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1. Ito and Seidman in [5] define a BG space as a locally convex space in which there
exists a bounded set with a dense span. In this note we extend the idea to a class of not
necessarily locally convex linear topological spaces (l.t.s.). We note the link between the idea
of a BG space and Weston's characterization in [7] of separable Banach spaces. Finally we
examine cr-BG spaces; here the bounded set in the definition of a BG space is replaced by the
union of a sequence of bounded sets.

2. Let A be a subset of a linear space E. If k ^ 2 and A+A £ kA, then A is called a
k-convex set. An l.t.s. which has a base of neighbourhoods of the origin consisting of balanced
fc-convex sets (for some fixed k) is called a k-convex l.t.s.

Every locally convex space is a fc-convex l.t.s. for any k ^ 2. Also, a locally bounded
space (i.e. an l.t.s. which has a bounded neighbourhood) is a ^-convex l.t.s. for some k ^ 2.
Thus a ^-convex l.t.s. need not be a locally convex space. If for some fixed k, Ea is a fc-convex
l.t.s. for each a in an index set *P, then the product space X(isa :ae¥) is a ^-convex l.t.s.
However the product of a sequence of complete Hausdorff locally bounded spaces need not
be a fc-convex l.t.s. for any k (see for example, p. 179 of [6]).

In [6, p. 170] Simons defines the notion of a A-pseudometric. It is clear from [6, Theorem 4]
that if (E, u) is a fc-convex l.t.s., then for some X, there is a family (/?„) of u-continuous
A-pseudometrics which give the topology u.

Let £ be a fc-convex l.t.s. As in [5], let $ ( £ ) denote the set of all families cp = (cpy) of
continuous A-pseudometrics (for some fixed X) which give the topology of E, and if
<p = (q>y)e<!>(E), let

Sv = (x: xeE, sup <py(x) < oo).

The proof of the equivalence of (A) and (B) in Theorem 1 of [5] goes through for a ^-convex
l.t.s. if we replace " seminorm " by " vl-pseudometric " throughout. We use the fact [6,
Theorem 6] that if(<py)e<!>(E), then a subset A of if is bounded if and only if q>y(A) is bounded
for each y.

If we call an l.t.s. which contains a bounded set with dense span, a BG space, we
immediately have the following generalization of the corollary of Theorem 1 of [5].

THEOREM 1. With the notation above, a Hausdorff k-convex l.t.s. E is a BG space if and
only if there is q> in <P(£) such that 5 9 is dense in E.

LEMMA 1. If A is a balanced k-convex bounded set in an l.t.s. (E, u), then the family
(Jc~"A: n = 1, 2, ...) of sets is a base of neighbourhoods for a locally bounded k-convex topology
vA on the linear span EA of A which is finer than the u-induced topology. The space (EA, vA) is
Hausdorff and complete if(E, u) is Hausdorff sequentially complete and A is u-closed.

* Present address: Institute of Technology, Benin City, Nigeria.

https://doi.org/10.1017/S001708950000121X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000121X


106 S. O. IYAHEN

For the situation of a locally convex space (E, u), Lemma 1 is well known (see for example
the proof of Chapter III, Section 3, No. 4, Lemma 1 of [1]).

It is easy to see that in a fc-convex l.t.s., any bounded set is contained in a balanced
^-convex bounded set.

THEOREM 2. A (sequentially complete) Hausdorjf k-convex l.t.s. (E, u) is a BG space if and
only if there is a one-to-one continuous linear map tfrom a {complete) Hausdorjf locally bounded
k-convex l.t.s. F into (E, u) such that t(F) is u-dense.

Proof. If (E, u) is a BG space, let A be a balanced fc-convex bounded set which has a
dense span. With (EA, vA) as in Lemma 1, let t be the identity map from (EA, vA) into (E, u).

Given a subset A of an l.t.s. E, and fe^2a fixed real number, the intersection C of the
non-empty set of all (closed), balanced fc-convex subsets of £ containing A is (closed) balanced
and ^-convex. The set C is called the (closed) balanced k-convex envelope of A.

LEMMA 2. In a Hausdorff k-convex l.t.s. E, the balanced k-convex envelope C of a pre-
compact set A is precompact.

Proof. Let U be an open balanced /fc-convex neighbourhood in E. Since A is precompact,
there is a finite subset B of E such that A e B+ U, and therefore CzB'+U, where B is a
compact set, being the closed absolutely convex envelope of the finite set B. As B' is compact
and U is open, there is a finite subset D of B' such that C £ D+U.

