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1. Introduction

We prove that if / is a compact linear operator that is not quasi-nilpotent
and is appropriately normalised, then the closed semi-algebra A{i) generated
by t is locally compact. The theory of locally compact semi-algebras (2) is
therefore applicable to A(t), and we show that it can be used to obtain spectral
properties of t.

We collect together in Section 2 the properties of locally compact semi-
algebras that we need. These are mainly properties of a prime strict commuta-
tive locally compact semi-algebra and its unique minimal idempotent, which
are given in (2), together with some simple deductions from them. A new
result relates a certain compact group G(a) with each element a with spectral
radius 1.

In Section 3, we consider a compact linear operator t such that the spectral
radius of r is 1 and belongs to the spectrum of /. We prove that the closed
semi-algebra A(t) generated by / is locally compact, and that it is prime and
strict if and only if t has equibounded iterates, i.e. the sequence {|| t" ||} is
bounded. The rest of Section 3 is concerned with an operator / that satisfies
these conditions. If ( is an eigenvalue of / on the unit circle, then f"1* also
satisfies the conditions, and so the results in Section 2 are also applicable to
A(C~lt). It follows in particular that / has equibounded iterates if and only if
all eigenvalues on the unit circle have index 1.

Two projections belonging to A(t) are of special interest. One is the unique
minimal projection p in A(t), which is also the spectral projection corresponding
to the eigenvalue 1. The other is the identity u of the compact group G(t)
associated with /. This is the greatest projection in A(t), and also satisfies

u =Pi + ...+pm,

where/?; is the minimal projection in A{^xt), and d,. . . , £m
 a r e t n e eigenvalues

of; on the unit circle.
Using a technique developed in (3), we prove that A{f) is the set of all

operators a of the form

k = 1

E.M.S.—N
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00

where <xk ̂  0, £ ctk < oo, and b belongs to the least convex cone containing the
k = 1

group G(t).
In Section 4, we consider positive operators in a partially ordered Banach

space, and introduce a generalisation of the concept of irreducible non-negative
matrix that is available in this setting. The theory in Section 3 is applicable to
a compact irreducible positive operator t, and indeed to any compact positive
operator that commutes with such an operator t. A special feature of an
irreducible t is that the minimal projection p in A(t) has rank 1.

Finally in Section 5, we specialise our considerations by studying irreducible
positive operators in a complex Banach lattice. A complex Banach lattice is
said to be alignable if it satisfies a certain condition that is obviously satisfied
by the sequence spaces lp and m. For a compact irreducible positive operator
with spectral radius 1 in an alignable space, we obtain almost the whole of the
results proved by Frobenius for an irreducible non-negative matrix. In
particular, the eigenvalues on the unit circle are natural roots of unity, and the
entire spectrum is invariant under the corresponding rotations of the complex
plane. These results go considerably further than the corresponding results in
the classical paper by Krein and Rutman (6).

The authors owe several simplifications to members of the functional
analysis seminar at Newcastle.

2. Locally compact semi-algebras
We collect together here the properties of locally compact semi-algebras

that we need. They are either known theorems or simple consequences of
known theorems.

Let B denote a Banach algebra over the real field R, and let R+ denote the
set of all non-negative real numbers. A non-empty subset A of B is called a
semi-algebra if and only if x+y, xy, axe A whenever x, y e A and <x eR+. A
semi-algebra A is said to be a locally compact semi-algebra if and only if it
satisfies two additional axioms:

(i) A contains non-zero vectors.
(ii) The set of vectors x in A with 11 x 11 ^ 1 is a compact subset of B (with

respect to the norm topology).

It is elementary that a locally compact semi-algebra is a closed subset of the
Banach algebra B and is a locally compact space in the induced topology. A
semi-algebra A is said to be strict if and only if A n (—A) = (0).

We shall be concerned only with commutative semi-algebras. A commutative
semi-algebra A is semi-simple if and only if a2 # 0 for all non-zero a e A, and
is prime if and only if there are no divisors of zero, i.e. if and only if ab ^ 0
whenever a, be A, a # 0, b # 0. An ideal in a commutative semi-algebra A
is a semi-algebra J contained in A such that^aeJ whenever jeJ and ae A.
An idempotent is a non-zero vector e such that e2 = e, and a minimal idempotent
is an idempotent e in A such that eA is a minimal closed ideal in A.
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The spectral radius of an element a of a Banach algebra is denoted by
r(a), i.e.

r(a)= lim || a" | | i
n-*co

The following theorem is (essentially) Theorems 11 and 12 in (2).

Theorem 1. Let A be a semi-simple strict commutative locally compact
semi-algebra. Then the set of minimal idempotents of A is a finite non-empty
set eu e2, ..., em, and efi} = 0 (/ # j). For each non-zero element a of A,
r(a)>0, and there exist non-negative real numbers ku ..., km such that

aet = kfii (i = 1, ..., m),

and max {A,: l^i^m} = r(a).

If also A is prime, then there exists exactly one minimal idempotent p, and

ap = r{a)p {a e A).

The two theorems that follow are simple consequences of Theorem 1.
Theorem 2. Let A be a semi-simple strict commutative locally compact

semi-algebra. Then there exists a positive real constant M such that

\\a\\£Mr(a) (aeA).

Proof. Let eu ..., em be the minimal idempotents in A, let

u = e1+e2 + ...+e,n,
and let

K = inf {|| au ||: a e A and || a || = 1}.

By the local compactness of A, K is attained. But, by Theorem 1, au ^ 0
whenever a # 0. Therefore K > 0 . Using Theorem 1 again, we have

K||a||£||<ra|| = \\ael + ...+aem\\

and the proof is complete.

