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ON A C O N J E C T U R E O F H I G G I N S

PHILIP R. HEATH AND PETER NICKOLAS

In his work on a proof of Grushko's theorem by groupoid methods, Philip Higgins
proved the following subgroup theorem.

THEOREM . Suppose that 9:G —> B is a swjectire map of groups, where G
• *

and B are free products G = JjGx and B = \[Bx, and where 0(GA) = Bx for
\ A

each A. Let H be a subgroup of G with the property that the restriction of 9 to
*

H is surjective. Then there is a free decomposition Y\ H\ of H with 9(H%) = B\
x

for each A.
As Higgins has noted, there is a common strategy in the proof of this theorem

and in the groupoid proofs of the Kurosh and Neilsen-Schreier subgroup theorems.
Higgins conjectured the existence of a common generalisation of his theorem and
the Kurosh theorem, proposed a plausible statement for such a result, and hinted
that the common strategy of these proofs might be extended to give a proof of the
conjecture. Examined at more detailed level, however, the common strategy used
in the proofs of the Kurosh theorem and Higgins's theorem is seen to diverge into
two strands. In this paper, it is shown that the constructions entailed in these
divergent approaches are in general incompatible. Thus any proof of Higgins's
conjecture must require substantially different techniques. In particular, the proof
of a theorem by Ordman that purports to affirm the conjecture is incorrect, and
the approach used in his argument cannot yield a valid proof.

1. INTRODUCTION

In his work on a proof of Grushko's theorem by groupoid methods, Philip Higgins
[3, 4] proved the following subgroup theorem, from which Grushko's theorem may be
deduced easily.

THEOREM 1 . 1 . ('Higgins's theorem') Suppose that 0:G—>Bisa surjective
* *

map of groups, where G and B are free products G = J\ Gx and B = \\ B\, and
x x

where 6{G\) = Bx for each A. Let H be a subgroup of G with the property that the
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56 P.R. Heath and P. Nickolas [2]

restriction of 6 to B is surjective. Then there is a free decomposition J\ Bx of H with
X

6(Hx) = Bx for each A.

We note for reference and comparison the following detailed version of the Kurosh
subgroup theorem (see [4] or [6], for example).

THEOREM 1.2. (The Kurosh subgroup theorem) Any subgroup H of a free prod-

uct G = Y\ G\ has a free decomposition B ~Y\ Bxp * F, in which (i) for each A, 27^
X Xp

is of the form H fl SA^G^X^) , where, as /x varies, xx^ runs through a suitably chosen
set of representatives of the double cosets HxGxt and (ii) F is a free group.

Higgins has shown the utility of groupoid methods in combinatorial group theory by
proving with a common strategy both the above theorems, and also the Nielsen-Schreier
theorem [4]. In [4, p.125], Higgins asks whether one can strengthen the conclusion of
Theorem 1.1 so that in the special case when B is trivial it reduces to Theorem 1.2.
He posits a plausible conjecture to this effect: that under the hypotheses of Theorem

*
1.1, the subgroup H should have a free decomposition H = J\ Bx in which for each A

x
*

(i) 6(Bx) = Bx, and (ii) Bx has a decomposition Bx = JI Bxll*Fx, where the Bx? are
exactly as in Theorem 1.2 and Fx is free. In the last section of [3], Higgins hints—and
it appears reasonable to hope—that the common strategy used for the above theorems
might lead to a proof of the conjecture.

The strategy referred to above, and outlined by Higgins in [3], is in broad terms as
follows: given a group G and a subgroup B of G, information about G is lifted to the
standard covering groupoid G associated with B, which effectively has B as vertex
group; information about the structure of B is then obtained by retracting G onto the
vertex group B using a suitably chosen tree in G. (See [4], and Section 2 below, for
more details, including explanations of the terms.)

