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If S is a regular semigroup then an inverse transversal of S is an inverse subsemigroup
T with the property that \T C\ V(x)\ = 1 for every x eS where V(x) denotes the set of
inverses of x e S. In a previous publication [1] we considered the similar concept of a
subsemigroup T of S such that \T f~l,4(;c)| = 1 for every x s S where A(x) = {y e S;xyx =
x} denotes the set of associates (or pre-inverses) of x e S, and showed that such a
subsemigroup T is necessarily a maximal subgroup Ha for some idempotent a e S.
Throughout what follows, we shall assume that 5 is orthodox and a is a middle unit (in the
sense that xay = xy for all x,y e 5). Under these assumptions, we obtained in [1] a
structure theorem which generalises that given in [3] for uniquely unit orthodox
semigroups. Adopting the notation of [1], we let T n A(x) = {x*} and write the subgroup
T as Ha = {x*;x e 5}, which we call an associate subgroup of S. For every * e S we
therefore have x*a = x* = ax* and x*x** = a = x**x*. As shown in [1, Theorems 4, 5]
we also have (xy)* = y*x* for all x,y s S, and e* = a for every idempotent e.

Our objective here is to consider congruences on such a semigroup. Since the
building bricks in the structure theorem [1] are the subgroup Ha and the sub-bands aE,
Ea of the band E of idempotents of S, these three subsemigroups will play an important
role in what follows.

As we shall see, the study of congruences is intimately related to certain residuated
mappings that arise naturally. We recall that if A, B are ordered sets then a mapping
f:A-*B is said to be residuated if the pre-image of every principal down-set of B is a
principal down-set of A. For the general properties of residuated mappings we refer the
reader to [2]. For our purposes here we require the fact that f:A —»B is residuated if and
only if it is isotone and there is a (necessarily unique) isotone mapping f+:B-+A such
that / + "f & id,, and / ° /+ =£ idB.

Since, in the semigroups under consideration, the unary operation XH>^* is
significant, it is reasonable to expect that an important role will be played by the
semigroup congruences # such that

i.e. the congruences on the algebra (5,., *) which we shall refer to as *-congruences. We
shall denote by Con S the complete lattice of (semigroup) congruences on S. It is easily
seen that the set of ""-congruences forms a complete sublattice of Con 5; we denote this by
Con* 5.

DEFINITION. Let A, n, /i be congruences on aE, Ha, Ea respectively. We shall call the
triple (A, n, /x) weighted if there exists 0 £ Con 5 such that

(a) 0|Ho = n\
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We shall denote by WT(5) the set of weighted triples on S. Given (A, n, /x) s WT(5)
let W(A, n, /JL) be the relation on 5 given by

(x,y) e ^(A, n,fi)&(x*x,y*y) e A, (**,y*) e n,(xx*,yy*) e /i.

THEOREM 1. / / (A, n, ft) e WT(S) then W(A, n, n) e Con*S.

Proof. Suppose that 0 E Con S satisfies (a), (b) and let (x, y) s W(A, K, fi). Then
(x*,y*) e n and so, by (a), we have (x*,y*) E 0 and (^**,y**) e 0. It follows that, for
every z e S,

(x**zz*x*,y**zz*y*) e 0.

Since each side of this belongs to aEa we then have, by (b),

(x**zz*x*,y**zz*y*)six. (*)

Now

xz(xz)* = xzz*x* =xazz*x* = xx* . x**zz*x*

and so, by (*) and the fact that (xx*,yy*) e fi, we deduce that

(xz(xz)*,yz(yz)*)efi.

Observe also that (x*x,y*y) e A gives

(x*xa,y*ya) E A|a£a = 0|Q£a

whence, for every z e 5,

(z*x*xz**,z*y*yz**) E e\aEa = \\aEa

and consequently

(z*x*xz**z*z,z*y*yz**z*z) e A,

which reduces to ((xz)*xz, (yz)*yz) E A. Since clearly ((xz)*, (yz)*) = (z*x*, z*y*) e n it
follows that (xz,yz) E W(A, ̂ , p,). In a similar way we can show that (zx,zy)e
W(A, w, fi). Hence ^(A, ^, /u.) is a congruence.

Now ***** = a = ***** for every x e S and, since ^ is a group congruence, we have

(x*,y*) e K^>(x**,y**) = ((x*)-1,(y*)"1) e TT.