Let us call a linear map from one l.t.s. G into another H a precompact (compact) map if
there is a neighbourhood which is mapped into a precompact (compact) set in H.

Weston in [7] proves that a Banach space (E, u) is separable if and only if there is a
one-to-one compact map t say, from a Banach F into (E, u) such that t(F) is u-dense. It is
shown in [2] that this result is still valid if" Banach space " is replaced by " complete Hausdorff
locally bounded space ".

THEOREM 3. A (complete metrizable) metrizable k-convex l.t.s. (E, u) is separable if and
only if there is a one-to-one (compact) precompact linear map t say, from a (complete) Hausdorff
locally bounded k-convex l.t.s. F into (E, u) such that t(F) is u-dense.

Proof. Let (E, u) be a separable metrizable ^-convex l.t.s. and let (Un) be a shrinking
base of w-neighbourhoods. If (xn:n = 1, 2 , . . . ) is a countable w-dense subset of E, then for
each n, there is a non-zero real number <xn such that an xn e Un. As (£/„) is shrinking, the sequence
(an xn) thus converges to zero in (E, u). By Lemma 2, the balanced fc-convex envelope A of
(anxn:n = 1, 2 , . . . ) is precompact; its closure is compact if (E, u) is complete. We now
apply Lemma 1. With F= (EA, vA), the identity map t from F into (E, u) is precompact,
being compact if (E, u) is complete.

COROLLARY. A separable infinite dimensional Fre'chet space contains a dense subspace on
which there is a finer Fre'chet space topology.

THEOREM 4. A complete metrizable k-convex l.t.s. (E, u) is finite dimensional if and only if
t(F) is closed in (E, u) whenever t is a continuous linear map from a complete metrizable k-convex
l.t.s. F into (E, u).
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Proof. Suppose first that (£, u) is separable. Then by Theorem 3, there is a one-to-one
compact (and therefore continuous) linear map t say, from a complete metrizable A>convex
l.t.s. F into (£, u) such that t(F) is w-dense. If t has a closed range, t(F) = E and / is a
topological isomorphism by Banach's inversion theorem. Therefore (£, u) has a compact
neighbourhood and is thus finite dimensional.

If (£, w) is not necessarily separable, let Eo be a subspace of E of countable dimension.
Let Et be the closure of Eo in Eand let ul be the «-induced topology on Ev. Then (Eit u{) is
a separable complete metrizable A>convex l.t.s. If t(F) is closed in (£, u) whenever t is a
continuous linear map from a complete metrizable £>convex l.t.s. F into (£, u), then by the
argument above, the dimension of £x is necessarily finite. The dimension of E must then be
finite, otherwise, we could choose Eo as above to have countably infinite dimension.

COROLLARY. If E is a Frichet space and every continuous linear map from any Frichet
space into E has a closed range then E is finite dimensional.

Ito and Seidman in [5, p. 287] call a Hausdorff locally convex space E a HBG space if
every closed linear subspace of £ is a BG space. Let (£", u) be a normed linear space of infinite
dimension. If v is the weak topology associated with u, then it follows from [5, Theorem
2(D)] that (£, v) is a BG space. In fact (E, v) is a HBG space. As (E, v) is not quasibarrelled,
(£, v) is not the quotient of a product of normed linear spaces.

Cf. [5, p. 287, questions 2 and 3].

3. Let E be an l.t.s. We call E a cr-BG space if there is a sequence of bounded sets, the
union of which spans a dense subspace of E.

Every BG space is a CT-BG space. Also, every separable l.t.s. is a <r-BG space.
If E is a linear space of countably infinite dimension, then under its finest locally convex

topology T(£ , E*), E is separable (and complete) and therefore the space (E, T(£ , £*)) is a
cr-BG space. As each T(£ , E *)-bounded set is contained in some finite dimensional linear
subspace of E, (£, T(£, E *)) is not a BG space.

It follows from [1, Ch. Ill, section 2, exercise 5] that a metrizable Ar-convex l.t.s. is a BG
space if and only if it is a cr-BG space. The example of Ito and Seidman [5, p. 286] then shows
that a Fre'chet space need not be a cr-BG space. However as in Theorem 2 of [5], a product
of BG (cr-BG) spaces is a BG (<r-BG) space, and the image under a continuous linear map of a
BG (crBG) space is of the same sort.

