CONGRUENCES ON ORTHODOX SEMIGROUPS WITH
ASSOCIATE SUBGROUPS
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(Received 12 September, 1994)

If S is a regular semigroup then an inverse transversal of S is an inverse subsemigroup
T with the property that [TNV(x)|=1 for every x € S where V(x) denotes the set of
inverses of x € S. In a previous publication [1] we considered the similar concept of a
subsemigroup T of S such that [T N A(x)| =1 for every x € § where A(xy={y e S;xyx =
x} denotes the set of associates (or pre-inverses) of x € S, and showed that such a
subsemigroup 7 is necessarily a maximal subgroup H, for some idempotent « € S.
Throughout what follows, we shall assume that § is orthodox and « is a middle unit (in the
sense that xay =xy for all x,y € §). Under these assumptions, we obtained in [1] a
structure theorem which generalises that given in [3] for uniquely unit orthodox
semigroups. Adopting the notation of [1], we let T N A(x) = {x*} and write the subgroup
T as H,={x*;x € §}, which we call an associate subgroup of S. For every x € § we
therefore have x*a = x* = ax* and x*x** = a = x**x* As shown in [1, Theorems 4, 5]
we also have (xy)* = y*x* for all x,y € §, and e* = a for every idempotent e.

Our objective here is to consider congruences on such a semigroup. Since the
building bricks in the structure theorem [1] are the subgroup H, and the sub-bands aF,
Ea of the band E of idempotents of S, these three subsemigroups will play an important
role in what follows.

As we shall see, the study of congruences is intimately related to certain residuated
mappings that arise naturally. We recall that if A, B are ordered sets then a mapping
f:A— B is said to be residuated if the pre-image of every principal down-set of B is a
principal down-set of A. For the general properties of residuated mappings we refer the
reader to [2]. For our purposes here we require the fact that f: A — B is residuated if and
only if it is isotone and there is a (necessarily unique) isotone mapping f*:B — A such
that f*of =id, and fof " <idg.

Since, in the semigroups under consideration, the unary operation x—x* is
significant, it is reasonable to expect that an important role will be played by the
semigroup congruences ¢ such that

(x,y)e 9 (x*y*) e 9,

i.e. the congruences on the algebra (S, .,*) which we shall refer to as *-congruences. We
shall denote by Con S the complete lattice of (semigroup) congruences on S. It is easily
seen that the set of *-congruences forms a complete sublattice of Con S; we denote this by

Con* S.

DeriNiTION. Let A, m, u be congruences on oF, H,, Ea respectively. We shall call the
triple (A, 7, u) weighted if there exists @ e Con S such that

(a) Oy, =m;

(b) A|a:Eor = /'L‘aEa = e|aEa'
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We shall denote by WT(S) the set of weighted triples on S. Given (A, m, u) € WT(S)
let W(A, m, n) be the relation on § given by

(x,y) e W(A, 7, u) & (x*x,y*y) € A, (x*, y*) € 7, (xx*, yy*) € p.
Tueorem 1. If (A, m, u) € WT(S) then W(A, n, n) € Con*S.

Proof. Suppose that © € Con S satisfies (a), (b) and let (x,y) € W(A, m, u). Then
(x*,y*) e  and so, by (a), we have (x*, y*) € © and (x**, y**) e @. It follows that, for
every z € S,

(x*¥*zz*x*, y**zz*y*) e O.
Since each side of this belongs to aEa we then have, by (b),
(x**zz*x*,y**zz*y*) € u. (*)
Now
xz(x2)* = xzz*x* = xazz*x* = xx*  x**zz¥x*
and so, by (*) and the fact that (xx*, yy*) € u, we deduce that
(xz(xz)* yz(yz)*) € p.
Observe also that (x*x, y*y) € A gives
(x*xa, y*ya) € Alaga = Olara
whence, for every z € S,
(z*x*xz**, z*y*yz**) e @‘aEa = AlnEa
and consequently
(z*x*xz**z*z, z*y*yz**z*z) e A,

which reduces to ((xz)*xz,(yz)*vz) € A. Since clearly ((xz)*, (yz)*) = (z*x*,z*y*) e m it
follows that (xz,yz) e W(A,m,u). In a similar way we can show that (zx,zy)e
W(A, m, n). Hence W(A, m, ) is a congruence.