It follows that (**,y*) E ^(A, K, fi) and therefore ^(A, K, (JL) is a *-congruence.

In what follows we shall assume that the set WT(S) of weighted triples on S is given
the cartesian order.

THEOREM 2. The mapping W: WT(S)-> Con S is injective and residuated, with residual
XV+ given by

Moreover, WT(5) is a lattice that is isomorphic to Con* 5.

Proof. With notation as above, observe that

(jc*,y*) E W(A, ;r,/i)O(x**,y**) E n&(x*,y*) E n,

and that therefore ^(A, n, /A)|HO
 = ^
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Also, for ea e Ea we have

(ea)* = a*e* = aa = a, (ea)*ea = aea s aEa, ea(ea)* = ea.

These equalities, together with (b), show that

{eaja) e ¥(A, n,n)*>(.ea,fa) e /x

and that therefore ^(A, ;r, fi)\Ea = /•<.• Similarly, W(A, n,fi)\aE = \.
It follows from these observations that

V+V(A,jr,/i) = (A,>r,M)- (1)

Moreover, using the identity * = x**;r**;r*;c and the fact that #|Ho is a group congruence,
we have that

(x,y) e W+(#)=>(x**,y*y) e #|Q£,(**,y*) E #|w<>, (xx*,yy*) e $\Ea

=>(*,)') = (JCJ:*X**A:*J:,yy*y**y*y) e d,

and therefore

,). (2)

Since both V and W+ are isotone, it follows from (1) and (2) that W is injective and
residuated, with residual W+.

By Theorem 1 we have that I m f c Con* 5. Conversely, if # e Con* 5 then
(x,y) e ^ gives (A:*A:,y*y) e #, (:c*,y*) e 1?, (xx*,yy*) e i? whence (jc,y) e W^+(i?).
Thus T ? C W ^ + ( I ^ ) and it follows from (2) that •& = W + ( # ) e Im V. Consequently,
ImW = Con* 5. Now since V is isotone and injective it induces an isotone bijection
W#:WT(5)-»Im V. It follows from the above that the restriction of W+ to Con*S is
isotone and is the inverse of W*. Consequently, WT (5) = Im yV. It follows from these
observations that WT(5) is isomorphic to the lattice Con* 5.

COROLLARY 1. The relation = defined on Con S by

is a dual closure equivalence. The smallest element in the =-class of •§ is

Proof. Observe that, since V is residuated, XVX¥+ is a dual closure; and, since

COROLLARY 2. There is a lattice isomorphism Con* S — (Con S)/=.

COROLLARY 3. If(\,n,n), ( A ' , / , / X ' ) E W T ( 5 ) tfzen

, M) n V(A\ »', /i') = V(A n A', ^ n '̂, M n M');

Proof. This follows immediately from the fact that (A, n, /A)I-»W(A) ^, /A) is a lattice
isomorphism from WT(5) to Con* S.

We now consider the extension of congruences on aE, Ha, Ea to *-congruences on
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S. We begin with the subgroup Ha. For this purpose we shall use the notation ix to
denote the universal congruence on a given subset X of S.

THEOREM 3. For every d e Con Ha the relation b defined on S by

is the biggest *-congruence on S whose restriction to Ho is •d. The weighted triple that
corresponds to & is ( i a £ , #, i £ a ) .

Proof. If (a, b) e $ then (a*,b*) e •d and therefore, since •d is a congruence on the
group Ha, we have (a*x*, b*x*) e -d for every x e S. Since a*x* = (xa)* it follows that
(xa,xb)e&. Similarly, (ax,bx)ed and so d e Con S. Since (a*,b*)ei? implies
(a**, fr**) e i? it follows that $ is a *-congruence. Now if a, b e Ha we have that

(a,b)e d\Hu&{a*,b*)ed&(a,b) = (a**,b**)E d

and consequently we see that &\Hii = d. If now <p is a ""-congruence such that <p\Ha = #
then

(a,b) s cp^>(a*,b*) e <p\Ha = d3>(a,b) e d,

so that y g 4 Since e* = a for every e s aE U Ea is clear that b\aE = i a £ and ^ | £ a = iEa.
It follows that the weighted triple that corresponds to h is W+($) = (ta£, ft, t£a).