The precise location of the above tree within G, however, is intimately related to
the details of the structural information that one obtains about H. In particular, the
differing assertions made about B by Higgins's theorem and by the Kurosh theorem
place differing constraints on the location of the tree. In this paper we demonstrate
that these constraints are in general incompatible. Specifically, we carefully analyse
the situations in which the tree required for Higgins's theorem and the tree required
for the Kurosh theorem are uniquely determined, and use this to show that it is not
in general possible to find a tree satisfying both sets of constraints simultaneously.
That is, a tree chosen so as to yield the conclusion of Higgins's theorem cannot at the
same time yield the conclusion of the Kurosh theorem, and conversely. A consequence
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of this is that any proof of Higgins's conjecture must require substantially different
techniques from those used in the existing groupoid proofs of both the above theorems.
In particular the proof of the last part of Theorem A of Ordman [7], which if valid
would affirm Higgins's conjecture, is incorrect. Indeed since Ordman uses techniques
which are essentially equivalent to those of Higgins, the strategy of his proof cannot be
used to obtain the claimed result. (We note, however, that Ordman's argument does
correctly generalise Higgins's theorem to the case of an amalgamated free product.)

In Section 2, we establish our notation and briefly review some ideas from the theory
of groupoids which are relevant here, and then discuss in some detail the subgroup
theorem-proving strategy referred to above. Section 3 is devoted to the analysis outlined
above.

2. PRELIMINARIES

We assume that the reader has some familiarity with the theory of groupoids, and
with the groupoid proofs of the Kurosh, Nielsen-Schreier and Grushko theorems (see [1]
and [4], for example). We briefly summarise aspects of our notation and terminology
which may not be standard.

If G is a groupoid, we use the same symbol G to denote the arrows (or edges)
of G, and we write Ob(G) for the objects (or vertices) of G. If g is an arrow of a
groupoid, then i(g) and e(g) denote respectively the initial object and the terminal
object (or end point) of g; we sometimes write g:x^>y, where x = i(g) and y = e(g).

If the groupoid G is the free product [4] of subgroupoids G\, for A in some index

set A, we write G = Y[ G\. If JP1 is the free groupoid [4] on a (directed) subgraph T ,
x

we write F = F(r). We regard a group as a groupoid on a single object; with this
convention, free products of groups and free groups are instances of the corresponding
groupoid constructions, and we use the same notations for them.

We apply the term tree both to graphs and to groupoids. A (directed) graph T is
a tree graph if it is connected and has no cycles; a groupoid T is a tree groupoid if it is
connected and there is exactly one arrow from any one of its objects to any other. A
groupoid generated by a tree subgraph is a tree groupoid, and is also the free groupoid
on the subgraph.

If G is any group and H is any subgroup of G, then the standard covering [4]
7: G —> G induced by H is defined as follows. The objects of G are the cosets G/H of
H in G, and the arrows are the pairs of the form (C,g), for C G G/H and g e G. We
have i(C,g) = C and e(C,g) = Cg, and the composition of arrows (C,g) and (Cg,g')

is (C,gg'). The covering morphism 7 is simply the projection from G to G. We note
that G effectively has H as its vertex group at the object H: this vertex group is
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strictly speaking {(H,h) : h 6 H}, but it is frequently convenient to identify this with
H by implicitly applying the projection into the second coordinate.

Let G be a connected groupoid, let T be a wide tree subgroupoid in G, and let
V be a vertex group of G at the vertex v. If for any vertex w the unique arrow of
T from v to w is denoted by tw, then the retraction induced by T is the groupoid
morphism p: G —> V defined by p(g) = 2t(s)ff*jT(o) •

We now discuss in some detail the strategy described by Higgins in [3, p.372], and
its use in the proofs of the Kurosh theorem and Higgins's theorem. For any group G

with subgroup H, let 7: G —> G be the standard covering described above. The first
step in the groupoid proofs is to 'lift' structural information about G to G. Specifically,
by [2] (see [4, Theorem 8]), if G has the structure of a colimit, then that structure
lifts in a natural way to a colimit structure on G. As mentioned in the introduction,
information about the structure of H is then obtained by retracting G onto H using
a suitably chosen tree in G. As we also remarked earlier, however, the proof strategy
diverges in the location of this tree. We now discuss this phenomenon in more detail.

