
Chapter 23

Statistical models and inference

In this chapter, we explore several important statistical models. Statistical models allow
us to perform statistical inference—the process of selecting models and making pre-
dictions about the underlying distributions—based on the data we have. Compared to
the models of Ch. 22, the focus tends to be more on statistical properties of the network
rather than the microscopic mechanisms for how the network is created and evolves,
although the distinction is often blurred as randomness is often intrinsic to both types of
models. Statistical models can leverage powerful tools from statistics and help explore
our data and the space of possibilities.

For instance, the stochastic block model assumes the network is constructed based
on the block (community) membership of nodes; the probability of connection between
nodes is prescribed as a set of parameters based on which blocks they belong to
(which are also parameters of the model). Although no attempt is made to explain the
community structure, this simple model allows us to write down the likelihood function,
which estimates the likelihood of our network data given our model and parameters. The
power of such an approach is that we can then infer the parameters through methods such
as maximum likelihood estimation or full Bayesian inference. Carefully fitting a block
model, for instance, can allow us to test whether any community structure is actually
present in the network or create synthetic examples by sampling from the posterior
distribution.

23.1 Statistical models we’ve seen before
Some of the simple graph models we’ve already encountered are in a sense statistical.
For example, Erdős–Rényi graphs assume that each possible link is an iid Bernoulli trial.
This makes it, in fact, the most basic statistical model of network data. As a random graph
model, it’s interesting to explore, showing, for instance, a percolation phase transition.
But statistically, it’s not as exciting, being not particularly expressive and estimating
its parameters is relatively elementary (e.g., the MLE for link probability 𝑝 is just the
sample mean, 𝑝 = 𝑀/(𝑁2)

). The configuration model is similar: while very useful as a
degree-preserving null (Sec. 11.5), its inferential capacity, like the Erdős–Rényi model,

351

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

352 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

is limited.
Indeed, it is the expressiveness of a statistical model, and the information that we

gain from fitting its parameters to data, that makes the statistical model interesting and
useful with respect to data. Statistically, all an Erdős–Rényi graph can express is the
overall density of the network. If we want to capture more structure, we need to invoke
a more involved model.

We now turn our attention to statistical models primarily intended for inference
using network data.

23.2 Stochastic block models
Block models refer to the idea and models that a network consists of groups of nodes
called blocks. These blocks then dictate the connectivity of the network. Stochastic
block models (SBM), often written “blockmodel,” are the class of statistical models
where the connectivity between nodes are probabilistically determined by the block
membership of the nodes (and potentially other parameters).

23.2.1 The basic formulation
Formally, the basic stochastic block model assumes that a network consists of 𝑘 blocks
and every node belongs to one of these blocks. Node membership is described by a
vector z, where 𝑧𝑖 ∈ {1, . . . , 𝑘} represents the block membership of node 𝑖. Then, in
the most basic model, we assume that the connectivity between nodes is solely (and
stochastically) determined by the block membership. The relationship between blocks
is encoded into the block matrix M, where𝑀𝑖 𝑗 represents the probability1 of connection
between any node in block 𝑖 and any node in block 𝑗 . If 𝑧𝑢 = 1 and 𝑧𝑣 = 2, then the
probability that 𝑢 and 𝑣 are connected is 𝑀12; if 𝑧𝑢 = 1 and 𝑧𝑣 = 1, then the probability
that 𝑢 and 𝑣 are connected is 𝑀11. That the connection probability for nodes depends
only on what blocks they belong to is known as stochastic equivalence.

Notice that the SBM generalizes the Erdős–Rényi model. If there is only a single
block containing all 𝑁 nodes, then we have the Erdős–Rényi model with 𝑝 = 𝑀11.

The SBM is more flexible that it may first appear. We do not assume that 𝑀𝑖𝑖 >
𝑀𝑖 𝑗 (𝑖 ≠ 𝑗). Although we usually conceptualize communities as assortative structures
with more connections within than between, stochastic block models do not make such
an assumption by default. But this flexibility comes at a cost: we have to carefully
encode our assumptions and objectives into our models. As we will see soon, this may
lead to some non-intuitive results.

Given the parameter set {𝑘, z,M}, we can generate networks with arbitrary block
structure. This capability is already useful. For instance, one can use a stochastic block
model to generate an ensemble of networks with planted partitions (communities)
and then use these synthetic networks to compare and evaluate community detection
methods that aim to find such block structure.

1 This is called the “canonical” form. In the “microcanonical” form, the block matrix prescribes the number
of edges rather than the connection probability.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.2. STOCHASTIC BLOCK MODELS 353

23.2.2 Inference
But probably a more useful application of the SBM than generating synthetic test data is
inference. As Bayes’ theorem tells us, if we have a statistical model with a computable
likelihood, then we can “flip” it to infer the posterior distribution of the model parameters
based on the data. In the context of block models, the data is the adjacency matrix A and
the parameters are {𝑘, z,M}. Identifying good parameters mean that we assign nodes
into communities and estimate the connection probabilities based on the community
membership. In other words, this means that based on the given network data, we can
learn about the community structure, in terms of the number of communities (𝑘) and
community membership (z).

The basic stochastic block model allows us to calculate the likelihood of a given
network:

L(𝐺 | 𝑘, z,M) =
∏
(𝑖, 𝑗) ∈𝐸

Pr(𝑖 → 𝑗 | 𝑘, z,M)
∏
(𝑖, 𝑗)∉𝐸

(1 − Pr(𝑖 → 𝑗 | 𝑘, z,M))

=
∏
(𝑖, 𝑗) ∈𝐸

𝑀𝑧𝑖 ,𝑧 𝑗

∏
(𝑖, 𝑗)∉𝐸

(1 − 𝑀𝑧𝑖 ,𝑧 𝑗). (23.1)

Note that many terms in the product are the same. This property allows us to gather
terms together and simplify the formula. For two blocks 𝑟 and 𝑠, let’s denote the number
of edges between them as 𝑒𝑟𝑠 and the number of possible edges between them as 𝑛𝑟𝑠 .
Then the likelihood between these two groups can be written as the product of two
terms

𝑀𝑒𝑟𝑠
𝑟𝑠 (1 − 𝑀𝑟𝑠)𝑛𝑟𝑠−𝑒𝑟𝑠 , (23.2)

and the full likelihood function is simply

L(𝐺 | 𝑘, z,M) =
∏
𝑟 ,𝑠

𝑀𝑒𝑟𝑠
𝑟𝑠 (1 − 𝑀𝑟𝑠)𝑛𝑟𝑠−𝑒𝑟𝑠 . (23.3)

Once we have the likelihood function, we can do inference using Bayes’ theorem:

Pr(𝑘, z,M | 𝐺) = Pr(𝐺 | 𝑘, z,M) Pr(𝑘, z,M)
Pr(𝐺) . (23.4)

Numerous methods are available to perform inference such as maximum likelihood
estimation or Bayesian inference. A practical technique for the latter, Markov Chain
Monte Carlo (MCMC), is standard practice. Indeed, the original inferential method
for SBMs proposed by Snĳders and Nowicki [437] used Gibbs sampling, a standard
MCMC inference algorithm. Expectation–maximization, which we’ll discuss shortly, is
another approach. For a review of the SBM inference literature, see Lee and Wilkinson
[266].

23.2.3 Model selection
Now we know the basic formulation of the stochastic block model. Let us ask you a
question. Suppose we fit the SBM to the Zachary Karate Club, which we know has

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

354 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

roughly two groups. Let’s not impose any constraints on the parameters and assume
that our inference method can find the best possible parameters that maximize the
likelihood. Will we find 𝑘 = 2? What will M look like? How large will L be?

Will the SBM find the community structure in the network? Unfortunately, the
answer is no: without constraints, there is a trivial solution. Consider the SBM where
𝑘 = 𝑁 , 𝑧𝑖 = 𝑖, and M = A. In other words, every node is its own community and M
simply prescribes the actual connections without any randomness. If we specify the
SBM this way, the value of the likelihood function (trivially) equals 1 and no other
model can be more likely. In other words, we have overfit the data with an overly
complicated model.

This is why we must think about model selection. The SBM is expressive and
can capture a wide range of block structure. By increasing the number of parameters
(𝑘 ≫ 1), it may become too expressive and begins to overfit (see also Ch. 16). To
prevent overfitting, we need to think about model selection—the process of comparing
different models and choosing the “best” model that achieves a good balance between
parsimony (simplicity and generalizability) and fit accuracy. For instance, consider
again the extreme case of the “perfect” model (𝑘 = 𝑁, 𝑧𝑖 = 𝑖,M = A). Although it
maximizes the likelihood of the given data, any noise or variation in the data will
immediately make the likelihood go to zero. Since most data will have some noise, we
must assume, it’s unlikely such an overly expressive model will accurately capture the
true structure.

In the case of tabular data (the usual machine learning setting), the model selection
problem can be handled by resampling: randomly splitting the data (e.g., creating a
validation set or doing a cross validation). We fit the model to some of the data and
evaluate it with the rest of the data; forcing the model to generalize past the fitted
observations help limit overfitting. For networks, however, this is much more tricky,
because often we just have a single, highly interconnected set of data points. Splitting
the data can easily destroy the very structure that we want to discover.