COROLLARY, fuer}' •Q e Con / / a w the middle component of some weighted triple. The
biggest ^-congruence that corresponds to a weighted triple of the form ( - , •d, - ) is •&.

THEOREM 4. The mapping Q:Con* S—> Con Ho given by Q(«p) = <p\Ha is surjective and
residuated, with residual Q+ given by Q $

Proof. Each of Q and Q+ as defined is isotone and, for all <p e Con* S and all
•d e Con //„,

COROLLARY. Con //Q is isomorphic to the sublattice of Con* 5 consisting of those
*-congruences <p such that <p aE = i o £ and <p\Eo = iEa.

Proof. Since Q+ is injective the sublattice in question is Im Q+. Now we have
Q+QQ^ = Q+ and so Im Q+ = Im Q.+D., which consists of those *-congruences <p such that
<p = (P\H.- The conclusion follows from Theorem 3.

We now consider extensions of congruences on aE and Ea. For this purpose we
require the fact that if e e E then for every x e S we have x*ex e E and xex* e E. Indeed,
by [1, Corollary 1 of Theorem 5] we have that e* = a for every e e E and therefore
x*ex = x*aex = x*e*ex = (ex)*ex e E and similarly xex* e E.

DEFINITION. We shall say that A e Con aE is special if, for all e,f e aE,

(ej) e A => (V* e S) (x*ex,x*fx) s A.
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Similarly, fx E Con Ea will be called special if, for all e,f e Ea,

(e,f) sti^(\/xeS) (xex*,xfx*) e M.
In what follows, given A E Con aE we shall be interested in the relation A defined on

5 by

(a ,6)£AO(Vc£i?) (a*ea,b*eb)e A;

and dually, for fi e Con Ea, the relation p. defined on S by

(a ,6 )e / iO(Ve E £ ) (aea*,beb*) e /x.

Note that A is a left congruence on S; for if (a,b) e A thenL since x*ex e E for every
xsS, we have (a*;c*e;ta,6*;c*e;tfr) E A, so that (xa,xb) e A. Similarly, /I is a right
congruence.

THEOREM 5. For A e Con aE the following statements are equivalent:
(1) A is special;
(2) A = •d\aEfor some # e Con 5.

Proof. (1)^>(2). Suppose that A is special. Then we have A E Con S. For, if
(a,b)ek then, since A is special and a*eaeaE, for every xeS we have
(x*a*eax,x*b*ebx) e A, so that (ax, bx) E A, whence A is a right congruence. As observed
above, A is a left congruence.

If now / , g e aE are such that ( / , g ) e A then since / * = g* = a we have (aef, aeg) e
A for every e e E. Taking e = a we obtain (f,g)e\. Conversely, if ( / , g) E A then
(aef, aeg) e A gives (f*ef,g*eg) E A whence (/, g) E A. Hence A | Q £ = A, so (2) holds with
# = A.

(2) => (1). If i? e Con S then for e,f e a £ we have

(<?,/) e # U = > ( e J ) e #4>(Vx E S) (x*ex,x*fx) e #.

Since x*ex s aE, it follows that # | a £ is special.

COROLLARY 1. For every special congruence A on aE there is a biggest *-congruence d
on S such that d\oE = A, namely 1? = W*+(A).

Proof. By Theorem 2, WW+(A) E Con* 5 with vyvj/+(A~)|a£ = A | Q £ = A. If now f e
Con* 5 is such that £\aE = A then

(a, b)e£^(\/ee E) (a*ea, b*eb) e t\aE = \^(a,b)s A,

so C £ A and consequently £ = W + ( £ ) g ^¥+(A).

COROLLARY 2. T/ie following statements concerning A E Con aE are equivalent:
(1) A is special;
(2) there is a weighted triple whose first component is A.

Proof. (1)4>(2). If (1) holds then the weighted triple associated with ^W+(A) has
first component A.

( 2 ) ^ ( 1 ) . If there is a weighted triple of the form (A, - , - ) then by Theorem 2 we
have

whence A = W(A, - , -)\aE and so A is special.
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Let SpCon aE be the set of special congruences on aE. It is immediate from
Corollary 2 above and the fact that WT(5) is a lattice that SpCon aE is a sublattice of
Con aE.