We begin with the Kurosh theorem. Thus we are given that H is a subgroup of

a free product G = \[Gx- By [2], G can be written as a free product G = Y\Gx,

where G\ = ry~1(G\). If we write the components of G\ as Gxp for some set of

indices {(1} (which depends upon A), then it is trivial that G\ — \\Gxy.- For each
A and each /z, we pick a vertex group Kx^ of Gxp, together with a 'local' spanning
tree graph r ^ C Gxy.- Now it is routine that each TX^ is a free generating graph
for the subgroupoid that it generates, as is the union UT*/o anc^ s o ^n e above free
decomposition of G may be refined to give M

(

It is easy to see that U T V spans G, and we can therefore select a 'global' spanning
tree graph T C (J TX^ . An argument which is not of direct relevance to us here (see [4,

A/i

1]) now implies that the retraction p induced by the tree subgroupoid generated by r
preserves the free decomposition of G noted above, so that we have

H = I]V(#A,I) * P(F (U TV \ r)) = J]*p(KxJ * F(p(|J rx, \ r)).
A/i A/i A/i A/i

One confirms finally by routine algebra that the various factors on the right-hand side
here are precisely those required in the conclusion of the Kurosh theorem.

We turn now to Higgins's theorem, and the proofs of it by both Higgins and Ord-
man. We note again that Ordman's argument in fact apphes to the more general case of

https://doi.org/10.1017/S0004972700015070 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015070


[5] On a conjecture of Higgins 59

a free product with amalgamation. This extra generality is certainly of interest, but is
essentially irrelevant to our discussion. We therefore ignore this aspect of Ordman's re-
sult, and discuss his proof as specialised to the case of an unamalgamated free product.
We also ignore for the moment the detailed claims about the structure of the subgroup
made in Ordman's Theorem A(8), though we shall return to these in the next section.

Thus we are given that H is a subgroup of a free product G = Yl G\, that there

is a surjection 9:G —* B = \\B\ with 9(G\) = B\, and that the restriction of 9
to H is surjective. The essence of both Higgins's and Ordman's proofs ([7, 4.1.2], [4,
Theorem 12]) is the selection of a wide tree subgroupoid T of G such that T C ker#7
and such that the retraction p: G —» H defined by T preserves the decomposition

G - ]JGx, so that H = X[p\G\] = \[H\; the fact that T C ker#7 then guarantees
that 0{H\) = B\, as required. We note that the arguments employed by Higgins and
Ordman differ significantly (though they are perhaps equivalent in a suitable sense);
but in both cases, the outcome is the construction of a tree T with the properties
mentioned above.

We can now describe more precisely how the strategies for Higgins's theorem and
the Kurosh theorem diverge. Although in both cases the construction of a wide tree sub-
groupoid is the key step, in Higgins's theorem we have T C ker 9j, while in the Kurosh
theorem we have T = F(T) for a wide tree graph r C | J T\H . These constructions are
in general incompatible, as we shall show.

3. RESULTS

Throughout this section H will be a subgroup of a group G, and 9: G —> B a
homomorphism with the property that the restriction of 9 to H is a surjection. Also
7: G —* G will be the standard covering of G induced by H. We refer to any wide tree
subgroupoid of G lying in ker #7 as a tree of type 1. (Our discussion of the proof of
Higgins's theorem shows that the tree used there satisfies other important constraints
in addition to being of type 1.)

If the restriction of 6 to H is one-to-one, then 0\u: H —* B is an isomorphism,
and we may define a homomorphism rj:G —* H by setting 77 = {0\H)~ ° 0. We note
that B{rj{g)) = 0{g) for all g 6 G.

We begin with two simple results.

PROPOSITION 3 . 1 . With the conventions of this section, there is a unique tree

of type 1 if and only if the restriction of 9 to H is one-to-one.

PROOF: Suppose that B\u is one-to-one, so that HDkerfl = {1}. Clearly, for any
g G G, (H,Ti{<g~l}g) is an arrow from H to Hg lying in ker #7. Let (H,g\) and (H,g2)

he in ker #7 and suppose that Hgi = Hg^. Then we have gig^1 € 3 H kei9 = {1},
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so g\ = 52 • Therefore there is precisely one arrow in ker 0j from the object H to each
other object of G. It follows that there is precisely one wide tree subgroupoid of G
contained in ker #7.