Now x*x** = o = x**x* for every x € § and, since 7 is a group congruence, we have

(*y¥) e m (0, y*) = ((x*) 7, ()" Der
It follows that (x*, y*) e W(A, m, u) and therefore W(A, m, u) is a *-congruence.

In what follows we shall assume that the set WT(S) of weighted triples on § is given
the cartesian order.

THEOREM 2. The mapping W:WT(S)— Con S is injective and residuated, with residual
W given by

\p+(0) = (0|0E, 1? Hy» 13|Ear)-

Moreover, WT(S) is a lattice that is isomorphic to Con* §.

Proof. With notation as above, observe that
¥,y e¥\ T, u)o @ *, y*)en(x*y*) en,
and that therefore W(A, 7, u)|y, = 7.
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Also, for ea € Ea we have
(ea)* =a*e*=aa = a, (ea)*ea = aea € aFLa, ea(ea)* = ea.
These equalities, together with (b), show that
(ea,fa) e ¥(A, m,u) & (ea, fa)e u

and that therefore W(A, , u)|g, = p. Similarly, W(A, 7, w)|ae = A.
It follows from these observations that

WA, T, p) = (A, T, ). )

Moreover, using the identity x = xx*x**x*x and the fact that 9|,_is a group congruence,
we have that

(x,y) e P¥*(3) > (x*x, y*y) e 191,,5, (x*,y*¥) e ¢

Ho (XX*, yy*) € O,
= (x, ) = (xx*x**x*x, yy*y**y*y) e 9,
and therefore
Yyr(9) e d. ()

Since both W and W™ are isotone, it follows from (1) and (2) that W is injective and
residuated, with residual W,

By Theorem 1 we have that ImW¥ < Con*S. Conversely, if 4 € Con*S then
(x,y) e 9 gives (x*x,y*y)e ¥, (x*,y*) e 9, (xx*,yy*) e 9 whence (x,y) e $YW"(I).
Thus 9 cWW™(¥) and it follows from (2) that 3 =WW*(3) e ImW¥. Consequently,
ImW¥=Con*S. Now since W is isotone and injective it induces an isotone bijection
Y :WT(S)—- ImW. It follows from the above that the restriction of W™ to Con* S is
isotone and is the inverse of W,. Consequently, WT (§)=Im W. It follows from these
observations that WT(S) is isomorphic to the lattice Con* S.

CoroLLARY 1. The relation = defined on Con S by

0E(P<=>19!05=(P|aE9 U

H, = P|H,» 0|Ea=‘P1Ea
is a dual closure equivalence. The smallest element in the =-class of 9 is YW ().

Proof. Observe that, since W is residuated, WW" is a dual closure; and, since
yryyt =yt

F=p W ()= (o) WYV (I)=V¥(¢)
CorOLLARY 2. There is a lattice isomorphism Con* § = (Con §)/=.
CoroLLARY 3. If (A, m, 1), (A", ', ') € WT(S) then
WA, W) NEN, 7, w)=PANN, rNa, uNp');
YA, m, ) vV, 7', u)=WAVvA ,mvr,uvpu').

Proof. This follows immediately from the fact that (A, m, u)—> W(A, 7, u) is a lattice
isomorphism from WT(S) to Con* §.
We now consider the extension of congruences on aE, H,, Ea to *-congruences on

https://doi.org/10.1017/50017089500031323 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500031323

116 T. S. BLYTH ET AL.

S. We begin with the subgroup H,. For this purpose we shall use the notation ty to
denote the universal congruence on a given subset X of §.