Instead of resampling, some approaches to model selection for the SBM could be
to sweep across parameters (namely 𝑘) to find the best fit model for each value of 𝑘 ,
then use an information criterion such as AIC or BIC to pick the best tradeoff between
model simplicity (low 𝑘) and fit (high L). However, keep in mind that block models are
nested: a 𝑘 − 1 block model is a special case of a 𝑘 block model. Likelihood ratio tests,
as pursued by Wang and Bickel [483], may be more appropriate for such cases.

Another successful approach inspired by information theory is to appeal to the
minimum description length (MDL) principle. First, we can considering maximizing
the likelihood as equivalent to minimizing the number of possible configurations (Ω)
given parameters, and thus the amount of information (or entropy), lnΩ, needed to
describe the data. For instance, the trivial solution with M = A minimizes this entropy
because there is only one possible configuration given the parameters. However, the
MDL principle argues that we also need to consider the information necessary to
describe the model itself. Because more complex models require more information to
describe them (more blocks and larger M), it balances the model’s complexity against
the likelihood of the data and chooses the model that requires the least amount of
information to describe the data and the model. Peixoto [365] shows that appealing to
MDL places a penalty on the model’s likelihood, and reveals the number of detectable

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.2. STOCHASTIC BLOCK MODELS 355

(a) (b)

Figure 23.1 Comparing the uncorrected (a) and degree-corrected (b) stochastic block model
partitions for the Zachary Karate Club [236]. The dashed line indicates the split observed by
Zachary [505]. Reprinted figure with permission from Karrer, Brian and Newman, M. E. J.,
Phys. Rev. E, 83, 016107, 2011. Copyright (2011) by the American Physical Society.

blocks scales like
√
𝑁 , in a sense reminiscent of the resolution limit we encounter with

modularity (Ch. 12).
This is an active area of research and there are, and will be, many competing

approaches for model selection.

23.2.4 Degree-corrected model

Let’s say you already know that there should be exactly two communities in the Zachary
Karate Club network and you don’t need to worry about the model selection problem.
Then applying the basic SBM with 𝑘 = 2 fixed will produce the communities that we
expect, right?

Well, not so fast. Figure 23.1a shows the result, which is not exactly what we expect!
There is another implicit assumption in the model that we need to address. Imagine two
nodes 𝑢 and 𝑣 that belong to the same block. They will have exactly the same probability
to be connected with all other nodes; they are stochastically equivalent, indistinguishable
in the statistical sense. The implication is that every node in a block is indistinguishable
in the model, but in real networks nodes are distinguished by more than their block
membership; in particular, degree varies a lot among the nodes, even in the same block.
Remember that the SBM does not automatically find assortative communities. Any
consistent pattern can be interpreted and discovered as “block” structure by the SBM.
Therefore, the basic SBM may find that grouping nodes with similar degrees is a better
fit than finding “communities.” This is exactly what we see in Fig. 23.1a.

A common solution to this problem is introducing an additional node-level param-
eter that modulates the degree of each node and consider a multigraph where multiple
edges can exist between two nodes. This is called the degree-corrected stochastic block
model.

Instead of assuming that the probability of a connection between 𝑢 and 𝑣 is 𝑀𝑧𝑢𝑧𝑣 ,
we assume that each element in the adjacency matrix A is Poisson-distributed around the
mean of 𝛾𝑢𝛾𝑣𝑀𝑧𝑢𝑧𝑣 . As 𝛾𝑖 increases, the degree of node 𝑖 can increase as well. Recall
that the Poisson distribution is 𝜆𝑘e−𝜆/𝑘!, where 𝜆 is the mean. Thus the likelihood of

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

356 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

the graph can be written as

L(𝐺 | 𝑘, z,M) =
∏
𝑖< 𝑗

(𝛾𝑖𝛾 𝑗𝑀𝑧𝑖 𝑧 𝑗)𝐴𝑖 𝑗

𝐴𝑖 𝑗 !
exp

(
−𝛾𝑖𝛾 𝑗𝑀𝑧𝑖 𝑧 𝑗

)
, (23.5)

assuming 𝐺 is an undirected network. Usually, we also allow self-edges to make it
easier to study analytically,

L(𝐺 | 𝑘, z,M) =
∏
𝑖< 𝑗

(𝛾𝑖𝛾 𝑗𝑀𝑧𝑖 𝑧 𝑗)𝐴𝑖 𝑗

𝐴𝑖 𝑗 !
exp

(
−𝛾𝑖𝛾 𝑗𝑀𝑧𝑖 𝑧 𝑗

)

×
∏
𝑖

(1
2𝛾

2
𝑖 𝑀𝑧𝑖 𝑧𝑖)𝐴𝑖𝑖/2

𝐴𝑖𝑖/2!
exp

(
−1

2
𝛾2
𝑖 𝑀𝑧𝑖 𝑧𝑖

)
.

(23.6)

The factor of 1
2 appears in the self-edge term because creating a single self-edge

“consumes” two edge stubs of the node. Compared to the uncorrected model, the
degree-corrected SBM finds the partition we expected in the Zachary Karate Club
(Fig. 23.1b).

23.2.5 Understanding community detection with the SBM
The stochastic block model is simple enough that it becomes analytically tractable
and several interesting discoveries about it have been made, sparking an ongoing line
of research [1]. Two of the most important discoveries are the detectability limit and
optimal recovery.

The difficulty of inferring the hidden z in the SBM depends on how clearly separated
the groups are. The groups should be distinguishable when𝑀𝑖𝑖 > 𝑀𝑖 𝑗 for 𝑖 ≠ 𝑗 , whereas
if 𝑀𝑖𝑖 = 𝑀𝑖 𝑗 for all groups we would have a globally random (Erdős–Rényi) graph with
no modular structure. In the latter case, we expect that we cannot detect the groups
while in the former case we can. The detectability limit makes this precise—and shows
that groups can be impossible to detect even when they exist (i.e., when 𝑀𝑖𝑖 > 𝑀𝑖 𝑗).

Consider a SBM with 𝑞 groups of equal size and density. Let 𝑐in = 𝑁𝑀𝑖𝑖 and
𝑐out = 𝑁𝑀𝑖 𝑗 (for 𝑖 ≠ 𝑗) be rescaled block probabilities that are the same for all
groups: the average degree ⟨𝑘⟩ = 1

𝑞 [𝑐in + (𝑞 − 1)𝑐out] for this “homogeneous” SBM.
Decelle et al. [125, 126] show with an asymptotic analysis that a phase transition in the
learnability of z occurs: when

|𝑐in − 𝑐out | > 𝑞
√︁
⟨𝑘⟩, (23.7)

learning z is possible (z can be recovered with high probability); otherwise, detectability
of z with any accuracy is impossible, it is believed, for any (polynomial) algorithm.2

2 This was conjectured by Krzakala et al. [259], with various proofs of special cases following (see Abbe
[1] for details). Also, we are glossing over some details. In general, detectability actually transitions from
impossible to hard to easy, but it is argued that the hard phase, where it is possible in principle to find z but
computationally very difficult, is narrow enough that it is unlikely for a practical inference problem to land
within it.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.2. STOCHASTIC BLOCK MODELS 357

Intuitively, Eq. (23.7) makes sense: if the difference in density within groups and
between is too small relative to the overall density of the network, the groups are
undetectable. But the details are still surprising. Suppose 𝑞 = 2 and let 𝑐out = 𝜖𝑐in.
Then 𝑐in = 2 ⟨𝑘⟩ /(1 + 𝜖) and groups are detectable only when

𝑐in − 𝑐out >
√︁

2(𝑐in + 𝑐out)

𝑐in > 2
1 + 𝜖
(1 − 𝜖)2

⟨𝑘⟩ >
(

1 + 𝜖
1 − 𝜖

)2

𝜖 <

√︁
⟨𝑘⟩ − 1√︁
⟨𝑘⟩ + 1

.

Suppose 𝜖 = 1/2, a noticeable difference between in- and out-group links. If ⟨𝑘⟩ = 4,
the groups will be undetectable, as 𝜖 > 1/3. For 𝜖 = 1/2, the network needs to be
denser, ⟨𝑘⟩ > 9, for the groups to be found. Enough sparsity and meaningful groups
become invisible to us.

A corollary to the detectability threshold is the development of optimal recovery
methods. The same calculations by Decelle et al. [125, 126] showing the detectability
transition also show that a belief propagation (BP; also known as message passing)
algorithm is asymptotically optimal: if the z can be found, the BP algorithm will do so
and is optimal in the sense that no other algorithm can have better expected accuracy.
The optimality of a BP algorithm motivated the search for more scalable methods,
capable of inferring the SBM for larger, sparse networks. Spectral methods are usually
helpful in these circumstances due to their scalability on sparse networks. However, a
gap existed where spectral methods were unable to achieve the same accuracy as the
BP algorithm if the network was too sparse [326]. This gap has been closed, with some
additional computational cost, by using the non-backtracking matrix [204]. Krzakala
et al. [259] show that the spectra of this matrix is more useful for SBM inference as it
relates more closely to belief propagation3 than other matrices typically used, such as
the graph Laplacian.

(We discuss the non-backtracking matrix and some spectral methods for community
detection in Ch. 25.)

There are some caveats to these results. One, the derivations are asymptotic, and
finite size effects will play a role (the asymptotic results are still quite accurate) [502].
Two, this does not treat the degree-corrected SBM; a heterogeneous degree distribution
may actually help with detection [125]. Lastly, and perhaps most crucially, these results
only hold for the SBM, which is not always the best or most appropriate model for a real
network. Despite these caveats, these results still teach us useful and surprising details
about this inference problem.

