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Abstract

Connections between a linear partial difference equation with constant coefficients and a
nonlinear partial difference equation are established by means of a comparison theorem and
a continuous dependence of parameters theorem. A linearized oscillation theorem is also
established as an application.

1. Introduction

Partial difference equations may be found in many branches of mathematics. Lagrange
and Laplace both discussed these equations in relation to dynamics and probability,
respectively. Courant et al. [2] have considered the partial difference equations of
mathematical physics. In recent years, there have been rapid advances made in the
solving of nonlinear problems, some of which can be modeled by nonlinear partial
difference equations (see for example Aganval [1]). Progress in this field has, in part,
been due to a synergetic approach consisting of the simultaneous use of conventional
analysis and numerical simulations. In [4-8], linear partial difference equations of the
form

*m+l,n +*m,n+l ~ PXmn + qXm-a,n-z = 0, (m, It) € Z , (1)

where Z 2 = {(m, n)\m,n = 0,1,2,...}, have been investigated and various proper-
ties related to the oscillatory nature of their solutions have been reported. The purpose
of this paper is to establish some connections between (1) and a more general nonlinear
functional inequality of the form

xm+\,n + xm,n+i - pxmn + qmnf (*„,_„,„_,) < 0, (m, n) e Z2, (2)
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[2] Comparison and linearized oscillation theorems for a nonlinear PDE 553

and to use these connections to prove a linearized oscillation theorem for the associated
nonlinear partial difference equation

Xm+\.n + *m,n+l - PXmn + qmnf (Xm-a,n-r) = 0, (ffl, tl) € Z*. (3)

In (2) and (3), the numbers p,a,x, the sequence {qmn} and the function / will
be restricted by appropriate conditions. For now, we will assume throughout the rest
of our paper that p is a positive number, a and r nonnegative integers such that
min(cr, r) > 0, {qmn}(m,n)<=z2 a real double sequence, and / a real-valued function
defined on R. By a solution of (2) or (3), we mean a real double sequence x = {xmn \
m > —a, n > —r} which satisfies (2). It is not difficult to formulate and prove an
existence theorem for the solutions of (2) when appropriate initial conditions are given
(for example see [8]). As is customary, we say that a solution x = {xmn} of (2) is
eventually positive (eventually negative) if xmn > 0 (respectively xmn < 0) for all large
m and all large n, and is oscillatory if it is neither eventually positive nor eventually
negative.

In the next section, we will establish a comparison theorem for the relation (2). In
Section 3, a continuous dependence of parameters theorem will be established for the
linear difference equation (1), and relations between (3) and (1) are then obtained. A
linearized oscillation theorem is given in the final section as an application.

2. A comparison theorem

Let x = [xmn} be an eventually positive solution of (2) such that xmn > 0 for
m > M — a > 0 and n > N -x > 0. Suppose further that / (t) > 0 for t > 0. Then
summing (2) with respect to the second independent variable from n to oo, we obtain

so that
00

m+l,j + P (Xm+l,n ~ Xmn)
j=n+l

00 00

+ J2 qmjf (x—^-t) < 0.
j=n

Summing the above inequality with respect to the first independent variable from m
to oo, we obtain
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+ (1-P)

Thus

1 f °°

, f OO OO

i — p I v ^ , v ^

for m > M and n > N.
Let p bea real number such that 1 > p > p, let {qmn}(m,n)Sz

2 be a nonnegative
sequence such that qmn > qmn for (m, n) € Z2 and further let / be a real and
nandecreasing function defined on R satisfying f(x) > f (x) for x > 0. Let Q be
'the set of all real double sequences of the form y = [ymn \ m > M — a, n > N — z).
Define an operator T : £2 -» fi by

i f 0 0 °° 1
(Ty)mn = - | £ Xi+ijyi+ij + E hf (xi-oj-*yi-oj-r)\

1 — p I
=— I /_^xi+\.nyi+\,n + 2_/ ^'

for m > M and n > N, and

(7»m n = 1

elsewhere. Consider the following iteration scheme: y{0) = 1 and y0+1) = TyU) for
y = 0, 1, 2, Clearly, in view of (4),

Thus as j -*• oo, yii) converges pointwise to some nonnegative sequence w = [wmn]
which satisfies

. - | »

(i,;)=(m,n)
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for m > M and n > N and wmn = 1 elsewhere. Taking differences on both sides
of the above equality, we see that the double sequence {umn} = {xmnwmn} is an
eventually non-negative solution of (3). Finally, we show that {«„,„} is eventually
positive, provided qmn > 0 for m > M and n > N. To see this, suppose to the
contrary that there exists a pair of integers m* > M and n* > N such that umn > 0
for (m, n) £ [M - a, -a + 1 m*} x {W - r, - r + 1, . . . , n*}\[(m*, n*)} but
um.n. = 0. Then in view of (5),

o > Yl '+'••'
(i,j)=(m',n' + l) UJ)=(m',n')

which implies uy = 0 for i > m* + 1 and j > n* + 1, as well as

for i > m* and _/ > n*. This contradicts our assumptions that qm.n. > 0 and
Hffl--a,n'-r > 0.