Theorem 3. Let A be a prime strict commutative locally compact semi-algebra,
and let S = {a: a e A and r(a) =1} . Then

(i) S = {a: a e A andap = p], wherep is the unique minimal idempotent in A;
(ii) S is a compact convex set;
(iii) S is a semi-group with respect to the given multiplication of vectors;
(iv) S is a base for A in the sense that every non-zero element of A has a

unique representation in the form a = Is with A>0 and s e S.
Proof, (i) By Theorem 1, ap = r{a)p for all a in A, and so ap = p if and

only if r(a) = 1.
(ii) By (i), 5 is a closed convex subset of A and hence of B. By Theorem 2,

S is bounded, and it is therefore compact,
(iii) That S is a semi-group is clear from (i).
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(iv) Given ae A with a # 0, we have r(a)>0, and so a = Is with A = r(a),
s — X~lae S. The uniqueness of the representation is easily verified.

Theorem 4. Let A be a prime strict commutative locally compact semi-algebra,
and let S be the compact convex semi-group of all ae A with r(a) = 1. Let as S;

and let G(a) denote the set of all cluster points of the sequence {a"}. Then G(a)
is a non-empty compact Abelian group contained in the semi-group S.

Proof. That G(a) is a group has been proved for an element a of any compact
topological semi-group by K. Numakura (8). We give here the very simple
proof that is available in our case. We recall that a cluster point of the sequence
{a"} is a point x such that every neighbourhood of x contains some a" for
arbitrarily large n. Since we are concerned with a metric topology, the cluster
points of {a"} are the limits Qf convergent subsequences of {a"}.

Since ae S and S is a semi-group, we have a" e S for all n. Since 5 is
compact, it follows that G{a) is a non-empty compact subset of S. Moreover,
every subsequence of {a"} has a subsequence that converges to an element of
G(a). Let b, c e G(a). It is easily verified that be e G{a), and we prove that
there exists g e G(a) such that b = eg. There exist strictly increasing sequences
{m(k)}, {n(k)} of positive integers such that b = lim am(k\ c = lim an(k). Then

k-*m k-*co
we can construct a strictly increasing sequence {k(j)} of positive integers such
that

= m(k(j))-n(j)>r(j-1)>0 Q = 2, 3, ...).

Then the sequence {ar(n} has a subsequence that converges to an element g of
G(d), and we have b = eg.

We have now proved that G(a) is an Abelian semi-group in which every
group equation has a solution, and it follows that G(a) is a group (1, Theorem 5,
p. 128).

3. The semi-algebra generated by a compact linear operator
Let A' be a Banach space over the complex field C, and let B denote the

Banach algebra B(X, X) of all bounded linear operators in X, with the usual
operator norm. Let t e B. We denote by P(t) the least semi-algebra containing

n

t, i.e. the set of all operators of the form £ akt
k with a.k e R+ (k = 1, ..., n).

k = 1

We denote by A{t) the least closed semi-algebra in B containing t, i.e. the
closure of P(t) in B. We denote the spectrum of / by spec(/), and the identity
operator by e.

Theorem 5. Let t be a compact linear operator in X such that r(t) # 0 and
r(t) e spec (/). Then A(t) is a locally compact semi-algebra.

Proof. It is clear that A(ki) = A(i) whenever A>0. Therefore there is no
loss of generality in supposing that r(f) = 1. Then 1 e spec (/), and, since t is
compact, 1 is an eigenvalue of /, i.e. there exists x e X with x # 0 and tx = x.
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Given a = a1r+. . .+aBfBePit) , we have

ax = i<x1 + ...+ctn)x,
and therefore

Let an e Ait) with || an \\= 1 (n = 1, 2, ...)• Since Ait) is the closure of Pit),
there exist &„ 6 Pit) such that

|| dn — bn || <n~1, || 2>n | | ^ 1 (n = 1, 2,. . .) .

We have, for each n,
00

K= Z <*(n,k)tk,
k = 1

where a(«, &) 2:0 (k = 1, 2, ...) and a(n, k) = 0 for sufficiently large k. By (1),

* = I ~ n —

For each fixed k, {<x(n, k)} is a bounded sequence in R+. Therefore, by the
diagonal process, there exists a strictly increasing sequence {«,) of positive
integers such that

lim a(n,., k) = xkeR+ik = 1, 2, ...) (2)
J->00

With an arbitrary positive integer N, we have
N N

and therefore
k = 1

(3)

By the Riesz-Schauder theory for compact operators, there exists a bounded
linear projection q of finite rank such that tq = qt and /"(?(e—q))<\. This
inequality shows that lim || t\e—q)\ = 0, and this with (3) shows that

n-^oo

b= £ cc^ie-q)
k = 1

is a well defined bounded linear operator.
Given a>0, there exists Af such that

II t\e-q) | |<e/8
and therefore, for all «,

00 00

£ *in,k)t\e-q)- £ <x,/(e-g) <e/4.
t = N k = N

Also, by (2), there exists j 0 such that
N-l N-l

* = 1 k = 1

From these two inequalities, we obtain

(4)
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Let Y = qX. Then Y is a finite dimensional linear subspace of X, and if cn

denotes the restriction of bn to Y, then cn e B(Y, Y) (since bnq = qbn), and

The unit ball in B(Y, Y) is compact, and so, by replacing the sequence {bnj} by
a subsequence if necessary, we may suppose that {cnj} converges in operator
norm to c e B( Y, Y). Then cq e B(X, X), and lim | bnjq -cq\\= 0, for

j-co

\\bnjq-cq\\ = \\cnjq-cq\\£\\cnj-c\\.\\q\\.