3 The non-backtracking operator arises when linearizing BP.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

358 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

23.2.6 Other variations
Numerous variants exist for block models to accommodate various network types and
block structures. For instance, models exist that incorporate weighted edges (where
the SBM generates a weighted adjacency matrix [𝑤𝑖 𝑗]), directed edges, multi-edges,
hyper-edges, and other higher-order structures. Regarding the block structure, probably
the most notable models describe hierarchical structure and overlapping block structure.

Hierarchical models A hierarchy of super-blocks, blocks, sub-blocks, and so forth
can be specified by repeated use of the SBM. In other words, we can model the block
matrix M itself using an SBM.4 Treating the block matrix as a weighted graph on
𝑘 nodes, a weighted SBM can generate M, so long as self-loops5 are allowed (being
needed for the within-group probabilities 𝑀𝑔𝑔). In principle, we can parameterize the
full hierarchical model by specifying the number of levels of SBMs and the parameters
within each level, then fit to data using inference. All this is easier said than done, of
course. Care must be taken when it comes to parsimony, as such a highly parameterized,
nested model can easily overfit an observed network. For full details, see Peixoto [366].

Mixed membership models Community detection methods can be divided into par-
titioning methods and overlapping methods. Most SBMs focus on partitions, but mixed
membership stochastic block models [7] have been formulated to address the case where
we wish to associate nodes with multiple blocks. Suppose each node 𝑖 has an associated
membership probability vector 𝝅𝑖 , where 𝜋𝑖,𝑔 is the probability that 𝑖 belongs to group
𝑔, and

∑
𝑔 𝜋𝑖,𝑔 = 1 ∀𝑖. Using these vectors along with the 𝑘 × 𝑘 block probability matrix

M, we can generate a random network as follows. For each pair of nodes 𝑠, 𝑡, draw
group 𝑔𝑠 with probability 𝜋𝑠,𝑔𝑠 and 𝑔𝑡 with probability 𝜋𝑡 ,𝑔𝑡 , then connect 𝑠 and 𝑡 with
probability 𝑀𝑔𝑠 ,𝑔𝑡 . In other words, 𝐴𝑠𝑡 ∼ Bernoulli(𝑀𝑔𝑠 ,𝑔𝑡). (Note that this need not
be symmetric: when it comes time to generate 𝐴𝑡𝑠 , the group memberships and thus the
connection probabilities in that orientation may be different.) To perform inference, we
need to specify a prior distribution for 𝝅, the natural choice being the Dirichlet distribu-
tion (i.e., 𝝅𝑖 ∼ Dir(𝜶)) which ensures that the normalization condition holds. Likewise,
the groups follow a categorical distribution parameterized by 𝝅 (i.e., 𝑔𝑖 ∼ Cat(𝝅𝑖)).
The Dirichlet parameter vector 𝜶 along with M then serve as our inferential targets,
while the membership probabilities 𝝅 and group pairs (𝑔𝑠 , 𝑔𝑡) act as latent variables.
The presence of these latent quantities makes expectation–maximization (EM) a natural
choice for performing inference. (We will use EM in Sec. 23.3; see also Sec. 24.5.) For
full details, see Airoldi et al. [7].

23.3 Witness me: the edge observer model
Consider a network dataset derived from tests conducted on each edge. Measurements
are taken and we record each time an edge is or is not observed. Such a data generating

4 This may remind you of the Louvain method [57].
5 Alternatively, instead of weights we can consider the block matrix as a multigraph where the number of

edges between two “nodes” 𝑔𝑖 and 𝑔 𝑗 is proportional to 𝑀𝑔𝑖 ,𝑔 𝑗
.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.3. WITNESS ME: THE EDGE OBSERVER MODEL 359

process (DGP) describes many network datasets such as the HuRI and Malawi Sociome-
ter Network focal networks. Our inferential goal is to understand an unseen or latent
ground truth adjacency matrix A that relates to the probability that edges are observed
when measurements are taken. That is, when an edge (𝑖, 𝑗) really exists (𝐴𝑖 𝑗 = 1), we
are likely to observe it in our DGP, although there is a chance we may not due to noise.
Likewise, when (𝑖, 𝑗) does not exist (𝐴𝑖 𝑗 = 0), we are likely not to observe it, although
there is a chance we may observe it, again due to noise. How likely it is to make such
mistakes, false negatives or false positives, will depend somehow on our measurement
process’s accuracy and reliability. What can we say about the latent A from our noisy
observations?

Statistically, we model the DGP using a probability 𝑃(data | A, 𝜃). Here “data” acts
as a placeholder for how the DGP measurements are stored (we discuss specifics below)
and 𝜃 represents a set of parameters that we use to model the DGP. By manipulating this
probability, we can express other probabilities; if we can calculate 𝑃(A | data, 𝜃), we
can use it to find networks that are probable given the data, allowing us to reconstruct
a network using the DGP’s noisy measurements. Further, finding this probability will
also reveal a way to calculate it efficiently. First, from Bayes’ theorem,

𝑃(A, 𝜃 | data) = 𝑃(data | A, 𝜃)𝑃(A, 𝜃)
𝑃(data) . (23.8)

How best to get from 𝑃(A, 𝜃 | data) to 𝑃(A | data, 𝜃)? Marginalizing out A gives us
the probability for the model parameters given the observations,

∑
A 𝑃(A, 𝜃 | data). (Of

course, summing over all networks is intractable in general.) The 𝜃 which maximizes this
probability is our maximum a posteriori (MAP) estimator of 𝜃. The log of 𝑃(𝜃 | data)
has the same maximum and is more convenient to work with:

log 𝑃(𝜃 | data) = log
∑︁
A
𝑃(A, 𝜃 | data) ≥

∑︁
A
𝑞(A) log

𝑃(A, 𝜃 | data)
𝑞(A) . (23.9)

The last step comes from Jensen’s inequality6 and holds for any probability distribution
𝑞(A) such that

∑
A 𝑞(A) = 1. But if we take

𝑞(A) = 𝑃(A, 𝜃 | data)∑
A 𝑃(A, 𝜃 | data) , (23.11)

the inequality in Eq. (23.9) becomes an equality, and this means Eq. (23.11) maximizes
the right-hand side wrt 𝑞(A). If we maximize this expression again with respect to 𝜃,
we get our MAP estimate of our model parameters. This double maximization can be
solved iteratively: first we maximize with respect to 𝑞(A) (via Eq. (23.11)) then we
maximize with respect to 𝜃 with 𝑞(A) held constant. This second maximum can be
found by differentiating Eq. (23.9) with 𝑞(A) constant and solving∑︁

A
𝑞(A)∇𝜃 log 𝑃(A, 𝜃 | data) = 0 (23.12)

6 Jensen’s inequality states that logE[𝑥𝑖] ≥ E[log 𝑥𝑖] because log is concave. From this, we have

log
∑︁
𝑖

𝑥𝑖 = log
∑︁
𝑖

𝑥𝑖
𝑞𝑖
𝑞𝑖

= logE𝑞
[
𝑥𝑖
𝑞𝑖

]
≥ E𝑞

[
log

𝑥𝑖
𝑞𝑖

]
=

∑︁
𝑖

𝑞𝑖 log
𝑥𝑖
𝑞𝑖
, (23.10)

which is what we use in Eq. (23.9).

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

360 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

for 𝜃. With 𝜃 estimated, we can then estimate A from our data. In fact, 𝑞(𝐴) already
tells us about A, since

𝑞(A) = 𝑃(A, 𝜃 | data)
𝑃(𝜃 | data) = 𝑃(A | data, 𝜃). (23.13)

So 𝑞(A) is exactly the distribution we want, the posterior probability of A given our
data and parameters.

Putting these pieces together, we have a general-purpose method for estimating a
network’s structure from noisy observations of its edges. The double maximization is
an example of the expectation–maximization algorithm [127], an elegant and often very
effective technique for finding maximum likelihood parameters numerically when the
likelihood function is complicated. That said, presented generically, the steps above
may be a little opaque, so let’s make some specific, simplifying assumptions, then apply
this technique to one of our focal networks.

Independent observer model
To simplify, assume iid edge measurements, that is, each measurement is an independent
Bernoulli (edge/no-edge) random variable. We assume that our measurements have true
positive rate 𝛼 and false positive rate 𝛽. In other words, when an edge is actually present
between nodes 𝑖, 𝑗 , 𝐴𝑖 𝑗 = 1, our DGP observes it correctly with probability 𝛼 and fails
to observe it with probability 1 − 𝛼. Likewise, for a non-edge (𝐴𝑖 𝑗 = 0), our DGP
correctly does not observe it with probability 1 − 𝛽 and incorrectly observes it with
probability 𝛽. For our data, we observe node pair 𝑖, 𝑗 a total of 𝑁𝑖 𝑗 times; of those
observations, we observe an edge 𝐸𝑖 𝑗 times.