We summarize the above conclusions as follows.

THEOREM 1. Suppose that p and p are real numbers such that 1 > p > p > 0.
Suppose that {qmn} and [qmn] are nonnegative sequences which satisfy qmn > qmn > 0
for all large m and n. Suppose further that the functions f,f : R -> R satisfy
0 < / (x) < f (x)for x > 0. If (2) has an eventually positive solution, then so does
the following equation:

xm+\,n + xm<n+i - pxmn + qmnf (xm_a,n-x) = 0, (m, n) 6 Z2.

As an immediate consequence of Theorem 1, we have the following connection
between the relation (2) and the partial difference equation (3).

COROLLARY 1. Suppose 0 < p < 1, [qmn] is eventually positive and f is positive
and nondecreasing for. x > 0. Then (2) has an eventually positive solution if, and
only if, (3) has an eventually positive solution.

3. Connections between (1) and (3)

In order to establish the desired connections between (1) and (3), we first recall a
few facts which have previously been established for (1).

A real double sequence x = [xmn )„>.„,„>-, is said to be proper if there are positive
constants M, a and fi such that

\xmn\ <
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for all large m and n. The concept of proper solutions of partial difference equations
is important because Z-transforms exist for proper solutions [3]. Indeed, by means of
the method of Z-transform, Zhang and Liu [6] are able to derive the following result
which relates the oscillatory behavior of proper solutions of (1) with the distribution
of roots of an associated 'characteristic equation'.

LEMMA 1. Every proper solution of (1) oscillates if, and only if, the following
characteristic equation

k + n-p + qk-"^ =0

cannot be satisfied by any pair of positive numbers X and /x.

There are several important implications of this result. First of all, when q > 0, it
is shown in [6] that every proper solution of (1) is oscillatory if, and only if,

•*" + ' + ' > " " ' > , . (6)
a<JTza+T+l

Next, note that when p e (0, 1] and q > 0, every eventually positive solution of
(1) or (3) is proper. Indeed, if x = {xmn} is such a solution, then

Xm,n+l + -Xm+l.n ~ PXmn < 0

eventually, so that x is eventually decreasing in m and also in n. As a consequence,
when p € (0, 1] and q > 0, every solution of (1) is oscillatory if, and only if, every
proper solution oscillates.

Next, note that when q > 0, inequality (6) will still be valid when q is decreased
and p increased by sufficiently small perturbations. Thus the following continuous
dependence of parameters theorem for (1) must hold.

THEOREM 2. Suppose that p, q > 0 and that every proper solution of (I) is oscil-
latory. Then there exist a nonnegative number f i > —p and a positive number £2 < q
such that for every e\ e [0, £i] and e2 € [0, &L each proper solution of the equation

Xm+l,n + Xm,n+i - (p + €i)xmn + (q - e2)*m-<7,n-r = 0, (w, /l) € Z2, (7)

is also oscillatory.

We are now ready to establish several important relations between the linear equa-
tion (1) and the nonlinear equation (3).
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THEOREM 3. Suppose p e (0, 1]. Suppose further that

liminf9mn >q > 0. (8)
m,n—*oo

If there is an eventually positive sequence u = {umn} which satisfies
xm+\,n +-fm,n+l ~ pXmn + (Imn^m-a.n-x < 0 (9)

for all large m and n, then (1) has an eventually positive solution.

PROOF. In view of (8), for any e € (0, q), qmn > q — e for all large m and n. If (9)
has an eventually positive solution, then in view of Theorem 1,

xm+Kn + xm,n+i - pxmn + (q - e)^m_CT,n_r = 0

also has an eventually positive solution. Therefore, if every solution of (1) is oscilla-
tory, then by Theorem 2, there will exist an e0 G (0, q) such that (every proper and
hence) every solution of

Xm+i,n +*m,n+l ~ P*mn + (<? ~ £o)xm-o,n-x = 0

oscillates. This is the desired contradiction.

As an immediate application, suppose that/ (x) > x for x > 0 and that (8) holds.
If (3) has an eventually positive solution u = {umn}, then

f(um-an-z)
0 = Mm,n+i + um+Un - pumn + qmn-

Um—a,n—x

and

lim inf qmn
 m'°'°*' > lim inf qmn > q

m,n—KX> Um—a n—x m,n—foo

would imply, by means of Theorem 3, that (1) will have an eventually positive solution
also.

THEOREM 4. Suppose that p € (0, 1], thatfix) >xforx > 0, and that (8) holds.
If (3) has an eventually positive solution, then so does (1).

