMMA 2. Let G be a group which satisfies (*) and the minimum condition
for normal subgroups. Then if K is a normal subgroup of G, any tor of K is
abelian.

PROOF. Assume that the lemma is false and let U be a minimal normal
subgroup of G with a non-abelian tor.2 Hence there exists V < U such that

8 i.e. U is a normal subgroup of G, has a non-abelian tor and is minimal with respect to
this property.
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U/V is simple non-abelian. Thus there exist elements a and b in U such that
[a, b] $ V. Let C be a normal subgroup of G such that C <U, [a, b]eC
and not both a and b e C. Then V ^ VC ^ U and V ^VC since
[a, 6] e C but [a, 6] # F. Hence by the maximality of V, U = VC.

Now U/V = FC/F ~ C/V n C. Thus C is a normal subgroup of G
with a non-abelian tor and C < U. This contradicts the minimality of U.

THEOREM 2. Let G be a finitely generated group which satisfies (*) and
the minimum condition for normal subgroups. Then G is a finite, solvable
group.

PROOF. Let if be a normal subgroup of G and assume K is minimal
such that GjK is finite and solvable. Assume K ^ E. Then since K is finitely
generated, it possesses a maximal normal subgroup M. By Lemma 2, KjM
is abelian and hence cyclic of prime order. Let fit = {n M"\x e G}. Since
M is of finite index in G, M is also of finite index in G. Furthermore, M is
normal in G and G\M is solvable since K/fit is solvable. But fit < X so that
the minimality of K is contradicted. Hence K — E and G is finite and solv-
able.

COROLLARY 2. Letf G be a group which satisfies (*) and the minimum
condition for subgroups U such that n(U) > U. Then G is locally finite and
locally solvable. Furthermore, G is an SI*-group.

PROOF. If H is a finitely generated subgroup of G, H satisfies (*) and
the minimum condition for normal subgroups. Hence H is finite and solv-
able. In particular, H is an S/-group. By the local theorem for 57-groups,
G is an 5/-group and by the minimum condition for normal subgroups,
G is an 57*-group.

We now consider a property which Kurosh denotes by (Q), and a
somewhat weaker one which will be denoted by (Q'). The property (Q) was
introduced by Ore (see Kurosh [5, p. 181] and Ore [7, p. 251, Theorem 9]).

DEFINITION 3. The subgroup A of G is almost normal in G if there
exists a normal subgroup N of G such that G = AN and A n N < G.

DEFINITION 4. The group G satisfies (Q) if A < B ^ G, and A maximal
in B, implies that A is almost normal in B.

DEFINITION 5. The group G satisfies (Q') if A < B ^ G, and A maximal
in B, implies that either A < B, or there exists a proper normal subgroup
N of B such that B = AN.

It is clear that if G satisfies (Q), it satisfies (Q').

THEOREM 3. (i) If the group G satisfies (*), it satisfies (Qr).
(ii) / / the group G satisfies (*) and the minimum condition for subgroups

U such that n(U) > U, then G satisfies (Q).
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(iii) If the group G satisfies (Qr) and the minimum condition for subgroups,
then G satisfies (*).

PROOF, (i): Let A < B ^ G with A maximal in B. If A is not normal
in B, let a and b be elements of B with [a, b] not in A. By (*) there is a
subgroup C < B which does not contain both a and b but which contains
[a, b]. Then A ^ AC ^ B but C ^ A. Hence by the maximality of
A, AC = B.

(ii): By Corollary 2, G is an S/*-group and from this fact it follows
that G satisfies (Q) (see Kurosh [5, p. 183]). However, it is easy to give a
proof which does not use the local theorem for S/-groups (which is needed
for Corollary 2): Let A < B ^ G with A maximal in B. Since the normal
subgroups of B satisfy the minimum condition, we can choose a mini-
mal subgroup K such that K < B and B — AK. Now A r\ K < A; if
A n K < K, then A n K < B. So assume that A nK is, not normal in K
and let a and b be elements K such that [a, b] $ A nK. By (*) there exists
a subgroup C of K such that C < B, [a, b] e C, but not both a and b
are in C. Hence A < AC 5S B since [a, b] $ A. Thus B — AC and the
minimality of K is contradicted.