TueOREM 3. For every © € Con H,, the relation & defined on S by
(a,b)e & (a* b*)ed

is the biggest *-congruence on S whose restriction to H, is 3. The weighted triple that
corresponds to 9 is (tag, 3, Lga)-

Proof. 1f (a,b) e ® then (a*,b*) € & and therefore, since ¥ is a congruence on the
group H,, we have (a*x* b*x*) e 4 for every x € S. Since a*x* = (xa)* it follows that
(xa,xb) € §. Similarly, (ax,bx)ed and so & € ConS. Since (a* b*)ed implies
(a**, b**) € ¥ it follows that disa *.congruence. Now if a,b € H, we have that

(@,b) € By, & (a* b*) € 3 (a,b) = (a**,b**) € 9

and consequently we see that &|n, =9 If now ¢ is a *-congruence such that |y, = o
then

(a,b)e o> (a*,b¥) e ¢

so that ¢ < 9. Since e* = a for every e € «E U Ea is clear that 1§|QE = 1,¢ and 1§|E,, = lpg
It follows that the weighted triple that corresponds to ¥ is W* (%) = (tag, I, tea)-

Ho'_"l?:(a,b)e '9,

CoroLLary. Every @ € Con H, is the middle component of some weighted triple. The
biggest *-congruence that corresponds to a weighted triple of the form (—, 9, =) is 0.

TheOREM 4. The mapping Q:Con* § — Con H, given by Q(¢) = ¢
residuated, with residual Q" given by Q" (9) = 9.

H, is surjective and
Proof. Each of Q and Q" as defined is isotone and, for all ¢ € Con* S and all
v eConH,,
Q*Q(¢) =Q"(¢|n,) = ¢|n, = ¢;
QO () =Q(8) =8|y, = 0.

CoroLLaRrY. Con H, is isomorphic to the sublattice of Con* S consisting of those
*-congruences ¢ such that <p|,,E =g and <p|Ea = gy

Proof. Since Q* is injective the sublattice in question is Im Q*. Now we have
Q*QQ: =Q" and so Im Q" = Im Q*Q, which consists of those *-congruences ¢ such that
@ = ¢|n,. The conclusion follows from Theorem 3.

We now consider extensions of congruences on aE and Ea. For this purpose we
require the fact that if e e E then for every x € § we have x*ex € E and xex* € E. Indeed,
by [1, Corollary 1 of Theorem 5] we have that e* =« for every e € E and therefore
x*ex = x*aex = x*e*ex = (ex)*ex € E and similarly xex* € E.

DerinTION. We shall say that A € Con aF is special if, for all e, f € aE,

(e,fler>(VxeS)  (x*ex,x*fx) e A
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Similarly, u € Con Ea will be called special if, for all e, f € Ea,

e.flen>(MreS)  (xex*,xfx*)ep i
In what follows, given A € Con aF we shall be interested in the relation A defined on
S by
(a,b)e A& (Ve € R) (a*ea, b*eb) € A;
and dually, for u € Con Ea, the relation j defined on S by
(a,b)e p& (Ve e E) (aea*, beb*) € p.
Note that A is a left congruence on S; for if (a,b) e A then, since x*ex e E for every

x €S, we have (a*x*exa,b*x*exb) e A, so that (xa,xb) e A Similarly, g is a right
congruence.

THEOREM 5. For A € Con aF the following statements are equivalent:

(1) A is special, -

(2) A =9, for some & € Con S.