We may now suppose that j0 is chosen so large that also

\\bnjq-cq\\<s/4 UZJo), (5)

\\anj-bnj\\<e/4 (jZJo) (6)
Then we have, from (4), (5) and (6),

\\anj-(b+cq)\\<e UZJo)-

It follows that lim anj = b + cq, and, since A{t) is closed, b + cqe A(t). There-

fore A(t) is locally compact.

Remarks 1. We have not used the full force of the compactness of the
operator t, but only that t has certain spectral properties, namely that 1 is an
eigenvalue, and that there exists a bounded linear projection q of finite rank
that commutes with t and satisfies r(t(e—q))< 1.

(2). Given any compact linear operator a in X such that r(a) # 0, there
exists a complex number k such that t = Xa has the properties assumed in the
statement of the theorem.

Definition. Let t be a bounded linear operator with r(t) = 1. We say that
t has equibounded iterates if and only if the sequence {|| t"\\) is bounded.

Lemma 1. Let t be a bounded linear operator such that tx — x for some
non-zero vector x and \\ t" \\^M (n = 1, 2, ...). Then for each aeA(t) there
exists <xeR+ such that ax = ax andoc^M~1|| a \\.

Proof. Given a e A(t) and e > 0, there exists b e P(t) such that

\\b-a\\^e\\a\\,

and it is clear that ax = ax for some xeR+. We have b = ait+...+amtm,
and so

(b-a)x = (al + ... + am-a.)x,

Also
(1-6)|| a

Therefore
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Since e is arbitrary, this completes the proof.
Theorem 6. Let t be a compact linear operator such that r(t) = 1. Then

A(t) is a prime strict commutative locally compact semi-algebra if and only if
1 6 spec (0 and t has equibounded iterates.

Proof. We have r(t") = 1 for all positive integers n. If A(t) is a prime
strict commutative locally compact semi-algebra, Theorem 2 therefore shows
that the sequence {|| t" ||} is bounded. Also, by Theorem 1, A{t) contains a
minimal idempotent j?, and we have tp = r(t)p = p. This shows that 1 e spec (t).

Suppose on the other hand that 1 e spec (t) and that 11 t" 11 ^ M (n = 1,2,...).
Since / is a compact linear operator and 1 e spec (t), there exists a non-zero
vector x with tx = x. By Lemma 1, if a, be A{t), there exist a, /? eR+ such
that ax = ax,bx = ^ . a k A T 1 H a H ^ M " 1 \\b\\. Then(a + Z>)x = (a+/?)*,
(ab)x = (a.p)x, from which it follows that a+b ̂  0 unless a = b = 0, and
ab # 0 unless a = 0 or b = 0. Thus A(t) is strict and prime. That A(t) is
locally compact has been proved in Theorem 5, and it is obviously commutative.

Corollary. If t is a compact linear operator with equibounded iterates and
r(t) = 1 e spec (0, then A(t) has a unique minimal idempotent p, and

ap = r(a)p (a e A(t)).
Theorem 7. Let t be a compact linear operator with equibounded iterates,

let r(t) = 1 e spec (t), and let p be the unique minimal idempotent in A{t).
Then

(i) tx = x if and only if px = x;

(ii) the eigenvalue 1 has index 1 ;
(iii) p is the spectral projection for the eigenvalue 1, i.e. the range and null-

space of p are the null-space and range respectively of t — e.

Proof. Let R be the range and N the null-space of t-e. Since r(t) = 1, we
have

tp =pt =p (1)

Given x e N, Lemma 1 shows that/)* = ax with a > 0 . Since p2 = p, we have
a = 1, px = x. Conversely, if px = x, then, by (1), tx = tpx = px = x, and
so x e N. This proves (i) and shows that N is the range of p.

By (1), p(t — e) = 0, which shows that R is contained in the null-space of
p. But the range and null-space of a projection have zero intersection, and so
NnR = (0). It follows at once that the eigenvalue 1 has index 1. For if
(t-e)2x = 0, then (t-e)x e NnR.

Since the index of 1 is 1, we have X = N@R, and so R is the null-space of p.

Theorem 8. Let t be a compact linear operator with equibounded iterates,
let r{f) = 1 e spec (t), let p be the minimal idempotent in A(t), let S(t) =
{a: a e A(f) and r(a) = 1 } , and let G(f) be the set of cluster points of the sequence
{fn}. Then the following conclusions hold.

(i) S(f) is a compact convex base for A(f), and is a semi-group under operator
multiplication.
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(ii) p = lim n

(iii) G(t) is a non-empty subset of S(f), and is a compact abelian group.

(iv) The identity of the group G(t) is a projection u with finite rank.

(v) G(f) is the closure of the set {tku: k = 1, 2, . . . } .

Proof. We have proved that A(t) is a prime strict commutative locally
compact semi-algebra. Thus (i) and (iii) follow at once from Theorems 3 and 4-

Let«n = n~
1(t+t2 + ... + f). Since t e S(t) and S(t) is a convex semi-group,

an e S(t) (n = 1,2,...). Since S(t) is compact, the sequence {an} has at least one
cluster point. Let q be any cluster point of {an}. We have

tan-an = n~\tn+l-t),

and so lim (tan-an) = 0. Therefore tq = q. By Theorem 7 (i), it follows that

pq = q. But pq = r(q)p, and, since q e 5(0, r(q) = 1. Therefore q = p. We
have now proved that {an} has a unique cluster point p, and so lim an = p.
This proves (ii).

Let u be the identity of the group G(t). Then u2 = u, and so u is a pro-
jection. Since u e A(t), u is also a compact linear operator, and therefore has
finite rank.

By definition of G(t), it is clear that G(t) contains all operators of the form
tku (k = 1, 2, ...), and therefore contains the closure of this set of operators.
On the other hand, each element g of G(t) is a cluster point of the sequence {tk},
and, since g = gu, it is a cluster point of the sequence {tku}.