For a fixed k ^ 2 and each positive integer «, let (En, un) be a k-con\e\ l.t.s. such that
En c £ n + 1 . If E = \Jn(En), then there is a finest linear topology u say, on E such that each
identity map (En, un) -> E is continuous [4, Definition 2.1]. By an application of Proposition
2.2 of [4], we see that (£, u) is a A>convex l.t.s., and that if each (£„, un) is locally convex, so is
(£, u). The space (£, u) is called the generalized strict k-convex inductive limit of (En, un). If
in addition, each un coincides with the topology induced on En by un+l, then (£, u) is called
the strict k-convex inductive limit of (£„, wn).

If (E, u) is the strict A>convex inductive limit of (En, un), then the topology u coincides
with un on each £„, (£, u) is Hausdorff if each (£„, «„) is [4, Proposition 2.7, Cor. 1], and in
this case if each (£„, un) is complete, (£, u) is also complete [4, Proposition 2.8, Cor.], but is
not metrizable [4, Proposition 2.9, Cor.]. We shall prove:
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THEOREM 5. The strict k-convex inductive limit of a sequence of complete Hausdorff
k-convex c-BG spaces is also a cr-BG space.

This theorem will follow immediately from the following result.

LEMMA 3. If (E, u) is the strict k-convex inductive limit of (En, un) where each (En, un) is
complete, k-convex and Hausdorff, then a subset of E is u-bounded if and only if it is contained
in some En and is unbounded.

Proof. Suppose that A is a w-closed balanced fc-convex w-bounded set which is not
contained in any En. Then there is a subsequence (n(i)) of (n) such that for each i, some point
of Ar\En{i+1) is not in EnW and {E, u) is the strict fc-convex inductive limit of (En(i), Mn(i)).
Observe that {E, u) is complete and Hausdorff and that each En^ is w-closed.

As in Lemma 1, let EA be the linear span of A and vA the linear topology on EA with the
family (k~mA:m = 1, 2, . . . ) of sets as a base of neighbourhoods. Similarly, let Fn(i) be the
linear span of Ac\En^ and un(j) the linear topology on Fn(i ) with the family (k~m(AnEn^):
m = 1, 2 , . . . ) of sets as a base of neighbourhoods. The spaces (EA, vA), (FnW, v^) are com-
plete Hausdorff locally bounded A>convex spaces, Fn(1) <= Fn(2) <= Fn(3) a . . . , EA = U-^nco'
and z;n(i) coincides with the rn(i+1)-induced topology on Fn(i). If (EA, w) is the strict fc-convex
inductive limit of (Fn(t), vn^), w is finer than the w-induced topology on EA, and it follows that
the identity map from (EA, w) onto (EA, vA) has a closed graph. By Theorem 4.2 of [3], we
see that vA = w, implying that (EA, w) is metrizable. As this is not possible, the set A must be
contained in some En, and is wn-bounded because A is w-bounded and u induces the topology
wn on each En.

Thus any strict inductive limit of a sequence of Banach or separable Frechet spaces is a
ff-BG space. Also, if E is the sequence space /p(0 <p < 1) and Fis the algebraic direct sum
of countably many copies of E, then under the finest linear topology for which the injection
maps E -* F are continuous, F is a cr-BG space.

There is a parallel to Theorem 2.

THEOREM 6. If a (sequentially complete) Hausdorff k-convex l.t.s. (E, u) is a cr-BG space
but not a BG space, then there is a one-to-one continuous linear map, t say, from F into (E, u)
such that t(F) is u-dense, where Fis the generalized strict k-convex inductive limit of a sequence
of (complete) Hausdorff locally bounded spaces.

Proof. Let a Hausdorff A:-convex l.t.s. (E, u) be a c-BG space but not a BG space. Let
(An) be a sequence of w-closed balanced fc-convex u-bounded sets, the union of which spans a
dense linear subspace F of (E, u). We may assume that A1 c= A2 <= A3 c : . . . ; and since no
An spans F, we may further assume that for each n, An+1 $ EAn. If vAn is the topology on EAn

defined as in Lemma 1, let (F, v) be the generalized strict fc-convex inductive limit of (EAn, vAi)
and let the map t: F-* F be the identity map.

The author wishes to thank the referee for his suggestions.
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