(iii): Assume that the group G satisfies the hypotheses of (iii) but does
not satisfy (*). Let H be a minimal subgroup of G which does not satisfy (*).
If H is not finitely generated, all the finitely generated subgroups of H
satisfy (*); but this implies that H satisfies (*) by Theorem 1. Hence H
is finitely generated.

If H contains a maximal subgroup M which is normal, then HjM is
cyclic of prime order. Hence M is finitely generated and satisfies (*) by
the minimality of H. Therefore, by Theorem 2, M is (finite and) solvable.
But this implies that H is solvable so that by Proposition 1, H satisfies
(*) — a contradiction.

So assume that every maximal subgroup of H is not normal and let A
be a maximal subgroup of H. Then by (Q') there is a proper normal subgroup
N of H such that H = NA. Let M be a maximal normal subgroup of H
containing N. Then H = MA. HjM is simple and non-abelian. Also
HIM — MAIM £ AjM n A so that A has a non-abelian tor. But A
satisfies (*) since it is a proper subgroup of H, and hence by Lemma 2, any
tor of A is abelian. Thus we have a contradiction and the theorem is proved.

COROLLARY 3. Let G be a group which satisfies the minimum condition
for subgroups. Then the following are equivalent:

(1) G is solvable.
(2) G satisfies (*).
(3) G satisfies (Q).
(4) G satisfies (Q').
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PROOF. By Proposition 1, (1) implies (2). (2) implies (3) by Theorem 3
(ii). Clearly (3) implies (4). So assume (4). Then by Theorem 3 (iii) G
satisfies (*). Hence by Corollary 2, G is an 57*-group. Therefore, by a
theorem of Cernikov, G is solvable (see Kurosh [5, p. 191]).

REMARK: Since submitting this paper it has been drawn to my attention
that Baer has two papers to appear shortly ([1] and [2]) in which he con-
siders among other things the properties (Q) and (Q1). The main theorem of
[1] gives a number of criteria for a group G to be artinian and solvable.
One of these is:

(a) Abelian subgroups of G are artinian.
(V) (b) If F is a finitely generated subgroup of G, then

(b') the normal subgroups of F satisfy the minimum condition
and (b") if S is a maximal subgroup of F, S is almost normal in F.

This criterion implies that if G is artinian, then G is solvable if, and only if
G satisfies (Q). But, of course, it is a much stronger result.

In the same spirit we could prove: G is artinian and solvable if, and
only if

(a) Abelian subgroups of G axe artinian.
(b) If F is a finitely generated subgroup of G, then
(b') the normal subgroups of F satisfy the minimum condition

and (b'") F satisfies (*).

This follows from our Theorem 2 and the theorem of Cernikov (see [4])
which states: Let G be locally finite and locally solvable. Then if abelian
subgroups of G are artinian, G is artinian and solvable.

In Baer's paper 'Normalizatorreiche Gruppen' there is another proof of
the fact that an artinian group G is solvable if, and only if it satisfies (Q')
(see [2] Hilfsatz 3.6).

The property (**)

DEFINITION 6. The group G satisfies (**) if: given an element a(=£ 1) in
G, there is a normal subgroup N = N(a) of G such that [a, x] eNVxeG
buta$N.

REMARK. If G satisfies (**) and a ( # 1) is an element of G, we can
defined = {n N\N < G, a $N and [a, x]eNVxeG) then Na< G,a$Na

and [a, x] eNa. Na is the unique smallest normal subgroup of G with these
properties.

As in the case of (*) we have:

LEMMA 3. (i) If S is a subgroup of the group G, and if G satisfies (**),
then S satisfies (**).
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(ii) / / K is a normal subgroup of the group G, and if G satisfies (**),
then given an element a ( # 1) in K there exists a normal subgroup N of G
such thatN <K,a$Nbut [a, x]eNVxeG.