THEOREM 6. The mapping <&aE: Con* S —> SpCon aE given by ^>aE(^) = d\aE is
surjective and residuated, with residual <t^£ given by 4> £̂(A) + ( )

Proof. Each of <&aE and <J>*£ as defined is isotone. For every d e Con* S we have

since, by the Corollary to Theorem 5, W + ( # | a £ ) is the biggest *-congruence on S whose
restriction to aE is •&\aE- Also, for every A E SpCon aE we have

A) = W + ( A ) | Q £ = A~|Q£ = A.

Hence Oa£ is surjective and residuated, with residual O^£.

There is, of course, a dual to Theorem 6 that involves Ea.

THEOREM 7. Let A E Con aE and /JL E Con Ea. Then the following statements are
equivalent:

(1) A, /i. are the first and third components of some common weighted triple;
(2) A, fi are special and A | Q £ Q = fi aEa.

Proof. (1)^(2). If (A,/r,/i)e WT(5) then A and /x are special by Corollary 2 of
Theorem 5 and, from the definition of weighted triple, A|Q£Q = n\aEa.

(2) =£> (1). Observe that since A e Con S and A = A|a£ we have, for all p, q E E,

(ap, aq) e A >̂ (ap, aq) E A

e £ ) (apea,aqea)e\\aEa = AaEa = n\aEa

Consequently, A c / l | a £ ; and similarly \x £ A|£O.
For a,b e Hav/e have

(a,6) E A|Ha«(Ve 6 E) (a*efl, b*eb) e \\aEa = /x|a£a<»(fl*, b*) e jl\Ha,

this being equivalent to (a, b) e (x, Ha, so that A|Ho = jx\Ha-
Now, under the *-congruence/weighted triple bijection of Theorem 2, we have

W + ( A ) ~ (A, \\Ha, A|£a), WV+(/i) ~ ( / i U M|«., /*)•

Defining ^Ayll = A|Ho =/l|w<r, we see that the *-congruence W + ( A ) rWW+(/Z) corres-
ponds to the weighted triple (A, nKfL, /A).

COROLLARY 1. There is a biggest *-congruence that corresponds to a weighted triple of
the form (A, - , /*), namely W + (A) n

Proof. For (A, n, /t) e WT(5), let 0 e Con 5 satisfy (a), (b) and let P = W(A, n, /*).
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If (a*, b*) E n then we have (a**, b**) e n whence (a*, b*) e 0 and (a**, b**) e 0, from
which it follows that

(to e E) {a*ea**, b*eb**) e 0 | a £ o = A|Q£Q

and therefore (a**,b**) e A.
Since A = A~|a£ and since, as seen above, /x <= A~|£Q it follows that

(a*a, b*b) e A, (a**, b**) e A, (aa*, bb*) e A

(a,b)E\

C A and therefore P = ¥W+(P) g W + (A) . Arguing similarly with /x, we obtain

from which the result follows.

COROLLARY 2. The biggest weighted triple of the form (A, - , fi) has middle component

Given A E SpCon a £ and û. e SpCon Ea, let rAiM be the set of weighted triples with
first component A and third component /x. As in the proof of Theorem 7, let

THEOREM 8. TA/1 « o sublattice of WT(5), isomorphic to the interval [u),nK^\ of
Con tfa.

Prao/. Clearly, 7A,M is a sublattice of WT(5). If now (A, •d, /x) e TKli then by
Corollary 2 of Theorem 7 we have i)gj:Ai/1. Consider the mapping £: 7^^-* [w, ^AiJ
given by £(A, i?, /x) = #. Clearly, f is an injective fl-morphism. It suffices, therefore, to
prove that £ is surjective; equivalently, that if -d e [w, ^A M] then (A, d, tt) is a weighted
triple. Now, by Theorem 3, d is represented by the weighted triple

( t a £ , # , LEa),

whereas W^;+(A) is represented by the weighted triple

and xI/W+(/x) is represented by the weighted triple

It follows by Theorem 2 that the *-congruence % n W + (A) n W + ( A I ) is represented by
the intersection of these three triples which, since A £ jl\aE and /x s A|£a, is (A, -d, ti).