Proof. (1) (2). Suppose that A is special. Then we have AeConS. For, if
(a,b) e A then, since A is special and a*ea € aE, for every xeS we have
(x*a*eax,x*b*ebx) € A, so that (ax, bx) e A, whence A is a right congruence. As observed
above, A is a left congruence. _

If now f, g € aE are such that (f,g) € A then since f* = g* = @ we have (aef, aeg) €
A for every e e E. Taking e=a we obtain (f,g) e A. Conversely, if (f,g) € A then
(aef, xeg) € A gives (f*ef,g*eg) € A whence (f,g) € A. Hence Aaz = A, 50 (2) holds with
d=A

(2)=>(1). If 9 € Con S then for e, f € aF we have

(e3f) € 0|aE$(eaf) € 0$(VX € S) (X*exax*fx) e ¥
Since x*ex € aE, it follows that 9|, is special.

CoroLLary 1. For every special congruence A on oE there is a biggest *-congruence ¢
on § such that 19|¢,E = A, namely 3 = ¥YW¥7(A).

Proof. By Theorem 2, WW*(X) e Con* S with WW*(A)| .z =Al,z=A. If now { e
Con* S is such that {|,z = A then
(a,b) e L > (Ve e E) (a*ea,b*eb) € {|.e=A>(a,b) €A,
50.£ € A and consequently = WW*({) € WW*(A).
CoRrOLLARY 2. The following statements concerning X € Con aE are equivalent:
(1) A is special,
(2) there is a weighted triple whose first component is A.

Proof. (1)=(2). If (1) holds then the weighted triple associated with WW*(A) has
first component A.

(2)=>(1). If there is a weighted triple of the form (A, —, —) then by Theorem 2 we
have

(A’ T _) = lp+‘p(A’ T _)

whence A = W(A, —, —)|.z and so A is special.
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Let SpCon aF be the set of special congruences on aE. It is immediate from
Corollary 2 above and the fact that WT(S) is a lattice that SpCon «E is a sublattice of
Con aE.

THEOREM 6. The mapping ®,r:Con* S — SpCon eE given by &, ()= ﬁ\aE is
surjective and residuated, with residual ®}g given by ®2(A) = WW*(A).

Proof. Each of &, and @, as defined is isotone. For every & € Con* § we have
D Dop(9) = Be(Bar) = WY (Vlag) = 9

since, by the Corollary to Theorem 5, $W™(9,g) is the biggest *-congruence on § whose
restriction to aE is ¥,z Also, for every A € SpCon aE we have

aEq) E(A) ¢0Elp\p+(A) = lIIIII*»(A)IO'E - AIaE -
Hence @, is surjective and residuated, with residual ®.
There is, of course, a dual to Theorem 6 that involves Ea.

THEOREM 7. Let A € Con aE and u € Con Ea. Then the followzng Statements are
equivalent:

(1) A, p are the first and third components of some common weighted triple;
(2) A, p are special and Al ogo = p|aga

Proof. (1) (2). If (A, m,u) € WT(S) then A and u are special by Corollary 2 of
Theorem 5 and, from the deﬁnitiorl of weighted triple, ,\IDE,, = p,L,E,,.
(2)=>(1). Observe that since A € Con S and A = A|,,E we have, for all p,q € E,

(ap,aq) e A (ap,ag) e A
:(ve EE) (apea,aqea) EXInEa'—_AIaEa:#'aEa
> (ap,aq) € .

Consequently, A  ji|ag; and similarly p < Al g,
For a,b € H, we have

(a,b) e X|Ha©(Ve € E) (a*ea,b*eb) e /\|,,,Ea = ;;,I,,Ea@(a ,

this being equivalent to (a,b) € ;I]Ha, so that X|H,, = ;Z|Ha.
Now, under the *-congruence/weighted triple bijection of Theorem 2, we have

s A_|Eﬂr)’ lp+(/“(‘) (I"'|aEa

Defining 7, = A|y, = ft|n,, We see that the *-congruence WW*(A)NWW*(Z) corres-
ponds to the weighted triple (A, 7, ,, ).

o M)

CoroLLARrY 1. There is a biggest *-congruence that corresponds to a weighted triple of
the form (A, —, w), namely WW*(A) N WW*(i1).