Conversely, if 0\H is not one-to-one, then H ("I kerfl contains an element g / 1,
so the vertex group at H in G contains at least two elements of ker #7. It follows
that there are at least two arrows in ker #7 running between each pair of objects of G.
Therefore G contains more than one wide tree subgroupoid lying in ker Of. D

PROPOSITION 3 . 2 . Suppose that the restriction of 0 to H is one-to-one, and

that rj is as above. Let T be the unique tree of type 1 given by Proposition 3.1.

(i) Tie unique arrow in T from Hx to Hxw, for x,w £ G, is

(HX,X~1TI(XW~1X~1)XW) . In particular, the unique arrow in T from H
to Hw, for w G G, is {H ,TJ{W~1^W) .

(ii) If w £ keiO in (i), then (Hx,x~1T)(xw~1x~1)xw) = (Hx,w).

(iii) Let p be the retraction associated with T. Then for any (Hx,w) 6 G

we have p(Hx,w) = r}(w). In particular, if h € H, then p(Hx,h) = h.

PROOF: For(i), we note that HXX~1TJ(XW~1X~1)XW = Hrj{xw^1x~1^xw = Hxw,
since T) maps into H, and so {Hx,x~liq(xw~1x~1)xw) is an arrow from Hx to Hxw.
But by the property of 77 noted above, we also have {Hx,x~1 rj(xw~lx~l}xw) £ ker Of.
For (ii), we note that both the arrows in question run from Hx to Hxw, and that both
lie in ker #7; since there is precisely one arrow with these two properties, the arrows
are equal. Finally, using the fact that rj is a homomorphism, (iii) follows directly from
(i) and the definition of p. D

A situation of interest below is when a subgroup H of a free product J] G\ 'has no
free factor'. This phrase, however, is ill-defined in general, since free factors of H may
in general arise not only as (factors of) the factor F in the Kurosh theorem, but also
as (factors of) conjugates of subgroups of the G\. When we wish to discuss subgroups
with no free factor, we will therefore confine ourselves to cases where the G\ are torsion
groups, and therefore have no non-trivial free subgroups. In this case it is not hard to
see, by the results of [5, Chapter IX], for example, that the phrase above is well-defined:

if a subgroup H of \[ G\ has no (non-trivial) free factor in some free decomposition,
however obtained, then the same is true for all free decompositions of H.

In the following propositions, we use the notation introduced earlier in the discus-
sion of the proof of the Kurosh theorem. As we have already noted in that discussion
the proof requires us to choose a tree graph r C |J TXfi • The first proposition states
roughly that we need the whole of [J TX^ to form r precisely when there is no free
factor.
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PROPOSITION 3 . 3 . Let H be a subgroup of ]] Gx, where the G\ are torsion

groups. Then the following are equivalent:

(i) H has no free factor;

(ii) for any choice of local tree graphs rx^ C Gxn > the graph r = (J TX^ is a
V

spanning tree subgraph of G.

PROOF: We recall from the discussion in Section 2 that, for a given choice of
the TXU , and of T C (J TX^ , the free factor in the decomposition of H is given by

F (P ( U T V \ T) ) i where p is the retraction defined by r . Given that the notion of

having no free factor is well defined, it is then clear that H has no free factor exactly
when (J TXft \ r is empty, and this is exactly when (J T\H is itself a wide tree subgraph

Xu. \»

of G. D

The proof of the following result is straightforward.

PROPOSITION 3 . 4 . Given a subgroup H of a free product \\Gx, the vertex
group at the object Hx in Gx is {(Hx,g) : g £ x~1HxnGx}', hence the component of
Gx containing Hx is an isolated vertex group if and only if H PI xGxx~x = xGxx~l,
and is a tree groupoid if and only if H 0 xGxx~* — {1} •

For any choice of local tree subgraphs TX^ C Gxp and of global tree subgraph
T C ( J TXU , the subgroupoid of G generated by r is freely generated, and is a wide tree
subgroupoid of G. We refer to any wide tree subgroupoid constructed in this way as a
tree of type 2.