Theorem 9. Let t be a compact linear operator such that r(t) = 1. Then t
has equibounded iterates if and only if every eigenvalue of modulus 1 has index 1.

Proof. Suppose first that t has equibounded iterates and that £ is an eigen-
value with | £ | = 1. Let s = C1t. Then s has equibounded iterates and
r(s) = 1 e spec (s). Therefore, by Theorem 7, 1 is an eigenvalue of s of index 1.
It follows that C is an eigenvalue of / of index 1.

Suppose, on the other hand, that each of the (distinct) eigenvalues
Ci, Ci, •••, Cm of modulus 1 has index 1, and let tt = t-^e. Then, for each /,
there exists a spectral projection p{ for £;, i.e. a bounded linear projection pt the
range and null-space of which coincide with the null-space and range of tt.
Let q = pi +p2 + • • • +pm and s = t(e - q). Then p{p} = 0 (i\ ± j), q is a projec-
tion, and r(s)< 1. We have tpt = £,/?,, and so

t" =

It follows that t has equibounded iterates.
Theorem 10. Let t be a compact linear operator such that r(t) = 1 and t

has equibounded iterates. Let £lt ..., Cm be the eigenvalues of t on the unit circle
| C | = 1, and let tt = £f Jf. Then the following conclusions hold.

(0 ^('i) is a prime strict commutative locally compact semi-algebra.
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(ii) A(t;) contains a unique minimal idempotent pt, pt is a projection of finite
rank, and is the spectral projection for the eigenvalue £,- which has index 1.

(iii) All the groups G(/,) (/ = 1, ..., m) have the same identity u, and u —

Pi + ---+Pm-
(iv) G(tj) is the set of all operators of the form A.lp1 + ... + lmpm, where

(Als ..., Am) belongs to the closure in Cm of the set

{foi. i l .... 1kJ •• k = 1, 2, . . . } , and tjj = CT^j U = 1, - , m).
Proof. We have r(tt) = 1 e spec (t,) and tt has equibounded iterates. Thus

(i) and (ii) are already clear.
Let q = Pi + ---+pm. Since pt is the spectral projection for £;> we have

PiPj = 0 («' /./)> and q is a projection reducing /. Moreover r(t(e—q))<\.
Let M; be the identity of the group G(/(). We have tjPj = /77-, and so ttfj = A/?y,
where k = C/Cf *• Since wf is a cluster point of the sequence {<?}, there exists a
strictly increasing sequence {n(k)} of positive integers such that u{ = lim r"(*},

and also {An(t)} converges, to fi say. Then w,/>y = fipj. But ^ # 0, and «; is an
idempotent. Therefore utpj = p^. Since this holds for y = 1, ..., m, we have
Mj9 = q. Also, since r(t(e — q))< 1, we have

lim * :0-g) = 0,
n-* oo

and therefore ut{e—q) = 0, «f = w# = 9. This proves (iii).
We have

tiu = tj(p! + ...+pm) = rjk
1pl + ... + nk

mpm,

with //; = Cr1^-- Therefore (iv) now follows from Theorem 8(v).
Corollary 1. The following statements are equivalent to each other.

(i) C; is the only eigenvalue of t of modulus 1.
(ii) M = pt.

(iii) u is the only element of

(iv) lim ti = u.

Proof. (i)*>(ii) We have u = pY + . . . +pm and />,py = 0 (i # j).

(u)=>(iii) If M = Pi and 3 e G(r,), then, since G{t^<^S{t^), we have g = gu
= 0/>i = K )̂P,- = Pi = u.

(iii)=>(ii) Suppose that u is the only element of G(/;). Then, since t-u e G(f,),
we have t-u = u. Therefore ptu = u. Butptu = pt.

(iii)=>(iv) If M is the only element of G(<f), then every subsequence of {t") has
a subsequence that converges to u.

(iv)=>(iii) Clear.

Corollary 2. The closed convex hull of G(/;) is the set of all operators of the
form cc1g1 + ...+<xrgrwith r = 2m+l ,0 / - eG r (* j ) , « 7 1 ° (•/ = J> •••> r ) .
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Proof. By Theorem 10 (iv), G = (?(/,) lies in a subspace of B(X, X) of
dimension 2m over R. Therefore its convex hull co(G) is the set of operators
of the stated form. Since G is compact and the mapping

is continuous, co(G) is compact, and therefore closed.

Theorem 11. Let t be a compact linear operator with equibounded iterates,
let r(t) = 1 e spec (t), and let t have m eigenvalues of modulus 1. Then A(t) is
the set of all operators a of the form

k = 1

where r = 2m+\,ak^0(k = 1,2, ...), ft^O, gke G(t) (k = 1,2, ...,r),and

t «k+ t h = r{a).
k = 1 k = 1

Proof. It is clear that each operator a of the stated form belongs to A(t).
Suppose, on the other hand, that a e A(t). Then there exist an e P(t) with
|| an || ̂  || a || such that a = lim an. For each n,

n-*co

* = I

where a(n, k)^0 (n, k = 1,2,...), and a(n, k) = 0 for sufficiently large k
(depending on n). We have tp = p, where /> is the minimal idempotent in
A(t), and anp = r(an)p. Therefore

k = 1

Using the diagonal process and then throwing away all but a suitable subse-
quence, we may suppose that for each fixed k the sequence {<x(n, k)} converges
to 0 ,̂ say. Then

OO

Let b = Y, a*'*> which is well defined since t has equibounded iterates. Then,
k = 1

just as in the proof of Theorem 5, using the fact that r(t(e—«))< 1, where u is
the[identity of the group G(f), we obtain

a(e-u) = bie-u) (1)

Given a positive integer N, let

a(N, n) = J a(«, fc)t*, 6W = £ <x4r\ c(N, «) = aB-a(N, n).
k = 1 * = 1

Plainly c(N, n) 6^4(0, lim a(N, n) = ft^, lim an = a. Therefore
n—• oo n-»-oo

lim c(JV, «) = cN,
n-»oo
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say, and, since A{t) is closed, cN e A(i). Also cN = a — bN. We have lim bN = b,

and therefore lim cN = c, say, c e .4(0, and c = a—b.
N-as

We have now proved that a = b+c, and therefore, by (1),
a = b + cu.