Proof. For (A, m, u) € WT(S), let © e Con § satisfy (a), (b) and let P =W(A, x, u).
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If (a*, b*) € m then we have (a**, b**) € n whence (a*, b*) € O and (a**, b**) € O, from
which it follows that

(Ve € E) (a*ea**,b*eb**) € O|.r0 = Alara

and therefore (a**, b**) € A, )
Since A = A|,£ and since, as seen above, u S Alg, it follows that

(a,b) e P> (a*a,b*b) € A, (a**, b**) € A, (aa*, bb*) € A
>(a,b)e A
so P < X and therefore P = WW*(P) = WW*(A). Arguing similarly with u, we obtain
P WY (A)NYW* (1)
from which the result follows. '

CoroOLLARY 2. The biggest weighted triple of the form (A, —, u) has middle component

”A.u=)‘H,.=fz

H,

Given A e SpCon aF and p e SpCon Ew, let T, , be the set of weighted triples with
first component A and third component u. As in the proof of Theorem 7, let

Tyu=A

H, = MK

H.

THeoreM 8. T,, is a sublattice of WT(S), isomorphic to the interval [w, r,,] of
Con H,,.

Proof. Clearly, T,, is a sublattice of WT(S). If now (A,,u)eT,, then by
Corollary 2 of Theorem 7 we have ©# c x, ,. Consider the mapping {:7, ,— [w, 7, ]
given by {(A, 3, u) = 3. Clearly, { is an injective N-morphism. It suffices, therefore, to
prove that { is surjective; equivalently, that if ¥ e {w, 7, ] then (A, 9, 1) is a weighted
triple. Now, by Theorem 3, & is represented by the weighted triple

(tars U, LEa)s
whereas WW™(A) is represented by the weighted triple
(A, T X}Eu)a
and WW* (@) is represented by the weighted triple
(lzlaE, T s ).

It follows by Theorem 2 that the *-congruence 4 N WW*(X)N WW* (i) is represented by
the intersection of these three triples which, since A ﬁ!ag and p & AIEG, is (A, %, 1)

CorOLLARY. For every (A, 9, u) € WT(S) we have
WA, 3, p)=3 NWPHA)NWPW* ().
Given ¢ € Con aFE consider now the relation A, defined on aF by

(a,b)e A, & (aa,ba) e ¢
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Clearly, if (a,b) € A, then (xa,xb) € A, for all x € «F; and axa = aaxa gives (ax, bx) €
A, Thus A, € Con aF with, clearly, /\(PIQE(, = ¢. Similarly, if u, is defined on Ea by

(a,b) e p, o (aa,ab) e ¢
then u, € Con Ea with ,u.wlaga =@

THEOREM 9. The mapping 8,c:Con aE — Con aEa given by 8,e(9)= Oaga is
surjective and residuated, with residual 8¢ given by 6.¢(p) = A,

Proof. Both §,¢ and 6. as defined are isotone. Now, for every ¢ € Con aEa,
5a5525(¢) = 5a5()\w) = )\¢|asa =@
Also, if 3 € Con aF then
(a,b) e 3> (aa,ba) € V.ca>(a,b) e AS)ore
so that 4 = 4. Consequently,
81660e(D) = 80e(Vara) = Aslp 20

Hence 6, is surjective and residuated, with residual &,

We shall say that ¢ € Con aEa is special if

(a,b)e ¢ (Vx e8) (x*axa,x*bxa)e ¢, (axax*, axbx*)e ¢.

THeEOREM 10. The following statements concerning ¢ € Con aEa are equivalent:
(1) ¢ is special;

(2) A, and u, are special,

(3) there is a weighted triple of the form (A,, —, n,).