PROPOSITION 3 . 5 . Let H be a subgroup of Y[Gx, where the Gx are torsion

groups. Then there is a unique tree of type 2 in G if and only if (a) for each A and

for every x € G, H C\ xGxx~x is either xGxx~x or { 1 } , and (b) H has no free factor.

PROOF: First, suppose that (a) and (b) hold. Suppose that local spanning tree
graphs Txp are selected in the components Gxp • By Proposition 3.3, the choice of a
global spanning tree subgraph r C |J TX^ is unique, and we must in fact have r = \J r^M.

Let T denote the tree groupoid freely generated by r, and let T /̂i denote the tree
groupoid freely generated by TX^ , for all A and /x. Then T clearly contains |J Txp,

and therefore contains the subgroupoid F generated by |J Tx,i • But T is also clearly
Xu.

contained in F, so we have T = F. Now suppose that another choice of local spanning
tree graphs is made—say r'Xli. Defining TX/l, T' and F' analogously, we then have
T' = F', as above. But rx^ and r'Xli generate the same subgroupoids (for all A and
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fi), since all components of G\ are isolated vertex groups or tree groupoids, by (a) and
Proposition 3.4. That is, TA/1 = TXfl for all A and /x; and it follows that F - F', and
therefore that T = T'. Thus there is a unique tree of type 2.

Second, suppose that (a) is false. Then by Proposition 3.4, there are A and (i
such that Gxp has distinct vertices C\ and C? for which there are distinct edges
<7, </': C\ —> C2 . Now we may select a local tree T>M in Gxy. containing p , and another
local tree T'X containing g1. Given choices of all other local trees, we may then choose
global tree subgraphs r and T ' , the first containing g, the second containing "g1. Then
the tree subgroupoids T and T" "of type 2 which these graphs generate are distinct,
since each has precisely one edge from C\ to G2, and T contains g~, while T' contains

g'-
Finally, suppose that (b) is false, so that H has a non-trivial free factor. Then

Proposition 3.3 shows that, for some choice of local trees rxp, the graph U7"*/* *s n ° t
a tree. Choose a global tree subgraph r C ( J r ^ . NOW T and {Jrxp both freely
generate the subgroupoids that they generate, so it follows that the tree subgroupoid
T generated by r is a strict subgroupoid of that generated by |J TX^ • Therefore there
is an edge t £ \JTXH such that t $. T. Hence it is possible to choose a global tree
subgraph r' C (J rxp containing t, and r ' generates a tree T' of type 2 distinct from

r. D
Thus we have, in Propositions 3.1 and 3.5, simple necessary and sufficient conditions

for the uniqueness of trees of type 1 and type 2. Using these criteria, we are able to
discuss classes of examples in a generic fashion. We use them to demonstrate the
incompatibility of the two proof strategies discussed in Section 1.

EXAMPLE 3.6. Let Gi , C?2 a n d G3 be non-trivial torsion groups and set G =

Gi * G2 * G3. Also, let B = Gx * G2 * {1} and let B:G -> B be the natural pro-
jection. Let <72 £ G2 \ {1} and g$ £ G3 \ {1} be fixed. We consider the subgroup
S = g^G^g^ * gsGig^ of G.

It is clear by Propositions 3.1 and 3.5 that the covering groupoid G contains a
unique tree subgroupoid Ti of type 1 and a unique tree subgroupoid T2 of type 2.

Let the local trees r ^ (for i = 1,2,3 and for all fi) be chosen, but arbitrary. By
the uniqueness of T2 and Proposition 3.3, T2 must contain all the T ^ , and therefore
also the subgroupoids which these generate. Now the component of G2 containing the
coset H is a tree, since H fl G2 — {1}, and has as vertices exactly the cosets Hg, for
g £ G2 • Therefore T2 must contain all the edges (H,g) for g £ G2 . But none of these,
except (H, 1), is in 7\ , and we therefore have the following result.

PROPOSITION 3.7. In Example3.6, TX^T2.