Taken together, and further assuming the network is undirected, the likelihood of
our data is

𝑃(data | A, 𝜃) =
∏
𝑖< 𝑗

(
𝛼𝐸𝑖 𝑗 (1 − 𝛼)𝑁𝑖 𝑗−𝐸𝑖 𝑗

)𝐴𝑖 𝑗
(
𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

)1−𝐴𝑖 𝑗

. (23.14)

To get from this to the posterior, we introduce some priors. Because edges are inde-
pendent, and assuming 𝜌 is the prior probability for any given edge to exist, the full
network A has a prior probability of 𝑃(A | 𝜌) = ∏

𝑖< 𝑗 𝜌
𝐴𝑖 𝑗 (1 − 𝜌)1−𝐴𝑖 𝑗 . Lastly, we’ll

keep things simple by assuming a uniform prior for 𝜃, 𝑃(𝜃) = 𝑃(𝛼)𝑃(𝛽)𝑃(𝜌) = 1, i.e.,
𝛼, 𝛽, and 𝜌 are uniformly distributed on the interval [0, 1].

Applying all these assumptions to Eq. (23.8), we have

𝑃(A, 𝜃 | data) = 𝑃(data | A, 𝜃)𝑃(A | 𝜃)𝑃(𝜃)
𝑃(data) =

𝑃(data | A, 𝜃)𝑃(A | 𝜌)
𝑃(data)

=
1

𝑃(data)
∏
𝑖< 𝑗

(
𝜌𝛼𝐸𝑖 𝑗 (1 − 𝛼)𝑁𝑖 𝑗−𝐸𝑖 𝑗

)𝐴𝑖 𝑗
(
(1 − 𝜌)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

)1−𝐴𝑖 𝑗

. (23.15)

Unlike the generic probabilities we had earlier, now we have an explicit expression.
Moreover, we no longer have a sum over all 2𝑁 possible networks, but instead (after
taking the log) a sum over

(𝑁
2
)

node pairs. Much more reasonable. Continuing on,

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.3. WITNESS ME: THE EDGE OBSERVER MODEL 361

to substitute into Eq. (23.12), let’s take the log and differentiate with respect to our
parameters:

𝜕

𝜕𝛼
log 𝑃(A, 𝜃 | data) =

∑︁
𝑖< 𝑗

𝐴𝑖 𝑗
𝜕

𝜕𝛼
log 𝜌𝛼𝐸𝑖 𝑗 (1 − 𝛼)𝑁𝑖 𝑗−𝐸𝑖 𝑗

=
∑︁
𝑖< 𝑗

𝐴𝑖 𝑗

(
𝐸𝑖 𝑗

𝛼
− 𝑁𝑖 𝑗 − 𝐸𝑖 𝑗

1 − 𝛼

)
, (23.16)

𝜕

𝜕𝛽
log 𝑃(A, 𝜃 | data) =

∑︁
𝑖< 𝑗

(1 − 𝐴𝑖 𝑗)
(
𝐸𝑖 𝑗

𝛽
− 𝑁𝑖 𝑗 − 𝐸𝑖 𝑗

1 − 𝛽

)
, (23.17)

𝜕

𝜕𝜌
log 𝑃(A, 𝜃 | data) =

∑︁
𝑖< 𝑗

(
𝐴𝑖 𝑗

𝜌
− 1 − 𝐴𝑖 𝑗

1 − 𝜌

)
. (23.18)

Substituting these into
∑

A 𝑞(A)∇𝜃 log 𝑃(A, 𝜃 | data) and solving for the 𝜃 that makes
this zero gives expressions for our parameter estimates. For �̂�, we have

∑︁
A
𝑞(A)

∑︁
𝑖< 𝑗

𝐴𝑖 𝑗

(
𝐸𝑖 𝑗

�̂�
− 𝑁𝑖 𝑗 − 𝐸𝑖 𝑗

1 − �̂�

)

=
∑︁
𝑖< 𝑗

∑︁
A
𝑞(A)𝐴𝑖 𝑗

(
𝐸𝑖 𝑗

�̂�
− 𝑁𝑖 𝑗 − 𝐸𝑖 𝑗

1 − �̂�

)

=
∑︁
𝑖< 𝑗

𝑄𝑖 𝑗

(
𝐸𝑖 𝑗

�̂�
− 𝑁𝑖 𝑗 − 𝐸𝑖 𝑗

1 − �̂�

)
= 0, (23.19)

and solving for �̂� gives

�̂� =

∑
𝑖< 𝑗 𝐸𝑖 𝑗𝑄𝑖 𝑗∑
𝑖< 𝑗 𝑁𝑖 𝑗𝑄𝑖 𝑗

. (23.20)

Along the way we introduced 𝑄𝑖 𝑗 =
∑

A 𝑞(A)𝐴𝑖 𝑗 . This is the posterior probability for
edge 𝑖, 𝑗 : 𝑄𝑖 𝑗 = 𝑃(𝐴𝑖 𝑗 = 1 | data, 𝜃). This matrix is where our estimated network is
found. Following the same steps to estimate our other parameters leaves

𝛽 =

∑
𝑖< 𝑗 𝐸𝑖 𝑗 (1 −𝑄𝑖 𝑗)∑
𝑖< 𝑗 𝑁𝑖 𝑗 (1 −𝑄𝑖 𝑗)

, �̂� =
1(𝑁
2
) ∑︁
𝑖< 𝑗

𝑄𝑖 𝑗 . (23.21)

To finish building our model, we seek an expression for 𝑄𝑖 𝑗 in terms of �̂�, 𝛽, and �̂�.
With our simplifications, we know that

𝑃(A | data, 𝜃) = 𝑞(A) =
∏
𝑖< 𝑗

𝑄𝑖 𝑗 (1 −𝑄𝑖 𝑗)1−𝐴𝑖 𝑗 (23.22)

for whatever𝑄𝑖 𝑗 turns out to be. To find it, given our parameter estimates, let’s substitute
𝑃(A, 𝜃 | data) from Eq. (23.15) into 𝑞(A) from Eq. (23.11) and rearrange terms until

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

362 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

we are in the form of Eq. (23.22)’s right-hand side:

𝑞(A) =
∏
𝑖< 𝑗

[
�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗

] 𝐴𝑖 𝑗
[(1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

]1−𝐴𝑖 𝑗

∑
A
∏
𝑖< 𝑗

[
�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗

] 𝐴𝑖 𝑗
[(1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

]1−𝐴𝑖 𝑗

=

∏
𝑖< 𝑗

[
�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗

] 𝐴𝑖 𝑗
[(1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

]1−𝐴𝑖 𝑗

∑
𝐴𝑖 𝑗=0,1

[
�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗

] 𝐴𝑖 𝑗
[(1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

]1−𝐴𝑖 𝑗

=
∏
𝑖< 𝑗

[
�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗

] 𝐴𝑖 𝑗
[(1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗

]1−𝐴𝑖 𝑗

�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗 + (1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗
(23.23)

=
∏
𝑖< 𝑗

�̂�
𝐴𝑖 𝑗

𝑖 𝑗

(
1 − �̂�𝑖 𝑗

)1−𝐴𝑖 𝑗

, (23.24)

where we achieved the form we want in Eq. (23.24) after a bit more rearranging of
Eq. (23.23) and found

�̂�𝑖 𝑗 =
�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗

�̂��̂�𝐸𝑖 𝑗 (1 − �̂�)𝑁𝑖 𝑗−𝐸𝑖 𝑗 + (1 − �̂�)𝛽𝐸𝑖 𝑗 (1 − 𝛽)𝑁𝑖 𝑗−𝐸𝑖 𝑗
. (23.25)

With �̂�𝑖 𝑗 , we have an expression for the probability of an edge given our observations
and parameters. Intuitively, Eq. (23.25) makes sense, and notice that if our data includes
an unobserved edge, one where 𝑁𝑖 𝑗 = 𝐸𝑖 𝑗 = 0, we have �̂�𝑖 𝑗 = �̂�, our prior estimate for
overall network density. The expression is consistent with our priors—exactly what we
want. (The case of no data also motivates the need for 𝜌.)

Fitting algorithm Between our parameter estimates and �̂�𝑖 𝑗 , we have the pieces we
need for inference. To fit to data, we use expectation–maximization, which alternates
between two steps:

1. (E-step) Compute �̂�𝑖 𝑗 for all 𝑖, 𝑗 using the observations and our estimated pa-
rameters �̂�, 𝛽, and �̂� in Eq. (23.25).

2. (M-step) Update parameter estimates �̂�, 𝛽, and �̂� using the observations and �̂�𝑖 𝑗
in Eqs. (23.20) and (23.21).

(Initially, our parameters are randomly drawn from their priors.) Iterate E- and M-steps
until convergence (within a tolerance). These steps will converge, but not necessarily to
a global optimum [127].

23.3.1 Application: temporal contact network
Let’s use the independent edge observer model to estimate the network structure of
the Malawi Sociometer Network, treating the sociometers as our “edge observers.” For
the most part, until now, we have used the weighted version of this focal network. But
if we suspect there may be either noise in the data or just an overabundance of weak

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

2 3 .3 .WITNESS ME: THE EDGE OBSERVER MODEL 363

Figure 23.2 Fitting the edge observer model to the Malawi Sociometer Network. To prevent
zeroes from visually swamping out the distribution, in the lower-left panel we condition 𝑄𝑖 𝑗

using 𝜖 = 10−8.

ties, can we use the edge observer to extract the most meaningful, underlying network
(Sec. 10.5)?