Proof. (1)= (2). Suppose that (1) holds. Then
(e.f)er, > (ea,fa)e e (Vx e §) (x*exa,x*fxa)e ¢
S>(Vxel) (x*wx,x*fx)e A,

$O A, is special. Similarly, so is u,,.
(2)=>(1). If A, and p,, are special then

(€.f) e @=Aylara>(Vx €8) (x*ex,x*fx) €A,
>(Vxel) (x*exa,x*fxa) e A,|.eq = @,

and similarly with u,. Hence ¢ is special.
(2)©(3). Since Ay|aga = R¢|ara = @, this follows by Theorem 7.

If ¢, 9, € ConaEa then it is readily seen that A, NA, = A, n,, Now, with =
indicating A, or A, and ~ indicating, as appropriate, ¢; or ¢,, we have

(a,b)e A, vA,Sa=x=x,=...=x,=b
Saa~xa~Xa~...~x,a~ba
S(aa,ba)e ¢, v,
&(a,b)e i

Ve
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and therefore A, vA,, =A, .., Similarly we have u, Nu,,=pen,, and w, vu,=
Mo 1t follows by Theorem 10 that if ¢, ¢, € Con aEa are special then so also are
¢ N2 and ¢, v ¢,. Hence the set of special congruences on aEa forms a lattice which
we shall denote by SpCon aEa.

Note now that if A € SpCon aE then A|,z. € SpCon aEa. In fact,

(a,b)e Az (aa,ba)e A
>Wxel) (x*aax,x*bax)e A
>(Vx eS) (x*axa,x*bxa) € Alagas

and
(a,b) e A (Vx €8) (x**ax*, x**bx*) e /\|,,Ea = u]aga
2 (Vx e 8) (xax* xbx*)= (xx*x**ax* xx*x**bx*) e u
>((VxeS) (axax*, axbx*) e tlora = Alaga
This observation, together with Theorems 9 and 10, gives immediately the following
result.

THeorem 11. The mapping A,r:SpCon aE — SpCon aEa given by A,p(¥) = 9| aza
is surjective and residuated, with residual A}p given by A (@) = A,

Note also that if 8 € ConS then 8.z, is special. In fact, by Theorem 5, Yog is
special and therefore, by the above observation, so is 19|OEQ. We can therefore use
Theorems 6 and 11, and their duals to obtain the following result.

TueoREM 12. The mapping T:Con* S —SpCon aEa given by T(9)= 98|,z is
surjective and residuated, with residual T™ given by

I (@) =W, Mo, M)

Proof. Consider the diagram

Con*S —*> SpConaE

‘Dr:al JAuE

SpCon Ea ——> SpCon aEw

which is commutative since, by definition, A g®,e =T = Ag,Pg,. That T is surjective
follows from Theorems 6 and 11. By [2, Theorem 2.8] we have on the one hand, for every
¢ e SpCon aFa,

(p)= D r E(‘P) q)aE(/\ )=y ()\ )= q’(‘P¢|aEs
and, on the other,
F+((p) = CDZ”aAEa(‘P) = (DEO(/“‘wp) = ww+(""_¢:) = q’(ﬁ;laEa mlHa» I'l'_gplEa)' (2)

Since Ajag = A, and ) za = . it follows from (1), (2) that Aol ga =Ty and figlar = A
so that T* () = W(A,, m,_,.., 1) as asserted.

)
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CoroLLarY. ¢ € Con aEw is special if and only if ¢ can be extended to a congruence
on S.

DEerFNiTION. We shall say that A € Con aF is unitary if, in the quotient band aE/A,
the class [@]A is an identity element.

THEOREM 13. The following statements concerning A € Con aE are equivalent:
(1) A is unitary;
(2) (Va,b € aE) (aa,ba) € A, (a,b) € A.

Proof. (1)=> (2). If A is unitary then [aa]A = [a]A[a]A =[a]A.
(2)=>(1). If (2) holds then

(b,aa) e A> (ba,aa) e Ao (b,a) e A
so that [aa]A  [a]A whence we have equality.
CoRrOLLARY. The set of unitary congruences on aE is a sublattice of Con aE.