Since f*w e G(0, we have

Also, since c~o(G(t)) c S(t), 0 $ co(G(t)). Therefore

A(t)u^R+co(G(t)).

By Theorem 10, Corollary 2, it follows that

cu =

with r = 2m+1, Pk^0, gk e (7(0 (A: = 1, ..., r).
Finally, we have ap = r(a)p, tkp = p, gkp = p. Therefore

k = 1 k = 1

Corollary. Let p be the minimal idempotent in A(t) and u the identity of the
group G(t). Then p is the least and u is the greatest projection in A(t) in the
sense that

qp = p, qu = q

for every non-zero projection q belonging to A(t).

Proof. Let q be a non-zero projection belonging to A(t). Then r(q) = 1,
and so qp = p. Also, by Theorem 11,

k = 1

withr = 2 m + l , a t ^ 0 ( f c = 1,2, ...), j?*^0, gk e G(t) (k = 1, ..., r), and

I t
k = 1 k = 1

For each g e G(t), we have gu = g, i.e. g(e — u) = 0. Let s = /(e —M). Then
00

q(e-u)= £ a.kt\e-u)
4 = 1

= {«!*+ £ a/"1}*-
I = 2

(
CO \ OO

Y at'*"1 1 = Z a*' w e therefore have
k=2 ) k=2

{ 4
But q(e—u) is a projection, and therefore q(e — u) = 0,q = qu.
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That A(t) may contain a projection different from p and « is shown by the
following simple example.

Example. Let [5l, 52, <53, <54] denote the 4 x 4 diagonal matrix with diagonal
elements^, <52, <53, 54. Let t = [1, /, - 1 , -i\(i2 = - 1 ) . Then, as an operator
in C4, t has equibounded iterates, and r(t) = 1 e spec (?)• We have

/3 + ,4) = t l ) o, o, 0], i(t2 + t4) = [1, 0, 1, 0], ?4 = [1, 1, 1,1].

Thus A(t) contains the three projections p = [1,0,0,0], q = [1,0, 1,0],
u = [1,1, 1,1].

4. Irreducible positive operators in a partially ordered Banach space

Let X be a Banach space over C such that X = XR@iXR, where XR is a
closed real subspace of X. By a cone in XR we mean a subset K of A"R such that

K, R+K<zK, Kn(-K) = (0).

We suppose that we are given a closed cone X+ in XR such that XR is the closure
of X+ — X+, and consequently, the complex linear hull of X+ is dense in X.
We call X+ the positive cone in Z, and regard XR as a partially ordered linear
space with the relation ^ of partial order given by x^y (or y^x) meaning
y—xeX+. We exclude the trivial case X = (0), and hence exclude also
X+ = (0). We call A'with such XR and X+ a. partially ordered Eanach space.

Following Namioka (7), we shall say that a cone K is full if and only if it
satisfies the two extra conditions: (i) K<= X + , (ii) X+n(K— X+)<=K. In terms
of the partial order relation, (ii) states that x e K whenever 0^x^k for some
ksK.

A non-negative operator is a bounded linear operator a in I such that
aX+ cX + , a positive operator is a non-zero non-negative operator, and a
strictly positive operator is a positive operator that maps all non-zero points of X
on to non-zero points. Similarly, a continuous linear functional / on X is said
to be non-negative, positive, strictly positive if and only if f(X+)cR~l,
(0) * f(X+)<zR+,f(X+ ~(0))ctf+ ~(0), respectively.

A positive operator a is said to be reducible if and only if there exists a full
cone K such that aK<=K, K ¥= (0), and K is not dense in X + . An irreducible
positive operator is a positive operator that is not reducible. This definition
is derived by abstraction from the concept of irreducible non-negative matrix
introduced by Froberiius; see Gantmacher (4, Chapter 3) and Wielandt (9).

It is clear that if t is a positive operator that maps each non-zero point of
X+ on to an interior point of X+ relative to XR, then a full cone K with K # (0)
and tKcK Contains interior points of A"1", and hence contains X + . Thus all
such operators are irreducible. However, it is easy to construct irreducible
positive operators that are not of this kind.

Lemma 2. Let a be an irreducible positive operator, and let b be a positive
operator such that ab — ba is non-negative. Then b is strictly positive.
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Proof. Let K = {x: x e X + and bx = 0}. Then K is a closed full cone.
Since b # 0 and A'is the closed linear hull of A"1", K # X+. Since O^bax^abx
= 0(XB K), we have bax = 0(xeX), and so aKczK. Therefore K = (0) and
b is strictly positive.

Lemma 3. If X+ is locally compact (in the norm topology) and every positive
operator is strictly positive, then X has dimension 1.

Proof. If there exists a positive continuous linear functional / that is not
strictly positive, then with any non-zero point u of X + , the bounded linear
operator w®/, given by («®/)(/) = f(x)u, is positive, but not strictly positive.
Thus we may suppose that X+ is locally compact and that every positive
continuous linear functional is strictly positive. Let X* + denote the set of all
non-negative continuous linear functional on X. Then, since X+ is a closed
convex set, and therefore weakly closed, X+ = {x:f(x)^0(fe X*+)}. If X* +

does not contain two linearly independent elements, then there exists a single
feX*+ such that X+ = {x:f(x)^0}. But then f(x) = 0 implies
xe X+n( — X+), x = 0. Thus/is a linear isomorphism of I o n to C, and X
has dimension 1.