In Ch. 15 we studied the time dynamics of this network by aggregating the event
representation by days. We use that version here, and we count for each node pair 𝑖, 𝑗 the
number of days an edge was observed, 𝐸𝑖 𝑗 , out of the 𝑁𝑖 𝑗 = 14 days of observations.7
(Notice that this uses no additional temporal information nor does it consider multiple
observations within a single day.) These counts serve as our input data.

First, in Fig. 23.2 we plot the distribution of 𝐸𝑖 𝑗 over all node pairs where 𝐸𝑖 𝑗 > 0.
Most edges that were observed tended to be observed only a few times (𝐸𝑖 𝑗 < 5) while
a handful of the (presumably) strongest edges were observed on all or nearly all days
(𝐸𝑖 𝑗 = 13 or 14). That said, a small portion of observed edges are distributed roughly
uniformly between these extremes (5 < 𝐸𝑖 𝑗 < 13); although not too bad, this makes
it diffi cult to impose a global cutoff𝐸∗ (i.e., retain all edges 𝐸𝑖 𝑗 > 𝐸∗; Ch. 10), if we
wished, to extract the “true” edges from the noise.

Now, we fi t the model by iterating on Eqs. (23.20), (23.21), and (23.25) until
convergence,8 which was fast, usually within 13–15 steps. After fi tting, we compute
�̂�𝑖 𝑗 for each node pair. This probability admits a natural cutoff for when to infer an edge,
𝑄𝑖 𝑗 ≥ 1/2, and this is confi rmed in the remaining panels of Fig. 23.2. In particular,
we see an immediate jump in 𝑄𝑖 𝑗 , sharply separating the edges between 𝐸𝑖 𝑗 = 3 and
𝐸𝑖 𝑗 = 4.

Examining our fi tted parameters, starting with density, we have�̂� = 0.0303, meaning
7 An important next step would be to explore aggregation other than daily; Ch. 7.
8 Specifi cally, we iterate EM steps𝑠 until max

�̂�(𝑠) − �̂�(𝑠−1) , 𝛽 (𝑠) − 𝛽 (𝑠−1) , �̂�(𝑠) − �̂�(𝑠−1) <

10−6.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

364 CHAPTER 2 3 . STATISTICAL MODELS AND INFERENCE

Figure 23.3 Comparing the disparity fi lter (backbone) and edge observer network recovery
methods to the Malawi Sociometer Network.

the network is quite sparse. In comparison, the density of the raw data, using any 𝑖, 𝑗
with 𝐸𝑖 𝑗 > 0, is 0.0949, meaning the model has removed about two-thirds of the
observed edges. For the other parameters, we have �̂� = 0.737 and 𝛽 = 0.00690. These
translate to a false negative rate (edges actually present that we fail to detect) 1 − �̂� of
about 25% and a (very low) false positive rate: only 0.7% of the time should we expect
to note an edge exists when in fact it does not. We can also quantify performance by
measuring how often the model’s positive predictions are wrong, the false discovery
rate, FDR = FP/(TP + FP), where FP is the number of false positives and TP is the
number of true positives. For the independent edge observer,

FDR =
(1 − 𝜌)𝛽

𝜌𝛼 + (1 − 𝜌)𝛽 , (23.26)

which, with our estimated parameters, gives FDR = 0.2301. All said, these are plausible
values given the nature of the experiment, including the context of the social interactions
and the precision of the sociometer badges. When the model rules out an edge, it is
probably correct, but if it confi rms an edge is present, it will be wrong roughly 1 in 4
times.

Lastly, it’s instructive to compare the results of the edge observer model with our
earlier analysis using the disparity fi lter on the weighted network, which we considered
in Sec. 10.5.5 (Fig. 10.2). To compare the two, we simply examine the sets of nodes and
edges remaining in the networks extracted with the disparity fi lter and the edge observer.
Figure 23.3 uses Venn diagrams to illustrate the sets of all nodes and edges compared
to the sets of nodes and edges remaining in the two networks. Both methods preserve
nearly all the nodes, while both remove the majority of edges, which is to be expected.
Interestingly, the sets of edges retained by the two methods are nearly identical. At least
for this network, our fi ltering methods are quite consistent.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.4. OTHER MODELING APPROACHES 365

One disadvantage of the disparity filter over the edge observer is that the disparity
filter requires tuning its backbone cutoff parameter 𝛼BB (Eq. (10.1)), whereas the edge
observer admits a natural cutoff of 𝑄 ≥ 1/2. Previously we found 𝛼BB = 0.26 to work
well on this network (Fig. 10.2) and we used that value here. It is not too difficult to
determine the disparity filter’s threshold, but it is still not automatic like we have with
the edge observer.

Overall, the edge observer model is a simple and often effective statistical model for
network data where repeat edge measurements are taken. We focused on the simplest
formulation, where edges are iid, but we can relax this assumption if needed. The natural
next step [337] is to allow for nodes 𝑖 to have individual true- and false-positive rates,
𝛼 → 𝛼𝑖 and 𝛽 → 𝛽𝑖 . Expressing this model is straightforward, noting that it requires
𝐸𝑖 𝑗 ≠ 𝐸 𝑗𝑖 . Not only can this capture asymmetry in edge formation, the model can
also capture measures of data quality on a per-node basis, which the independent edge
observer cannot. With all that said, more complex dependencies, such as transitivity,
become more difficult to express, leading researchers to consider approaches such as
those we describe in the next section.

23.4 Other modeling approaches
Here we discuss three additional statistical models for networks. The first two are suitable
when a single instance of the network is observed and were developed specifically for
social network analysis. The third can be used when the network is unknown but data
for each node, such as time series, are available, and we wish to find the network from
relationships between the data.

23.4.1 Exponential random graphs
Suppose you wish to build a probability model for whether edge 𝑖, 𝑗 is present in the
network. This probability may depend on a variety of other features (covariates) and
you would like to capture that in your model, along with parameters describing which
covariates matter that you can infer by fitting the model to data. Ideally, the covariates
and their parameters can even be interpreted, giving us inferential insights.

Since we are building a model for a probability given covariates, what may imme-
diately come to mind is logistic regression (Sec. 16.2),

Pr(𝐴𝑖 𝑗 = 1) = 1
𝑍

exp

[∑︁
𝑘

𝛽𝑘𝑔𝑘 (𝑖, 𝑗)
]
, (23.27)

where 𝑔𝑘 (𝑖, 𝑗) are covariates and 𝛽𝑘 are parameters.
The difficulty, however, comes from interactions, dependencies between covariates

of different edges, which may or may not be coincident on the same node. Specifying
a probability model here requires covariates that capture such dependencies across the
configuration of the network, not just on a per-edge basis. Without it, the model could
never capture triangles, for instance.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

366 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

These dependencies need to be introduced as constraints in the probability model.
For example, if we need the model to capture the total number of edges, the number of
two-paths, the number of triangles, and such, we need constraints for each.

To see these constraints in our model, let’s step back and look at the probability
Pr(𝐺) for the entire network 𝐺. This should satisfy

∑
𝐺 Pr(𝐺) = 1 with the sum

running over all possible networks9 with 𝑁 nodes. If we know some statistic 𝑠(𝐺) from
the network, such as the number of edges, and we want the model to reproduce the
expected value ⟨𝑠⟩ of that statistic, then∑︁

𝐺

𝑠(𝐺) Pr(𝐺) = ⟨𝑠⟩ (23.28)

acts to constrain Pr(𝐺). In general we will have a set of statistics 𝑠𝑘 (𝐺), each con-
straining Pr(𝐺). This set may be large, but it will not fully specify the model as the
number of possible networks on 𝑁 nodes is enormous: 2(𝑛2) = 2𝑛(𝑛−1)/2. Which model
then to choose? Among all possible models that meet these constraints, many will have
additional constraints or assumptions that we didn’t intend to consider and for which
we do not have evidence. What we really want is to specify the most “random,” least
constrained model that meets the assumptions we do want (see also Sec. 23.5). We can
approach this by quantifying how random the model is and picking the most random
model that still meets our constraints.

The entropy ℎ of a probability distribution,

ℎ (Pr(𝐺)) = −
∑︁
𝐺

Pr(𝐺) log Pr(𝐺), (23.29)

serves to measure its randomness. Intuitively, it tells us how “surprised” we are by
values that are drawn from the distribution. If the distribution is very predictable due to
constraints, ℎwill be low. Conversely, an unconstrained, highly random distribution will
display high ℎ. Thus we seek a Pr(𝐺) that maximizes ℎ while still being constrained by
our statistics.