Similar reasoning also leads to the following: Suppose that p € (0,1], that (8)
holds and that

f (x)
liminf J-^- > 1. (10)

Jt-»O+ X

If (3) has an eventually positive solution* = [xmn] which satisfies linim^^ooxmn = 0,
then (1) will have an eventually positive solution.
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It is not difficult to impose conditions such that all eventually positive solutions of
(3) will converge to zero as m, n tend to infinity. For example, assume that

qmn = oo. (11)
m=0 n=0

For any eventually positive solution x = [xmn] of (3) where 0 < p < 1, since it
is decreasing in m and n eventually, we may assume that x tends to a nonnegative
constant x. If x > 0, then assuming xmn > 0 for m > A/ — o and n > N — r,we see
from (4) that

OO 00

i = m j =n

Assuming/ is continuous or nondecreasing on (0, oo), the infinite series of the above
inequality will diverge to positive infinity, which is a contradiction. This shows that
x = 0. Finally, note that condition (11) follows from (8). The following result is now
clear.

THEOREM 5. Suppose that p e (0, 1], that (8) and (10) hold and that f is either
continuous or nondecreasing on (0, oo). If (3) has an eventually positive solution,
then so does (1).

We now turn to the question as to when the existence of an eventually positive
solution of (1) implies the existence of eventually positive solutions of (3).

THEOREM 6. Suppose that p e (0, 1], that 0 < qmn < qfor all large m and n, and
that f (x) < x for all x in a nonempty right neighborhood (0, S) of zero. If (I) has an
eventually positive solution, then so does (3).

PROOF. Suppose (1) has an eventually positive solution. Then by Lemma 1, the
characteristic equation will be satisfied by a pair of positive numbers A.o and /x0. It
is not difficult to check that the sequence {xmn} defined by {X%HQ} is an eventually
positive solution of (1). Furthermore, since it is easily seen from the characteristic
equation that A0 + /x0 < p < 1, we see that *mn -> 0 as m, n tend to infinity. Therefore
/ (xmn) < xmn for all large m and n. As a consequence,

Xm+\,n i Xm,n+1 P^ttm i QmnJ \Xm— a,n—r)

— xm+l,n + xm,n+\ ~ Pxmn + axm-a,n-x = 0

for all large m and n. We now see from Theorem 1 that (3) will have an eventually
positive solution. The proof is complete.
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4. A linearized oscillation theorem

As is well known, it is desirable to find relatively simple equations which may
serve as minorant or majorant equations for yielding qualitative properties of a given
equation. In particular, in oscillation theory, it is desirable to show that a nonlinear
equation, when appropriate conditions are imposed, has the same oscillatory behavior
as an associated linear equation. An example of such a phenomenon, in view of our
previously established results, is not difficult to illustrate. Indeed, the following result
follows directly from Theorems 5 and 6 in the last section.

THEOREM 7. Suppose that p € (0, 1], that q > 0, that a, x are nonnegative integers
such that min(cr, T) > 0 and that f : R -*• R is either continuous or nondecreasing
on (0, oo). Suppose further that 0 < / (x) < x for all x in a (nonempty) right
neighborhood (0, S) of zero and that lim infj_o+ / (x)/x = 1. Then

Xm+\,n +*m.n+l ~PXmn + <?Xm_CT,n_T = 0, ffl, « = 0, 1, 2, . . . , (12)

has an eventually positive solution if, and only if,

Xm+i,n + xm,n+i - pxmn + qf (*„_„,„_,) = 0 , m, n = 0, 1, 2 , . . . , (13)

has an eventually positive solution.

Each of the previous results related to (2) and (3) has a dual statement valid for
eventually negative solutions. This is clear from the fact that {xmn} is a solution of (3)
if, and only if, {— xmn) is a solution of

ym+\,n + ym,n+\ ~ Pymn + <?mn F (ym-a,n-r) > 0, W, 71 = 0, 1, 2, . . . ,

where F(f) = —f(—t) for t € R. Note that sgn F(t) = sgnf for t < 0, and F is
nondecreasing on (0, oo) when / is nondecreasing on (0, oo). Thus, if in the above
theorem, we assume several additional dual conditions, then we may conclude that
every solution of (12) oscillates if, and only if, every solution of (13) oscillates.

THEOREM 8. Suppose that p € (0, 1], that q > 0, that a, r are nonnegative integers
such that min(o\ r) > 0 and that f : R -*• R is either continuous or nondecreasing
on (-co, oo)\{0). Suppose further that xf (x) > Oforallx ^OandO < f (x)/x < 1
in a (nonempty) deleted neighborhood (—8, <5)\{0} and that lim infx_0/ (x)/x = 1.
Then every solution of (12) oscillates if, and only if, every solution of (13) oscillates.

As an example, consider the partial difference equation

X m—a ,n—T

\Tx~l- pxmn + q , ,m I'" z = 0, m , « = 0 , 1 , 2 ,
m-a,n—r
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where p € (0, 1], q > 0 and o, r are nonnegative integers. By Theorem 7 and its
following remarks, we see that every solution of this equation oscillates if, and only
if, every solution of (12) oscillates. In view of Lemma 1, we see further that every
solution of this equation oscillates if, and only if, q(o + r + I)"-1"1-1-' > oaTTpa+T+i.

REMARK. Theorem 8 for p = 1 has been obtained in [9].
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