Suppose then that X*+ contains two linearly independent elements fu f2.
Since A"1" is locally compact, there exists a compact convex base K for X+ (5,
2.4), i.e. a compact convex subset of X+ ~(0) such that X+ = R+K. Each
positive continuous linear functional is bounded, and bounded away from zero
on K, and so n defined by

H = sup{A:A^0,/!-A/26 X*+}

is finite and non-zero. Then/ = fl — nf2 is positive. But this is absurd, for it
implies that there exists e>0 such that/—e/2 £ X* + .

Theorem 12. Let p be a compact irreducible positive projection. Then the
rank of p is 1.

Proof. Let Y = pX, YR = pXR, Y+ =pX + . Then (Y, YR, Y+) is a
partially ordered Banach space in the sense of the present Section. Y has
finite dimension, and therefore Y+ is locally compact. If the rank of p is
greater than 1, then, by Lemma 3, there exists a positive operator T on Y that
is not strictly positive. Then the operator t on X given by t = TOp is a positive
operator that is not strictly positive, and it commutes with p, since p is the
identity operator on Y. But this is impossible, by Lemma 2.

Lemma 4. Let A be a semi-algebra of non-negative operators. Then A is
strict, and if every non-zero element of A is strictly positive, then A is prime.

Proof. Let a, be A with a ^ 0. ThenFthere exists xe X+ with ax>0, and
so (a+b)x = ax+bx^ax>0, a+b ¥= 0. If a and b are strictly positive, then
for every A:>0, (ab)x = a(bx)>0.

Lemma 5. Let a be an irreducible positive operator, and let b be a strictly
positive operator such that ab = b. Then b is irreducible.
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Proof. Let J be a full cone that is not dense in X+ such that bJcJ; and let

K = {x: O^x^bj for some7 e J } .

Then K is a full cone. Since bJcJ and J is full, we have K<= J, and so K is not
dense in A"1". If xeK, then O^x^bj for some ye J. Therefore O^ax^abj
= bj, and so ax e K. Thus a/Cc/£, and so K = (0). But bJ <= /£, and so bJ = (0).
Since 6 is strictly positive, this gives J = (0), b is irreducible.

Theorem 13. Let t be a compact irreducible positive operator with non-zero
spectral radius. Then A(t) is a prime strict commutative locally compact semi-
algebra, and the minimal idempotent p in A(t) is an irreducible operator and has
rank 1.

Proof. By the Krein-Rutman theorem (6, Theorem 6.1), r(t) is an eigenvalue
of t. Therefore, by Theorem 5, A(t) is a locally compact semi-algebra. It is
obviously commutative, and by Lemma 4 it is prime and strict. We have

tp=pt = r(t)p.

Therefore, by Lemma 2, p is strictly positive, and then by Lemma 5, p is
irreducible. Finally, by Theorem 12,/? has rank 1.

Theorem 14. Let t0 be a compact irreducible positive operator with non-zero
spectral radius, let p0 be the minimal idempotent in A(to~), and let t be a compact
positive operator that commutes with t0. Then the following conclusions hold. .

(i) A(t) is a prime strict commutative locally compact semi-algebra.
(ii) lit) # 0.
(iii) t' = (r(t))~1t has equibounded iterates, and r(r') = l e spec (/').
(iv) tp0 = r(t)p0.

Proof. By Theorem 13, there exists u e X+, u # 0, such that p0X = Cu.
Thus there exists a strictly positive continuous linear functional / such that

pox = f(x)u (x e X).

Since t commutes with t0 and p0 e A(t0), t commutes with p0, and so

f(x)tu = f(tx)u (x e X).

By Lemma 2, t is strictly positive, and therefore tx>0 &ndf(tx)>0 whenever
x>0. Therefore tu = AM with A>0. It follows that r(t)> 0. We can therefore
apply the argument used in the proof of Theorem 13, and we see that A(t) is a
prime strict commutative locally compact semi-algebra. We have now proved
(i) and (ii), and clearly r{t') = 1. Therefore, by Theorem 6, 1 espec(f') and
t' has equibounded iterates.

Since tu — lu, we have tp0 = kp0. Let p be the minimal idempotent in
A(t). Then pt = tp = r(t)p, and so

r(t)pp0 = tPPo = PtPo = P&Po) = *PPo-

Also, since p and p0 are strictly positive, pp0 # 0, A = r(t).
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5. Irreducible positive operators in a complex Banach lattice

Let A' be a linear space over C, and XR a real linear subspace of X such that
X = XR@iXR, i.e. such that each xe X has a unique expression in the form
x = x t + ix2 with xls x2 e A^. We define Re (x) for such x by

Re(x) = xv

Clearly the mapping x-»Re (x) is a real linear projection of X on to XR.
Let I"1" be a cone in XR, and let A^ be given the corresponding partial

ordering. We say that (X, XR, X+) is a complex linear lattice if and only if
there exists a mapping x->| x | of X into X+ that satisfies the following axioms.

LI. Re (eiex) g | x | for all real 0.

L2. If Re (ei9jc)gj> for all real 9, then | x I £y.

The axioms state that the set {Re (ewx) :6eR} has a least upper bound | x |.
We list in the following lemma some elementary properties of a complex linear
lattice.

Lemma 6. Let (X, XR, X+) be a complex linear lattice. Then for all x,y e X
and aeC, we have:

(i) \x+y\g\x\ + \y\;

(ii) | ax | = | a | | x | ;
(iii) \\x\-\y | | £ | x-y |;
(iv) 11 x 11 = | x |;
(v) | R e ( x ) | g | x | ;
(vi) X+ = {x: x = | x | } ;
(vii) x = 0 // and o«/y // | x | = 0 .