COROLLARY. For euer>> (A, •d, /x) e WT(5) we have

Given <p e Con a £ consider now the relation Av defined on a £ by

(a,b) e A9<»(fla,6a) e <p.
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Clearly, if (a, b) e \ v then (xa, xb) e A^ for all x E aE; and axa = aaxa gives (ax, bx) e
Av. Thus \ v e Con aE with, clearly, Xv\aEa = (p. Similarly, if /xv is defined on Ea by

(a,b) e n9<£>(aa,ab) e <p

then fiv e Con £ a with ^v\aEa = <P-

THEOREM 9. The mapping 8aE: Con aE —» Con a £ a given fc_y 5a£(i?) = i?|Q£Q is
surjective and residuated, with residual 8*E given by 6^£(<p) = ^v-

Proof. Both 5 o £ and §^£ as defined are isotone. Now, for every <p E Con aEa,

5a£5^£(<p) = SaE(\v) = Av | a £ a = (p.

Also, if -9 E Con a £ then

(a, b ) ^ 4 > (««, ba) E # | a £ a ^> (a, b) E A,,Uo

so that i ?g A|af.o. Consequently,

Hence 5 a £ is surjective and residuated, with residual 8*E.

We shall say that <p E Con aEa is special if

(a,b) E <p= (̂V;c e 5) (jr*axa,x*fexa) E <p,

THEOREM 10. 7/je following statements concerning <p E Con aEa are equivalent:
(1) <p « special;
(2) Av anrf /AV are special;
(3) r/jere is a weighted triple of the form (Av, - , /n^).

Prao/. (1)4>(2). Suppose that (1) holds. Then

(e,/) E X^ieaja) E <P=>(VJ: E 5) (x*eAra,Jc*/ra) E <p

so Â , is special. Similarly, so is /x ,̂.
(2) =^ (1). If Av and /xv are special then

eS) (x*ex,x*fx)

and similarly with /iv. Hence ip is special.
). Since Av|Q£a = /x,^|a£a = <p, this follows by Theorem 7.

If <pi, <p2 e Con a £ a then it is readily seen that A^ fl A^ = AVin(P2. Now, with
indicating APl or A^ and ~ indicating, as appropriate, <pi or <p2, we have

~JC, a ~jr2o ~ • • • — xna ~ ba

e <
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and therefore A^vAf t = A W ! . Similarly we have n^ H /JL^ = /J¥,n f t and piVlv/u.V2 =
/xWVft. It follows by Theorem 10 that if <p,, <p2 e Con a £ a are special then so also are
<Pi n <p2 and <?! v ip2. Hence the set of special congruences on aEa forms a lattice which
we shall denote by SpCon aEa.

Note now that if A e SpCon aE then A|a£a e SpCon a £ a . In fact,

(a, b) E A ^ (aa, ba) e A

4 > ( V A - E 5 ) (x*aax,x*bax) e A

and

=>(VA- E 5) (Mi*,A-fa*) = (xx*x**ax*,xx*x**bx*) e /i

=>(V.v e S) (axax*, axbx*) s fi\aEa = \\aEa.

This observation, together with Theorems 9 and 10, gives immediately the following
result.

THEOREM 11. The mapping Aa£:SpCon aE—> SpCon aEa given by Ao £(#) = d\aEa

is surjective and residuated, with residual A^£ given by Aa£(<p) = Av.

Note also that if d E Con 5 then -d\aEa is special. In fact, by Theorem 5, •d\aE is
special and therefore, by the above observation, so is #|Q £ a . We can therefore use
Theorems 6 and 11, and their duals to obtain the following result.

THEOREM 12. The mapping F:Con* S—»SpCon aEa given by F(-d) =
surjective and residuated, with residual T+ given by

IS

Proof. Consider the diagram

Con* 5 - ^ SpCon aE

SpCon Ea - ^ - > SpCon a Ea

which is commutative since, by definition, An£<t>a£ = V = &Ea<PEa. That F is surjective
follows from Theorems 6 and 11. By [2, Theorem 2.8] we have on the one hand, for every
<p s SpCon aEa,

r»=$:£
and, on the other,

r («p) = <D£QA£a(<p) = ®EM = W+CK) = VfclaE, K\Ha, ]Tv\Eo). (2)

Since A j a £ = Av and /Z^|£Q = /i^,, it follows from (1), (2) that A ^ = fj^ and
so that F+(<p) = ^(A,,,, nK_^, fij) as asserted.
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COROLLARY. <p e Con aEa is special if and only if <p can be extended to a congruence
on S.

DEFINITION. We shall say that A e Con aE is unitary if, in the quotient band aE/\,
the class [a]\ is an identity element.