We can find the form of Pr(𝐺) by maximizing L (not to be confused with the like-
lihood), a function called the Lagrangian that combines ℎ with the equality constraints
using Lagrange multipliers:

L = ℎ − 𝛽0

(
1 −

∑︁
𝐺

Pr(𝐺)
)
−

∑︁
𝑘

𝛽𝑘

[
⟨𝑠𝑘⟩ −

∑︁
𝐺

𝑠𝑘 (𝐺) Pr(𝐺)
]
. (23.30)

Here 𝛽0 is the Lagrange multiplier that introduces the normalization constraint while
𝛽𝑘 is the multiplier for network statistic 𝑠𝑘 . Differentiating Eq. (23.30) with respect to
Pr(𝐺) for a particular 𝐺 and setting equal to zero gives

− log Pr(𝐺) − 1 + 𝛽0 +
∑︁
𝑘

𝛽𝑘𝑠𝑘 (𝐺) = 0, (23.31)

which we solve to find our choice of Pr(𝐺),

Pr(𝐺) = exp

[
−1 + 𝛽0 +

∑︁
𝑘

𝛽𝑘𝑠𝑘 (𝐺)
]
=

1
𝑍

exp

[∑︁
𝑘

𝛽𝑘𝑠𝑘 (𝐺)
]
=

e𝐻 (𝐺)

𝑍
, (23.32)

9 Undirected networks without self-loops or multi-edges.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.4. OTHER MODELING APPROACHES 367

where 𝑍 = e1−𝛽0 and 𝐻 (𝐺) = ∑
𝑘 𝛽𝑘𝑠𝑘 (𝐺). Notice we see a model that looks like a

logistic regression (Eq. (23.27)) but the statistics are network-wide, not per-edge.10
Challenges remain, as this model is specified over all possible 𝐺 and computation

becomes intractable. For example, the normalization term 𝑍 =
∑
𝐺 e𝐻 (𝐺) cannot be

computed except for very small networks or very simple models. The same holds for
the 𝛽𝑘 although, if we did know 𝑍 , we could write down the expected values of our
statistics by differentiating log 𝑍 with respect to their 𝛽:

⟨𝑠𝑘⟩ =
∑︁
𝐺

𝑠𝑘 (𝐺) Pr(𝐺) = 1
𝑍

∑︁
𝐺

𝑠𝑘e𝐻 (𝐺) =
1
𝑍

∑︁
𝐺

𝑠𝑘e
∑

𝑘 𝛽𝑘𝑠𝑘 (𝐺)

=
1
𝑍

𝜕

𝜕𝛽𝑘

∑︁
𝐺

e
∑

𝑘 𝛽𝑘𝑠𝑘 (𝐺) =
1
𝑍

𝜕𝑍

𝜕𝛽𝑘
=
𝜕 log 𝑍
𝜕𝛽𝑘

. (23.33)

To move forward, researchers have worked on simplifying this general model
(Eq. (23.32)). Frank and Strauss [168] derive the form for such a probability model
if the network is random up to a Markov property, meaning that the presence or absence
of two edges is conditionally independent given the rest of the network, unless those
edges are coincident at a node.11 The idea is that this can still capture relationships
between edges, such as triadic closure, while greatly simplifying the probability model.
Conditional independence places constraints on the probability model as edges become
dependent when they participate in two-paths and triangles. Frank and Strauss show
that a random network can satisfy the Markov property if and only if its probability
distribution can be written as

Pr(𝐺) = 1
𝑍

exp

(
𝑁−1∑︁
𝑘=1

𝛽𝑘𝑠𝑘 (𝐺) + 𝜏𝑇 (𝐺)
)
. (23.34)

The statistics 𝑠𝑘 and 𝑇 are

𝑠1 (𝐺) =
∑︁
𝑖< 𝑗

𝐴𝑖 𝑗 the number of edges, (23.35)

𝑠𝑘 (𝐺) =
∑︁
𝑖

(∑
𝑗 𝐴𝑖 𝑗

𝑘

)
the number of “𝑘-stars” (𝑘 ≥ 2), (23.36)

𝑇 (𝐺) =
∑︁
𝑖< 𝑗<𝑢

𝐴𝑖 𝑗𝐴𝑖𝑢𝐴 𝑗𝑢 the number of triangles. (23.37)

Here a 𝑘-star is a set of nodes 𝑖, 𝑗1, 𝑗2, . . . , 𝑗𝑘 where 𝐴𝑖 𝑗𝑡 = 1 for each 𝑗𝑡 . Essentially, it
is the degree distribution of the network. (A single edge is a 1-star.)

If we specialize this model by taking 𝛽2 = 𝛽3 = · · · = 𝛽𝑁−1 = 𝜏 = 0, we are left
with

Pr(𝐺) = e𝛽1𝑀∑
𝐺 e𝛽1𝑀

, (23.38)

10 A distribution of this form is often encountered in statistical physics. We have found an example of
Boltzmann’s distribution. The 𝑍 is known as the partition function and 𝐻 (𝐺) is the graph Hamiltonian.

11 More explicitly, for an undirected network and four distinct nodes 𝑖, 𝑗 , 𝑢, 𝑣, edges 𝑎𝑖 𝑗 and 𝑎𝑢𝑣 are
independent, conditional on all other variables 𝑎𝑠𝑡 .

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

368 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

where 𝑀 =
∑
𝑖< 𝑗 𝐴𝑖 𝑗 . The normalization becomes

𝑍 =
∑︁
𝐺

exp

(
𝛽1

∑︁
𝑖< 𝑗

𝐴𝑖 𝑗

)
=

∑︁
𝐺

∏
𝑖< 𝑗

e𝛽1𝐴𝑖 𝑗

=
∏
𝑖< 𝑗

∑︁
𝐴𝑖 𝑗=0,1

e𝛽1𝐴𝑖 𝑗 =
∏
𝑖< 𝑗

(
1 + e𝛽1

)
=

(
1 + e𝛽1

) (𝑁2)
. (23.39)

Recall that 𝜕 log 𝑍/𝜕𝛽1 = ⟨𝑠1⟩ = ⟨𝑀⟩. Applying this to Eq. (23.39) gives

⟨𝑀⟩ =
(
𝑁

2

)
𝜕

𝜕𝛽1
log(1 + e𝛽1) =

(
𝑁

2

)
1

1 + e−𝛽1
(23.40)

and solving for 𝛽1 we get

𝛽1 = log
⟨𝑀⟩(𝑁

2
) − ⟨𝑀⟩ . (23.41)

Now, what is the probability for a single edge 𝑢, 𝑣? This is given by the expected value
of 𝐴𝑢𝑣 , ⟨𝐴𝑢𝑣⟩ = Pr(𝐴𝑢𝑣 = 0) × 0 + Pr(𝐴𝑢𝑣 = 1) × 1 = Pr(𝐴𝑢𝑣 = 1), or

⟨𝐴𝑢𝑣⟩ =
∑
𝐴𝑢𝑣=0,1 𝐴𝑢𝑣e𝛽1𝐴𝑢𝑣∑
𝐴𝑢𝑣=0,1 e𝛽1𝐴𝑢𝑣

=
e𝛽1

1 + e𝛽1
. (23.42)

We know the value of 𝛽1 from Eq. (23.41) so this becomes,

Pr(𝐴𝑢𝑣 = 1) = 1
1 + e−𝛽1

=
⟨𝑀⟩(𝑁

2
) . (23.43)

In other words, this specialized model captures a constant probability for edges based
just on the expected density. Erdős–Rényi (or the Bernoulli model), among others, is
thus a special case of Eq. (23.34).

Extending beyond the special case allows for a probability model to capture higher-
order dependencies, which is why they are quite popular for modeling social networks,
where homophily and other social phenomena drive triadic closure and other network
features. The model Eq. (23.34) can be generalized to directed networks and to arbitrary
statistics s(𝐺) (including node-level attributes; Ch. 9), giving

Pr(𝐺 = 𝑔) = exp
[
𝜷
⊺s(𝐺) − 𝜓(𝜷)] , (23.44)

where 𝜓(𝜷) = log 𝑍 ensures normalization. Written in this form we see the model
falls into the exponential family and it is therefore called the exponential random graph
model (ERGM).

Fitting ERGMs to data is challenging practically and, more importantly, over the
years researchers have slowly discovered catastrophic, possibly fatal problems with
them. In terms of fitting, early approaches (using pseudo-likelihoods) were found to
have flaws and eventually it was determined that Markov Chain Monte Carlo (MCMC)
methods were preferred for sampling graphs from the ERGM and for estimating pa-
rameters. However, it was those very MCMC methods that revealed serious, (mostly)
overlooked problems with how ERGMs are specified.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.4. OTHER MODELING APPROACHES 369

Roughly speaking, the flaw is that the statistics, Eqs. (23.35)–(23.37), are not in-
dependent of one another: triangles involve two-paths, 𝑘-stars involve triangles, and so
forth. Suppose you change one edge in the model. This will change the number of edges,
but it can also change the number of triangles. Those triangles would increase the 𝑇
statistic, which could increase the probabilities for other edges to form. A cascade of
changes could begin, driving the model towards the complete graph. All from a single
edge! This is model degeneracy, where small changes to a fit parameter can drasti-
cally change the probability assigned to different network configurations—suddenly a
model that places all its probability on the complete graph will shift entirely over to the
nearly empty graph. This phase transition12 is unlikely to reflect a real network—how
could one new friendship cause every possible friendship to exist?—and the model’s
instability should make us extremely skeptical of the robustness of our inferences.

On the bright side, revealing the degeneracy in the model means research can
focus on addressing it. Snĳders et al. [436] propose a new set of statistics, replacing
Eqs. (23.35)–(23.37), intended to prevent the “change cascade” just discussed. For
example, they note that models with positive parameters for 𝑘-stars will put high
probability onto graph configurations containing high-degree nodes based on their
subgraph counts. Thus, a possible solution is to use a statistic that decreases the weight
on higher degrees. Snĳders et al. suggest using geometrically decreasing weights. A
similar argument leads to different ways of capturing transitivity and two-paths.