Proof, (i) We have R e ( e i f l x ) ^ | x | and Re (ewy)^| y \ for all real 0.
Therefore

and so, by L.2, | x+j ' | g | x | +1 y |.
(ii) Straightforward.
(iii) By (i), I x | ^ | x-j> j +1 y |, a n d so | x | -1 j | ^ | x - j |. Interchanging

x and y and using (ii), we have
\y\-\x\£\y-x\ = | - l ( x - j ) | = \x-y\.

Since — 1 ^ cos 0 g 1, we now have

Re (eie(| x | - | y |)) = (cos 0)(l * l~l J 1)^1 x-y | (0 6^) ,
and therefore | | x | — | j | | ^ | x — ^ | .

(iv) We have Re (ew \ x | ) = (cos 0)| x | ^ | x | (0eJ?), and so 11 x \ | g | x |.
On the other hand, | x | = Re (em\ x\)^\\x\\.

(v) Re (ew Re (x)) = (cos 9) Re (x) ̂  | x |, since + Re (x) = Re (± x) ̂  | x |.
(vi) If xe X+, then Re (ei9x) = (cos0)xgx, and so | x | g x . But also

x = Re (e>ox)<i| x |. Thus x = | x | . On the other hand, by definition,
| x | e X+ for all x. Thus x e A"1" whenever x = | x |.
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(vii) If x = 0, then Re (ewx) = 0 for all real 0, and so | x | ^ 0 . Therefore
| x | = 0 . On the other hand, if | x | = 0, and x = u + iv with u,ve XR, we
have (cos0)w-(sin0)ugO for all real 0. By taking 0 = 0,n,n/2,3n/2, we
obtain M = v = 0, * = 0.

Definition. A complex linear lattice (X, X~R, X+) with modulus | . |, is
called a complex Bartach lattice if and only if the following axioms are also
satisfied.

L3. X is a complex Banach space.

L4. I f | x | ^ | j | , t h e n | | x | | ^ | | j | | .

Lemma 7. Let {X, XR, X+) be a complex Banach lattice. Then we have:

(0 II Mi l = 11*11 {xeX);
(ii) | |Re (x ) | | ^ | | x | | (xeX);
(iii) A',, is a closed real linear subspace of X;

(iv) X+ is a closed cone in XR, and XR = X+ — X* ;

(v) (X, XR, X+) is a partially ordered Banach space in the sense of Section 4.

Proof, (i) Lemma 6 (iv) and L4.

(ii) Lemma 6 (v) and L4.

(iii) This follows from (ii) and the linearity of the mapping x->Re (x).

(iv) By Lemma 6 (iii), we have || | x | — | y | ||:g|| x—y ||. Therefore the
mapping x-*\ x | is continuous. Lemma 6 (vi) now shows that X+ is closed.
For xe XR, we have x^\ x |, and so xe X+ — X + .

(v) This follows from (iii) and (iv).

Lemma 8. Let x be an element of a complex Banach lattice such that
Re (x) = | x \. Then x = \ x \.

Proof. Let x = u + iv with u, v e XR. We are given that u = \ x \, and so

(cos 6)u + (sin 6)v = Re (e ~ w(u + iv)) ̂  | u 4- iv \ = u (OeR).

Therefore
(sin 0)v^(l - cos 9)u (G e R),

cos - j v^ I sin - J M (0<6<n).

Letting 0->O and using the fact that X+ is closed, we obtain v^LO. A similar
argument, starting with e'e(u + iv) gives — v^0. Thus v = 0,andx = u = | x |.

Definition. A linear mapping d of a complex linear lattice X on to X such
that

|rfx| = | x | (xeX)

is here called a rotation of X. A complex linear lattice X is said to be alignable
if and only if for each xe X there exists a rotation d of X such that x = d \ x \.

Since | x | = 0 if and only if x = 0, a rotation d is a linear isomorphism.
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Also, its inverse d'1 is a rotation, for we have
\d-1x\ = \d(d-1x)\ = \x\ (xeX).

It is clear that a rotation of a complex Banach lattice is an isometry.

Theorem 15. Let X be an alignable complex Banach lattice. Let t be a
compact irreducible positive operator in X with r(j) = 1, and let a be a linear
mapping of X into itself such that

\ax\^t\x\ (jceX).
If there exists a non-zero vector y such that ay = Cy and \ £ I = 1 > then t \ y \
= | y |, and there exists a rotation d of X such that

(i)d\y\=y,
(ii) a= tdtd~\

Proof. Suppose that ay = fy with y # 0 and | C I = 1, and let
w = t\y\ — \y\. Then

and so w^O. Let p be the minimal idempotent in A(t). Then pt = p, and so
pw = pt | y | -p | y | = p | y \ -p \ y | = 0.

But;? is strictly positive, and sow = 0, t\y\ = \y\.
Since X is alignable, there exists a rotation d such tha t d \ y \ = y. Let

ft = ^-xd-^ad. Then
^ I y I = r 1 * " W I y I = r ^ - > =C1d-Hy = d-1y=\y\ = t\y\,

(t-b)\y\=O (1)
Also

^t\dx\ = t\x\ (xeX) (2)

Let c be denned by ex = Re(bx)(xeX). By(2),||bx | | £ |
and so 6 and c are bounded (complex and real) linear operators. For xe X+,
(2) gives

ex = Re(bx)^\bx\^t\x \ = fcc, .(3)
and so t—c is a non-negative operator. By (1), since /1 >> | e XR,

(t-c)\y\=0.
Sincep has rank 1 and t\y\ = \ y\, the range ofp is spanned by | y |, and so

(*-c)p = 0 (4)
Butp(t—c) is non-negative, and so/>(/—c)—(?—c)/? is non-negative and Lemma
2 is applicable. By (4), t—c is not strictly positive, and so t—c = 0. Therefore,
by (3),

Re (bx) = tx=\bx\ (xe X+).
By Lemma 8, it follows that bx = \ bx \ = tx (x e A"1"). But X is the complex
linear hull of X+, and so b = t, a = Cdtd'1.