It is clear that (**) implies (*). For if a, b(^ 1, 1) are elements of the
group G, then if a =£ 1 we can find a normal subgroup N of G such that
a $ N but [a, x] e N for all x e G. Thus [a, b] e N but not both a and b are
in N. If a = 1, b # 1 and we interchange the roles of a and 6.

PROPOSITION 3. If G is a Z-group, then G satisfies (**). In particular,
if G is nilpotent, G satisfies {**).

PROOF. Let Z be a central system for G. Let a ( ^ 1) be an element of
G and define

# = (n i^lX e-£", aeK}
N = {

Then 2V < N is a jump in 27; hence ffjN ^ Z{G\N) and this implies that
[a, x] e N Vx e G.

PROPOSITION 4. Let Gbea group and assume that for each element a(^ 1)
a normal subgroup Na can be chosen so that a $ Na but [a, x] e Na Va; e G
and that in addition these subgroups are linearly ordered. Then G is a Z-group.

The proof of this proposition is quite similar to the proof of Proposition
2 and will be omitted.

THEOREM 4. If the group G satisfies (**) locally, then G satisfies (**).

PROOF. Let 27 consist of all finitely generated subgroups of G. For H
in E and a{^ 1) in H let Na(H) be a fixed normal subgroup of H such that
a $ Na(H) but [a, x) e Na(H) Va; e H.

For a(=£ 1) in G and S a finite subset of G containing a, define
Ka(S) = {n Na(H)\H e Z, S Q H). Let # o = {u -Ka(S)|S a finite subset of
G containing a}. It is easy to verify that Ka is a normal subgroup of G such
that a $ Ka but [a, a] eKaVxeG.

LEMMA 4. Lrf G be a group which satisfies (**) and Z a subgroup of the
centre of G. Then GjZ satisfies (**).

PROOF. Let aeG\Z and let Na be the minimal normal subgroup
of G such that a<£Na but [a, x] eNa, Wx eG. Then ZNJZ < G\Z and
[Za, Zx] e ZNJZ, Va; e G. We have to verify that Za $ ZNJZ.

So suppose that a 6 ZiVo. Then we can write: a = zc, where z e Z and
ceNa.

Now let Ne be a normal subgroup of G such that c$Ne, but
[c, a;] eNeVxe G. Then NenNa< G and NenNa< Na since c £ iVc but
c eNa. Clearly a$NcnNa since afNa. For any element a; e G, we have:
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[a, x] = [zc, x] = [z, x]c[c, x]

= [c, x] since z is a central element.

Hence [a, x] eNa nNc, and the minimality of 2VO is contradicted. Thus
a $ ZNa so that Za $ ZNJZ.

THEOREM 5. / / the group G satisfies (**) and if C is the hypercentre of G,
then GjC satisfies (**).

PROOF. We define the ascending central chain of G by Zo = E,
Zx = Z(G), • • -, Za+1/Za = Z(GjZa) and Za = {u Zfi\fi < a} for a a limit
ordinal. Then there is an ordinal v such that Zv = Zv+1. C = Zv is the
hypercentre of G.

We prove by transfinite induction that each G\Za satisfies (**). Clearly
G/Zo satisfies (**).

CASE 1. a = /9+1, and G\Zf satisfies (**). Then

G\Zf

~ Z,+i}Z, Z{GjZfi)

satisfies (**) by Lemma 4.

CASE 2. a is a limit ordinal, and G\Zf satisfies (**) for /S < a. Thus
if a e G\Zfi, there exists U\Zfi < G\Zf such that a £ U but [a, x] eU for
all x in G. Hence Zfi -g*U < G, a$U but [a, x] e U for all x in G. Let

Vfi{a) = {n U\Zfi ^U< G, a $U, [a, x] eUVx e G}.

Then Zfi ^ Vfi{a) > G, a 4 Vt(a) and [a, x] e V,(a) Vx e G, and Vfi(a) is
the unique minimal subgroup of G with these properties.