Proof. 1f A,A’ € Con «F are unitary then it is clear from Theorem 13 that so also is
ANA" If now (aa, ba) e Av A’ then there exist z,,. .., z, € aE such that

il

aa=z,=2,=...=z,=ba
where in each case = signifies either A or A'. It follows that
ax=La=na=...=z7,a=ba

and therefore, by Theorem 13, that

l
[

a 2 ZZEEZnEb
Consequently, (a,b) e AvA' and so Av A’ is also unitary.

Our interest in unitary congruences stems from the fact that if ¢ € Con aEa then A,
is unitary, as can be seen from Theorem 13 and the equivalences

(aa,ba) e A, & (aa,ba) e p&(a,b) e A,

THeoreM 14. If A e Con aF and ¢ = )\|‘,E,, then A, is the smallest unitary congruence
on aF that contains A.

Proof. Observe that
(a,b) e A5 (aa,ba) € Maza= ¢ (a,b) € A,
so we have A € A,. If now p is a unitary congruence on aE such that A € p then
(a,b) € Ay (a, ba) € ¢ = Auga € plaza > (a,b) € p,
so that A, < p.

We define a unitary congruence u € Con Ee in a similar way. By abuse of language,
we shall say that 4 € Con* S is unitary if both 1?|,,E and 19|Ea are unitary. We shall denote
by Conf S the set of unitary congruences on S.
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If 9,9 € ConS then it is clear that (9N 3')|e= FaeN ' |ae If now (a,b) e
(8 v 9')|a then there exist z,,. . ., z, such that

a=sz7,=5=...=2,=b
where each = signifies either ¢ or 4'. It follows that
a=aa=a,=an=...=az,=ab=>

and therefore (a,b) € Oarv 3'|ar Hence we have that (9v3')|eeS OaeV ¥'lass
whence we have equality since the reverse inclusion is trivial. It now follows from the
Corollary to Theorem 13 that Conf S is a sublattice of Con* S.

Observe that if W(A, 9, u)e Con*S and ¢ = )\|,,E,, = ;/,|,,E,, then it follows from
Theorem 14 that W(A,, 9, u,) € Con} § and the mapping W(A, &, u)— W(A,, 3, u,) is a
closure on Con* §.

Although a description of the lattice Con* § appears to be very difficult, we can
describe the sublattice Conf S. For this purpose, we denote by Con H,, |X| SpCon aEa the
set

{(9, ¢) € Con H, X SpCon aEa; d S 1, , }-
THeorem 15. Cont § = Con H, |X|SpCon aEq.

Proof. For every ¢ € SpCon aEa we have, by Theorem 12 and the fact that A, n,
are unitary,

I‘*(gp) = ql(/\(pa ﬂ)«
It follows by Theorem 8 that for (9, ¢) € Con H, |X| SpCon aEa we have
Y(A,, 9, p,) € Cont S.

, ) € Conf §.

erke

We can therefore define a mapping (:Con H, |X|SpCon a¢Ea— ConfS by the
prescription

{(9, ) = WAy B, 1)

Suppose now that W(A, 3, u) e Cont S. If o= A|a,._«‘, = ;L|,,E,, then since A and u are
unitary we have A = A, and u = pu,; for example, by Theorem 13,

(a,b) e A, & (aa,ba)e = Maga©(a,b) € .

Since #¥cm,,=m,,, we therefore have (¥,¢)e ConH,|x|SpConaLa.
Consequently we can define a mapping 7:Conf S— Con H, |X|SpCon aEa by the
prescription

MW, 9, 1) = (3, @).
Now each of {, n is isotone; and we have
nL(9, @) = nW(A,, 3, 1) = (3, ¢);
PR, B, 1) =L(9, 0) =W(A,, 9, 1) = WA, 9, ).

Thus 7, ¢ are mutually inverse isomorphisms.
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