Overall, these new statistics are very interesting and helpful, but they do not com-
pletely eliminate degeneracy from ERGMs. Improvements and alternatives to ERGMs
remain an important area of research.

23.4.2 Latent space models
Another approach to modeling network edges statistically that has some advantages over
ERGMs is latent space models [216]. Here each node 𝑖 is associated with a coordinate
z𝑖 in a latent space (or, an embedding space; Ch. 26) and the probability for an edge 𝑖, 𝑗
will depend on their distance 𝑑𝑖 𝑗 = ∥z𝑖 − z 𝑗 ∥ in the space, along with other observed
covariates x𝑖 𝑗 and parameters 𝜷. In other words, our probability model for the network’s
adjacency matrix is

Pr(A | X,Z, 𝜷) =
∏
𝑖≠ 𝑗

Pr(𝐴𝑖 𝑗 | x𝑖 𝑗 , z𝑖 , z 𝑗 , 𝜷), (23.45)

where X is known but Z and 𝜷 are unknown and must be estimated (and we consider
𝐴𝑖 𝑗 ≠ 𝐴 𝑗𝑖 , otherwise we take the product over 𝑖 < 𝑗).

A convenient way to incorporate 𝑑𝑖 𝑗 is by parameterizing the model as a logistic
regression, meaning we take the log-odds for an edge to be a linear combination of our
features, which include 𝑑𝑖 𝑗 :

𝜂𝑖 𝑗 = log
𝑃(𝐴𝑖 𝑗 = 1 | x𝑖 𝑗 , z𝑖 , z 𝑗 , 𝛼, 𝜷)

1 − 𝑃(𝐴𝑖 𝑗 = 1 | x𝑖 𝑗 , z𝑖 , z 𝑗 , 𝛼, 𝜷) (23.46)

= 𝛼 + 𝜷⊺x𝑖 𝑗 − ∥z𝑖 − z 𝑗 ∥. (23.47)
12 In the language of statistical physics, the problem can be described as the model undergoing spontaneous

symmetry breaking [359].

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

370 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

We previously attempted to build the ERGM model with logistic regression (Eq. (23.27))
but it was not so simple to capture transitivity and reciprocity. Here, the great benefit
of the latent space is that it is intrinsically reciprocal and transitive, inheriting these
properties from the distance metric on Z.

Unlike an ERGM, the log-likelihood of this model is relatively simple,

log Pr(A | 𝜼) =
∑︁
𝑖≠ 𝑗

[
𝐴𝑖 𝑗 log Pr(𝐴𝑖 𝑗 | 𝜂𝑖 𝑗) + (1 − 𝐴𝑖 𝑗) log

(
1 − Pr(𝐴𝑖 𝑗 | 𝜂𝑖 𝑗)

)]

=
∑︁
𝑖≠ 𝑗

[
𝐴𝑖 𝑗 (𝜂𝑖 𝑗 − log(1 + e𝜂𝑖 𝑗)) − (1 − 𝐴𝑖 𝑗) log(1 + e𝜂𝑖 𝑗)]

=
∑︁
𝑖≠ 𝑗

[
𝐴𝑖 𝑗𝜂𝑖 𝑗 − log(1 + e𝜂𝑖 𝑗)] , (23.48)

where 𝜼 is a function of the model parameters, latent coordinates, and possible known
covariates. This log-likelihood makes latent space models amenable to inference meth-
ods such as maximum likelihood estimation or Bayesian inference.

The latent space model as described so far has been based on distances, but a model
can also be constructed based on projections of the latent positions. The distinction is
that distances will be symmetric whereas projections need not be, which is useful for
capturing asymmetric edge probabilities, Pr(𝐴𝑖 𝑗) ≠ Pr(𝐴 𝑗𝑖). Suppose node pairs are
more likely to have an edge when the angle between their positions is small and less
likely when the angle is large, meaning that edge formation is related to alignment in
the latent space. We can represent this with z⊺𝑖 z 𝑗/|z 𝑗 |, which is the signed magnitude of
the projection of z𝑖 in the direction of z 𝑗 . We can think of this as measuring the amount
of shared characteristics between 𝑖 and 𝑗 . This projection can be included in the logistic
parameterization (Eq. (23.47)) in place of −𝑑𝑖 𝑗 ,

𝜂𝑖 𝑗 = 𝛼 + 𝜷⊺x𝑖 𝑗 +
z⊺𝑖 z 𝑗
|z 𝑗 | . (23.49)

Here positive alignment increases the odds of an edge, anti-alignment decreases the
odds, and orthogonality indicates no change in the odds. Notice also that the projection
of z𝑖 in the direction of 𝑗 and the projection of z 𝑗 in the direction of 𝑖 are not equal,
unless |z 𝑗 | = |z𝑖 |. Therefore, the projection-based model can capture asymmetries in
edge formation that the distance-based model does not by varying the magnitudes of
the latent vectors; for example, larger |z| correspond to nodes with greater overall edge
formation rates.

There are some difficulties when performing inference that Hoff et al. [216] over-
come. The first is that the log-likelihood is not concave in the set of positions, because
the log-odds are not affine. Hoff et al. suggest finding a preliminary set of distances,
not necessarily Euclidean, that maximizes the likelihood, which is a convex problem.
These distances can be transformed to positions using multidimensional scaling [257]
which can then initialize a nonlinear optimization method.

The second difficulty that Hoff et al. overcome is that points in a Euclidean latent
space are invariant under rotation, reflection, and translation. This means that, for
any given set of positions, there will be an infinite number of other positions with

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.4. OTHER MODELING APPROACHES 371

equal likelihood. They propose an algorithm to address this based on a Procrustes
transformation [187] of the latent positions, which can make equal any two sets of
latent positions that differ only by rotation, reflection and/or translation.

With these difficulties addressed, Hoff et al. show that the model can be very effective
on real data.

Latent space models are an example of an embedding method, where the nodes are
embedded in a vector space such that similarities in the space approximate similarities
in the network. This can be helpful as the vector space may be more amenable to analysis
than the network itself, which is exactly what we saw when considering the logistic
model here compared to that of the ERGM. Embedding methods for networks using
machine learning are now an active area and we discuss them further in Ch. 26.

23.4.3 Sparse inference of Gaussian graphs

The precision matrix (Ch. 25) 𝚺−1 := 𝚯 (inverse covariance matrix) is a useful rep-
resentation of a graph 𝐺X of 𝑛 nodes that underlies a set of 𝑛 variables structured in
X ∈ R𝑚×𝑛. For example, time series measurements of 𝑛 nodes can be arranged into X.
Zeroes in 𝚯 show conditional independence between variables (Sec. 25.1.5), assuming
the data follow a multivariate normal distribution. Therefore, we can capture the con-
ditional dependencies between our 𝑛 variables by defining the Gaussian graph 𝐺X that
contains an edge 𝑖, 𝑗 if Θ𝑖 𝑗 ≠ 0; otherwise, 𝑖, 𝑗 is not an edge.

Since edges are present or absent based on the zeros of the precision matrix, we
are motivated to look for sparse estimates of 𝚯 given X. Sparse inference is now well
developed, with methods spanning statistics, machine learning, and signal processing.
One of the most celebrated methods is LASSO regression.

Like OLS regression, LASSO seeks to solve a linear system of equations, but now
we seek regression coefficients 𝛽 that minimize both the OLS sum-of-squared-errors
and are “norm-constrained.” We discussed LASSO in Ch. 16 (Sec. 16.4). In the context
of Gaussian graph inference, a method known as Graphical LASSO has been very
successful.

Graphical LASSO is motivated by earlier approaches that applied LASSO to this
problem. The first, by Meinshausen and Bühlmann [304], is quite simple. Perform a
separate LASSO regression on each variable x𝑖 using the remaining 𝑛 − 1 variables
x 𝑗 (𝑗 ≠ 𝑖) as predictors. Entries of (Σ−1)𝑖 𝑗 are taken as nonzero if either the LASSO
coefficient of variable 𝑖 on 𝑗 or 𝑗 on 𝑖 is nonzero. Meinshausen and Bühlmann show
that this method will (asymptotically) consistently estimate the nonzero (Σ−1)𝑖 𝑗 .

Graphical LASSO follows along these lines but better exploits the relationships
between the repeated LASSO regressions and the Gaussian likelihood first described
by Banerjee et al. [34]. To describe Graphical LASSO, first consider the log-likelihood
of 𝑚 variables drawn from an 𝑛-dimensional normal N(𝝁,𝚺),

ℓ(𝝁, Σ) = 𝑐 − 𝑚
2

log |𝚺| − 1
2

𝑚∑︁
𝑖=1

(
x(𝑖) − 𝝁

)⊺
𝚯

(
x(𝑖) − 𝝁

)
, (23.50)

where 𝑐 is a constant. We can put this more concisely by rewriting the sum using

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

372 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

properties of the trace13 and identifying the sample covariance S, to get

ℓ(𝝁, Σ) = 𝑐 − 1
2

{
𝑚 log |𝚺| +

𝑚∑︁
𝑖=1

(
x(𝑖) − 𝝁

)⊺
𝚯

(
x(𝑖) − 𝝁

)}

= 𝑐 + 1
2

{
𝑚 log |𝚯| −

𝑚∑︁
𝑖=1

tr
[(

x(𝑖) − 𝝁
) (

x(𝑖) − 𝝁
)⊺

𝚯

]}

= 𝑐 + 𝑚
2
(log |𝚯| − tr [S𝚯])

∝ log |𝚯| − tr (S𝚯) , (23.51)

where S = 1
𝑚

∑𝑚
𝑖=1

(
x(𝑖) − 𝝁

) (
x(𝑖) − 𝝁

)⊺
is the sample covariance matrix. For Graphical

LASSO, the goal is to maximize the penalized log-likelihood,

max
𝚯≻0

log |𝚯| − tr (S𝚯) + 𝜆∥𝚯∥1. (23.52)

This is an example of semidefinite programming (SDP), a convex optimization where
we maximize over a set of positive semidefinite matrices (𝚯 ≻ 0). But, except for the
penalty term, Eq. (23.52), at first glance, this doesn’t really look like a LASSO problem.