THEOREM 13. The following statements concerning A e Con aE are equivalent:
(1) A is unitary;
(2) (Va,b e aE) (aa,ba) e \\aE=>(a,b) e \.

Proof. (1)=> (2). If A is unitary then [aa]\ = [a]X[a]\ = [a]\.
(2)=>(1). If (2) holds then

(b,aa) sK^>(ba,aa) e A | Q £ O = > ( M ) e A

so that [aa]\ e [a]\ whence we have equality.

COROLLARY. The set of unitary congruences on aE is a sublattice of Con aE.

Proof. If A, A' e Con aE are unitary then it is clear from Theorem 13 that so also is
A fl A'. If now (aa, ba) e A v A' then there exist Z\, • • • , zn e aE such that

aa = z, = z2 - • • • = zn = ba

where in each case = signifies either A or A'. It follows that

aa =Z\a = z2a = • • • — Zna = ba

and therefore, by Theorem 13, that

a - Zi - z2 = • • • = zn = b.

Consequently, (a,b) e AvA' and so AvA' is also unitary.

Our interest in unitary congruences stems from the fact that if «p e Con aEa then Av

is unitary, as can be seen from Theorem 13 and the equivalences

(aa,ba) e Av€>(aa,ba) e (p<£>(a,b) e Â ,.

THEOREM 14. //A e Con aE and <p = A|Q £ Q then Â , is the smallest unitary congruence
on aE that contains A.

Proof. Observe that

(a,b) e A =>(aa,ba) e \\aEa = <p^>(a,b)e Ap,

so we have A g Av. If now p is a unitary congruence on aE such that A £ p then

(a,b) e \ip^(aa,ba) e <p = A|a£Qgp|a£Q=>(a, b) e p,

so that \ v c p.

We define a unitary congruence /x E Con Ea in a similar way. By abuse of language,
we shall say that d e Con* S is unitary if both d\aE and # | £ Q are unitary. We shall denote
by Con* S the set of unitary congruences on S.
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If d, d' eConS t h e n it is c l e a r t h a t ( # D • 9 ' ) \ a E = $\aEn d'\aE- If n o w (a,b)e
^ ' ) | Q £ t h e n t h e r e e x i s t Z i , - • • , z n s u c h t h a t

where each = signifies either •d or #'. It follows that

a = aa = az, = az2 = • • • = azn = ab = b

and therefore (a, 6) e # | o E
v #'!«£• Hence we have that ( # v # ' ) | t t £ g # | a £ vd ' | Q £ ,

whence we have equality since the reverse inclusion is trivial. It now follows from the
Corollary to Theorem 13 that Conf 5 is a sublattice of Con* 5.

Observe that if W(A, #, /i.) E Con* 5 and <p = A|o£o = t*\aEa then it follows from
Theorem 14 that W(AV, #, (JLV) e Conf S and the mapping V(A, d, fi)*-* V(A<p) i?, /nv) is a
closure on Con* 5.

Although a description of the lattice Con* S appears to be very difficult, we can
describe the sublattice Con* 5. For this purpose, we denote by Con Ha |X| SpCon aEa the
set

{(#, <p) e Con Ha X SpCon aEa; § c ^A(pMJ.

THEOREM 15. Con* 5 = Con Ha\x\ SpCon a£a .

Proof. For every <p e SpCon aEa we have, by Theorem 12 and the fact that Av, /A,,
are unitary,

r + ( ? ) = V ( A v , ; r w / ^ ) e Conf S.

It follows by Theorem 8 that for (•§, <p) e Con Ha |x | SpCon a £ a we have

^, M,) e Conf S.

We can therefore define a mapping £:Con Ha |x | SpCon aEa^> Conf S by the
prescription

Suppose now that W(A, #, /u.) e Conf 5. If <p = \\aEa = /^|a£o then since A and /x are
unitary we have A = A¥ and /x = /AV; for example, by Theorem 13,

(a,b) e A^<=>(aa,fea) e <p = A|a£a<=>(fl,fc) e A.

Since •d c ^A / i = n^^ we therefore have (•$,$) e Con Ha\x\ SpCon aEa.
Consequently we can define a mapping 17:Conf S-> Con Ha |x | SpCon a £ a by the
prescription

Now each of £, TJ is isotone; and we have

Thus 17, £ are mutually inverse isomorphisms.
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