Thus Proposition 3.7 confirms our claim that it is not in general possible to find
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a tree satisfying simultaneously the constraints required to yield the conclusion of Hig-
gins's theorem and the conclusion of the Kurosh theorem. By the argument above, we
see in particular that Ti contains the edge (H, g%), and since the vertex group at the
coset Hg2 is clearly {{Hg2,g) : g € G\} = 6?i, we see that one of the factors appearing
in the decomposition of H generated by the proof of the Kurosh theorem is precisely
92Gig2~

1 • Similarly, we find that gzG^g^1 appears as a factor, and since there are no
other conjugates of G\, G?2 and G3 which H intersects non-trivially, and since H has
no free factor, we have the following.

PROPOSITION 3 . 8 . In Example 3.6, the groupoid proof of the Kurosh theorem
yields precisely the originally given free decomposition of H, regardless of how the local
tree subgraphs are chosen.

REMARK 3.9. Since O^Gig^1) 7̂  G i , this decomposition of H does not 'lie over' the
factors of B. Higgins' theorem, however, implies that there is a decomposition of H
which does. It is easy to see that this is the decomposition

Proposition 3.8 shows that this decomposition of H cannot arise by the construction
in the proof of the Kurosh theorem.

It remains to show that our analysis also provides a simple construction of a coun-
terexample to the claims made in Ordman's Theorem A(8). We could use Example 3.6
again to demonstrate this, but we use a different example for simplicity.

EXAMPLE 3.10. Let G\ and G2 be non-trivial torsion groups and set G — Gi * G2.
Also, let B = G\ * {1} and let 0:G—*B be the natural projection. We consider the
subgroup H = Gi of G. (Though H and G\ are the same group, it is convenient
to refer to this group as H when focusing on its role as a subgroup, and as <?i when
focusing on its role as a factor of the free product G.)

We shall show below that, when Ordman's proof is specialised to this example, the
subgroup H is given a non-trivial free factor, whose set of free generators includes all
the members of the set G\ \ {1}- This is clearly impossible.

By Proposition 3.1, it is easy to see that in Example 3.10 there is once again a
unique tree subgroupoid T\ of type 1. Because of its uniqueness, T\ must be the tree
described in Ordman's proof, specialised to our example. Also, by Proposition 3.4, each
component G;^ (for i = 1,2 and for all /x) is either an isolated vertex group or a tree
groupoid. Select in each Gt/i an arbitrary vertex Bi^ as 'basepoint', and let crt/i be the
unique spanning tree graph of Gi^ containing an edge from B,M to every other vertex
in Gin • Let pi denote the retraction defined by Ti . Then Ordman's proof of Theorem
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A(8) asserts (using our notation) that the non-trivial elements in the set

Pi ( U <»-i/i U \J <r2/1 J

form a free generating set for a free factor of H (see Proposition 4.4.3, and the first

paragraph of 4.3, of [7]). We show that this set contains G\ \ {1}.

To this end, consider a component of Gi^ containing a coset Hx ^ H. Since Hx ^

H, and the only non-trivial intersection of H with a conjugate of G\ is H itself, we see

by Proposition 3.4 that the component we are considering is a tree groupoid. Suppose

that the basepoint selected is Hxgo , for some go £ G\ . Then the set of purported free

generators contains the non-identity elements of p\ ({{Hxgo, g^ g) '• g E Gi}). Now

using Proposition 3.2 (iii) we find that, for g € G\, p\ {{Hxgojg^g)) = 9o~X 9, and so

the set contains the elements g$lg for all g 6 G\ \ {go}; that is, the elements of the

set G\ \ {1}. This, as noted above, is impossible.

REMARK 3.11. As we claimed earlier, the argument above shows not just that Ord-
man's proof is incorrect, but that the strategy of his proof cannot be used to obtain
the claimed result about the fine structure of the subgroup H. As Proposition 3.7
demonstrates, a tree chosen to yield a decomposition of H lying over the factors of B
cannot in general also yield the claimed fine decomposition of H.

REMARK 3.12. The error in the proof of Theorem A(8) appears to he in Ordman's

Lemma 4.4.2. If gi and 52 a r e arbitrary non-trivial elements of Gi and G2, respec-

tively, then the product

ciqic2q2 = {H,g1)~
1(H,g2){Hg2,gi)(H,g^1g2gi)

(using Ordman's notation on the left and ours on the right) is easily seen, using Propo-
sition 3.2 (ii), to contradict the assertion of that lemma.
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