We verify that if /? ̂  y < a. and a e G\Zy, then V0{a) £S V7(a). For
Zf ^ Zy ^ Fr(«), a £ Fr(a) and [a, a;] e V7{a) Va; e G. Hence by the
minimality of V0\a), Vf{a) < Vy(a).

Now let aeG\Za. Then aeG\Zfi for all /3 < a. Define F(a) =
{u Fj8(a) I/S < a}. Since the Vfi(a) are linearly ordered and normal, V(a)
is a normal subgroup of G; a £ V(a) but [a, a;] G V(a) Vx e G. Also,
Zfi ^ F^^) for |8 < a => Za = u Z ,̂ ^ u F^^) = F(«).

Hence G/Za satisfies (**) in this case also.

LEMMA 5. / / the group G(^ E) satisfies (**) am? the minimum condition
for normal subgroups then for E < H < G, H n Z(G) ^ E.

PROOF. Let N be a minimal normal subgroup of G contained in H. If
N ^ Z(G), there are elements a eN and x e G such that [a, *] 7̂  1. By (**)
and Lemma 3 (ii) we can find a normal subgroup Na of G such that
Na<N,a£Na but [a, y] eNaVye G. Hence 1 # [a, »] e 2Va so that
E <Na<N contrary to the minimality of N. ThusN ^H n Z(G).
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THEOREM 6. If the group G satisfies (**) and the minimum condition for
normal subgroups, then G is a ZA-group.

PROOF. Let C be the hypercentre of G. If C =£ G, G\C satisfies (**) by
Theorem 5. Hence since G\C satisfies the minimum condition for normal
subgroups, Z(G/C) ^ E (provided G =£ C) by Lemma 5. But this is
impossible. Hence G = C and G is a ZA-group.

COROLLARY 4. / / G is a finitely generated group satisfying (**) and the
minimum condition for normal subgroups, then G is finite and nilpotent.

PROOF. By Theorem 2, G is finite and by Theorem 6, G is a ZA -group.
Hence G is finite and nilpotent.

Finally we recall two further conditions which may be imposed on
groups:

DEFINITION 7. The group G is an iV-group if the normalizer condition
holds in G, i.e. if every proper subgroup of G is distinct from its normalizer.

DEFINITION 8. A group G is an i^-group if in every subgroup B of G
every maximal subgroup A is normal.

THEOREM 7. Let G be a group satisfying the minimum condition for
subgroups. Then the following are equivalent:

(1) G is a ZA-group.
(2) G is an N-group.
(3) G is an N-group.
(4) G satisfies (**).
(5) G is locally finite and locally nilpotent.

PROOF. It is well-known that (1) implies (2) (see e.g. Kurosh p. 215
and p. 219). A group G is an iV-group if and only if through each subgroup
of G there passes an ascending normal series, while G is an iV-group if for
every subgroup of G there is some normal system passing through it (see
Kurosh pp. 220—21). Hence (3) follows from (2).

Now assume that G is an iV-group which does not satisfy (**), and let
H be a minimal subgroup of G which does not satisfy (**). By Theorem 4,
H is finitely generated. Let M be a maximal subgroup of H. Then M is
normal in H, and hence of finite index. Thus M is a finitely generated sub-
group of G which satisfies (**). By Corollary 4, M is finite. But this implies
that H is finite and a finite iV-group is nilpotent (see Kurosh p. 216).
Hence by Proposition 3, H satisfies (**) — contrary to the choice of H.
Therefore, (3) implies (4).

(5) follows from (4) by Corollary 4. Finally if G satisfies (5), it is a
Z-group and hence a ZA -group since it satisfies the minimum condition for
subgroups.
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REMARK. It should be noted that the (equivalent) conditions in
Theorem 7 do not imply that G is nilpotent. For example, let A be a group
of type p°° and let B be cyclic of order p. Then G = A wr B (the wreath
product of A and B) is solvable and satisfies the minimum condition. Any
finitely generated subgroup H of G is solvable and satisfies the minimum
condition. Hence H is a finite ^>-group and so nilpotent. Therefore, G is
locally nilpotent. But G is not nilpotent since A is not bounded (see
Baumslag [3, § 3]).
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