Lemma 9. Let d be a rotation of a complex linear lattice X, let Y = X,
YR = dXR, y + = dX+, and let \y\Ybe defined by

\y\r = d\y\ (yeV).
E.M.S.-
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Then (Y, YR, Y+) is a complex linear lattice with modulus given by \ . \Y, and the
mapping d is an order isomorphism of(XR, X+) on to (YR, Y+).

If(X,XR,X+) is a complex Banach lattice, then so is (Y, YR, r + ) .

Proof. Since dis a complex linear isomorphism of X onto Y and dXR = YR,
we have Y = YR®iYR, and the real part operation in Y is given by

ReY(dx) = dRc(x) (xeX) (1)

Moreover Y+ is a cone in YR and x e X+ if and only if dx e Y+. Therefore
d is an order isomorphism of (XR, X+) on to (YR, Y+). Let ^ y denote the
partial order relation given by Y+ in YR. Then we have Re (ewx)^u if and
only if d Re (ewx) ^ Ydu, i.e. (by (1)) if and only if Rey (e

iedx) ^ Ydu. Therefore
( Y, YR, Y+) is a complex linear lattice with the modulus given by | y \ Y = d\y\.

Suppose now that (X, XR, X+) is a complex Banach lattice, and that
| y \Y^Y\ Z \r- Then d\ y\^Yd\ z\, and, since d is an order isomorphism,
| y | ^ | z |, || y || ̂  II 2 II- Thus (Y, YR, Y+) is a complex Banach lattice.

Lemma 10. Let t be a non-negative operator in a complex Banach lattice X.
Then

\tx\^t\x\ (xeX).

Proof. Since tX+ <= X+, we have tXR <= XR, and therefore t Re (x) = Re (tx).
Therefore, for all x e X and 9 e R, we have

Re (ewtx) = Re O(eifljc)) = f(Re (ei8jc)) ̂  /1 x |;

and so, by L2, \ tx \^t \ x \.

Theorem 16. Let X be an alignable complex Banach lattice. Let t be a
compact irreducible positive operator in X with r(t) = 1, and let z be the eigen-
vector of t with z>0, || z || = 1, and tz = z. Let £ be an eigenvalue of t with
| C I = 1; y a corresponding eigenvector, ty = C,y, \\ y || = 1.

Then \ y \ = z, and there exists a rotation d with the following properties.

(i) y = dz.
(ii) t=£dtd~1.
(iii) tT^t is an irreducible positive operator with respect to the complex

Banach lattice (Y, YR, Y+), where Y = X, YR = dXR, Y+ = dX+.

Corollary 1. The spectral projection corresponding to the eigenvalue £ has
rank 1.

Corollary 2. If Xe spec (t), then £A, £~ 1X e spec (t).

Proof. Lemma 10 shows that we can apply Theorem 15 with a = t. We
have 11 y | = | y \, || | y \ \\ = \\ y || = 1. Since, by Theorems 7 and 13, the
eigenspace corresponding to 1 has dimension 1, it follows that | y \ = z. Also,
by Theorem 15, there exists a rotation dsuch that d\y\ = y, and t = Cdtd'1.
By Lemma 9, (Y, YR, Y+), given by Y = X, YR = dXR, Y+ = dX+, is a
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complex Banach lattice. We have

and so C"1/ is a positive operator with respect to (Y, YR, Y+).
Let K be a full cone with respect to the positive cone Y+ such that K ± 0,

K'vs. not dense in Y+, and (,~HK<=K. Let J = d'^K. Since d'1 is an order
isomorphism and isometry, J is a full cone with respect to X + , J ^ 0, J is not
dense in A"1".

tJ = td~lK = d-'ir'OK^d-'K = J.
But this is impossible, and so C"1/ is irreducible.

To prove Corollary 1, we note that the spectral projection corresponding to
the eigenvalue C of t is the spectral projection corresponding to the eigenvalue 1
of C"1'- Since £~it is irreducible, this projection has rank 1.

To prove Corollary 2, suppose that A is a non-zero point of spec (/)• Then
A is an eigenvalue of / and there exists v # 0 with tv = Iv. We have

tdv = CAu = iXdv, td~lv = C^d'hv = C 1 ^ " 1 " -
Since dv # 0 and (i"1!) ^ 0, this shows that £A and C"1^ belong to spec (/)•

Theorem 17. Let Xbe an alignable complex Banach lattice, let tbea compact
irreducible positive operator in X with r(t) = 1, and let £ls ...,C,mbe the eigen-
values of t on the unit circle \ £ \ = 1. Then the following conclusions hold.

(i) Each of the eigenvalues £l5 ..., £m is simple.

(ii) £i> •••» Cm we ?Ae raota of the equation Cm = 1.
(iii) exp (Inijm) spec (<) = spec (f).

Proof, (i) This follows at once from Theorems 9, 14 and 16, Corollary 1.
(ii) By Theorem 16, Corollary 2, C,-£j a n d Cf1 Cy belong to spec (t) for all

i,j (1,2, ...,m), and they are therefore members of the set (Ci, C2> •••> Cm)-
Thus this set is a group, and since it has exactly m elements, each element
satisfies the equation (m = 1.

(iii) This now follows from Theorem 16, Corollary 2, if we take £ = exp
(2ni/m).
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