Let’s see why LASSO is relevant. Suppose we write W = 𝚯−1 as a partition by
taking one row and one column out of W to make W11: W = [W11,w12; w⊺12, 𝑤22].
This satisfies

W𝚯 =

(
W11 w12
w⊺12 𝑤22

) (
𝚯11 𝜽12
𝜽
⊺
12 𝜃22

)
=

(
I 0

0⊺ 1

)
. (23.53)

Writing out the upper-right block gives𝑊11𝜽12 +w12𝜃22 = 0 or w12 = −W11𝜽12/𝜃22 =
W11𝜷, where 𝜷 = −𝜽12/𝜃22.

The maximum of Eq. (23.52) occurs when its gradient equals 0:

𝚯−1 − S − 𝜆 sign(𝚯) =
(
W11 w12
w⊺12 𝑤22

)
−

(
S11 𝒔12
𝒔
⊺
12 𝑠22

)
− 𝜆 sign

(
𝚯11 𝜽12
𝜽
⊺
12 𝜃22

)
= 0. (23.54)

The upper-right block of this gives

w12 − s12 − 𝜆 sign(𝜽12) = W11𝜷 − s12 + 𝜆 sign(𝜷) = 0. (23.55)

This is an estimation equation for a LASSO problem14 with coefficients 𝜷 that we
arrive at, from the partition, by regressing one variable on the rest. This, along with
efficient optimization strategies, motivates the idea of breaking down the maximization
into LASSO sub-problems which are then recursively solved, which is the basis of the
Graphical LASSO algorithm:

13 The trace is linear and the trace of a product is invariant to cyclic permutations.
14 To see this, take the LASSO objective function 𝑄, differentiate with respect to 𝛽, then set equal to 0 for

the estimation equation of 𝛽:

min𝑄 =
1
2
(𝑦 − 𝛽)2 + 𝜆 |𝛽 | ⇒ 𝑄′ = 𝛽 − 𝑦 + 𝜆 sign(𝛽) = 0.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.5. ENSEMBLES 373

1. Initialize W = S + 𝜆I. The diagonal of W will not be updated.
2. For each 𝑗 = 1, 2, . . . , 𝑛:

(a) Permute and partition W so target variable 𝑗 is the last row and column.
(b) Solve the LASSO problem to find �̂� using current W11 and s12.
(c) Update the corresponding row and column of W with w12 = W11 �̂�.

3. Repeat from 2 until convergence.

As mentioned, solving the LASSO problem at each step requires permuting rows and
columns to make the current variable the last. When introducing Graphical LASSO,
Friedman et al. [170] discuss a coordinate descent strategy to exploit this for efficiency.

Upon convergence, the Graphical LASSO algorithm estimates W = �̂�, not the
precision matrix �̂�−1. Friedman et al. also note the following strategy to invert the
result efficiently by exploiting the partitioning (Eq. (23.53)) and computations made
along the way. From Eq. (23.53) we have

W11𝜽12 + w12𝜃22 = 0,
w⊺12𝜽12 + 𝑤22𝜃22 = 1,

(23.56)

which solves for

𝜽12 = −W−1
11 w12𝜃22,

𝜃22 = 1
/(
𝑤22 − w⊺12W−1

11 w12

)
.

(23.57)

In these we still have an inverse to compute, but notice that we already have �̂� = W−1
11 w12

which we can substitute into Eq. (23.57). Therefore, we can save the LASSO coefficients
�̂� for each of the 𝑛 problems, and efficiently compute 𝚺−1 after convergence, which was
our ultimate goal.

Efficiently estimating sparse precision matrices allows Graphical LASSO and re-
lated methods to scale up to networks of thousands of nodes. While the assumption of
Gaussianity is endemic to using precision matrices, in many problems it remains either
justified in the data or at least still serves as a reasonable modeling choice. Inference of
non-Gaussian graphical models along these lines remains an active area of research.

23.5 Ensembles
In general, whenever stochasticity is invoked, a network model does not represent a
network but an entire family of networks—an ensemble. Take the Erdős–Rényi model
with parameters 𝑁 (number of nodes) and 𝑝 (probability for a pair of nodes to be
connected). This model defines an ensemble of networks, the set of all networks that
satisfy these conserved properties or constraints. A central tenet of statistical mechanics,
and information theory, is that the most likely model ensemble is the one that subject
to the constraints is otherwise the most random—the principle of maximum entropy.

Understanding ensembles allows us to better capture properties of a network dataset.
Is it plausible that these data came from that ensemble? If we gathered more data, how
different can we expect the network to be? A positive answer to the first question

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

374 CHAPTER 23. STATISTICAL MODELS AND INFERENCE

gives us information about the second question: if we understand the ensemble the
network comes from, we can reason about how different a network drawn from that
same ensemble will be from our original sample, and this gives us some confidence in
addressing the second question.

Ensembles connect to both mechanistic (Ch. 22) and statistical network models. The
stochastic block model, ERGM, and other models discussed here all define ensembles
of networks, as do the growing and random graph models from Ch. 22. Indeed, the diffi-
culties inherent in understanding network models often boil down to challenges working
with their ensembles, either describing them mathematically or drawing samples from
them computationally.

23.6 Summary

Statistical models for network data are both promising and challenging. Many ap-
proaches exist, from the stochastic block model and its generalizations to the edge
observer, the exponential random graph model, and the Graphical LASSO. All these
models help us understand our data but, as we saw, using them can be challenging,
either computationally or mathematically. Often the model must be specified with great
care, lest it seize on a drastically unexpected network property (Fig. 23.1) or fall victim
to degeneracy (Sec. 23.4.1). Or the model must make implausibly strong assumptions,
such as conditionally independent edges, leading us to question its applicability to our
problem. Or even the data we have may simply be too large for the inference method to
handle efficiently. The search continues for better, more tractable statistical models and
more efficient, more accurate inference algorithms for network data.

Bibliographic remarks

The stochastic block model has a long and storied history, having been first introduced
by Holland et al. [219] by extending non-stochastic block models [73, 489]. A posteriori
blocking, where the block matrix is inferred from data, was first pursued by Snĳders
and Nowicki [437] and Nowicki and Snĳders [350]. A wealth of research has followed
in the intervening years; see Lee and Wilkinson [266] for a recent review.

The “edge observer” model (our name) and inference procedure was introduced by
Newman [337]. However, it has a clear antecedent outside the context of networks in
the seminal work of Dawid and Skene [122], an early application of the EM algorithm
to noisy inferences, soon after the EM algorithm was introduced. The Dawid–Skene
model, as it is now commonly called, is central to crowdsourcing [225], where large
groups of people provide data to, for example, train machine learning models [234, 25].

Exponential random graph models (ERGMs), also known as 𝑝∗ models, have a long
history: see Robins et al. [398] for a review. The latent space models we discussed were
introduced by Hoff et al. [216] as an alternative to avoid some of the problems that arise
when fitting ERGMs. Latent space models are an example of an embedding method,
and we will encounter such methods again in Ch. 25 and, in particular, Ch. 26. Finally,
the Graphical LASSO method was introduced by Friedman et al. [170] to leverage

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

23.6. SUMMARY 375

sparsified or penalized regression techniques [206] for one kind of network inference.
It has seen success, in particular, in bioinformatics problems (e.g., Cao et al. [93]).

Many statistical network models are fundamentally Bayesian and readers interested
in learning more on Bayesian inference may wish to consult Wasserman [484] for an
introduction or Gelman et al. [179] for an in-depth treatment.

Exercises
23.1 Produce some sketches of the stochastic block model membership matrix M for

different network structures: a bipartite network, a network with four equally sized
communities, a network with two communities each containing three equally
sized sub-communities, and a network with core–periphery structure.

23.2 What would M look like for a (bipartite) network exhibiting nestedness (Ch. 12)?

23.3 Given the parameters 𝑘, z,M, where M specifies the probability of connection,
what is the expected number of edges in a realization of the stochastic block
model?

23.4 In the degree-corrected stochastic block model, what should be the relationship
between 𝛾𝑖 and degree 𝑘𝑖 for node 𝑖?

23.5 (Focal network) Implement the edge observer and reproduce Fig. 23.2. Is the
inferred network connected? If not, how many connected components does it
find?

23.6 (Focal network) Implement the disparity filter ([424], Ch. 10) and apply it to the
(weighted) Malawi Sociometer Network. Going beyond the rudimentary results
of Fig. 23.3, use techniques from Ch. 14 to compare the “backbone” found with
the disparity filter to the network found with the edge observer model.

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

https://doi.org/10.1017/9781009212601.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212601.028

