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Abstract

Following a long-standing suggestion by Gilbert and Mosteller, we derive an explicit
formula for the asymptotic winning rate in the full-information best-choice problem.
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1. Introduction

Let X1, X2 . . . be a sequence of independent uniform [0, 1] random variables. The full-
information best-choice problem, as introduced by Gilbert and Mosteller [3], asks us to find a
stopping rule τn to maximise the probability

Pn(τ) := P(Xτ = max{X1, . . . , Xn}) (1)

over all stopping rules τ ≤ n adapted to the sequence (Xi). The name ‘full-information’ was
attached to the problem to stress that the observer learns the exact values of the Xis and knows
their distribution, in contrast to the ‘no-information’ problem where only the relative ranks of
observations are available (see [15] for a survey and history of the best-choice or ‘secretary’
problems). Because the stopping criterion (1) depends only on ranks of the observations, the
instance of uniform distribution covers, in fact, the general case of sampling from arbitrary
continuous distribution.

Gilbert and Mosteller [3] showed that the optimal stopping rule is of the form

τn = min{i : Xi = max{X1, . . . , Xi} and Xi ≥ dn−i},

where dk is a sequence of decision numbers defined by the equation

k∑
j=1

d
−j
k − 1

j
= 1 for k ≥ 1 and d0 = 0. (2)
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Gilbert and Mosteller also proved that dk ↑ 1 in such a way that k(1−dk) → c for c = 0.804 . . . ,
where c is the solution to the transcendental equation

∫ c

0
x−1(ex − 1) dx = 1, (3)

and they provided numerical evidence that the best-choice optimal probability P ∗
n := Pn(τn)

converges to a limit P ∗ = 0.580 164 . . . . The limiting value was justified by different methods
in subsequent work (see [1], [4], [14], [15]) along with the explicit formula

P ∗ = e−c + (ec − c − 1)

∫ ∞

1
e−cxx−1 dx

(see [14]).
Refinements and generalisations of the results of [3] appeared in [4], [5], [6], [9], [10], [11],

and [13]. Still, one interesting feature of the optimal stopping rule seems to have not been
discussed in the literature. We refer to the tiny Section 3e in [3] where Gilbert and Mosteller
say

One would correctly anticipate that as n increases, the probability of winning at a given draw
tends to zero. On the other hand, n P(win at draw i) tends to a constant for i/n tending to
a constant λ.

Spelled out in detail, Gilbert and Mosteller claimed existence of the limit

w(t) = lim
i,n→∞, i/n→t

n P(τn = i, Xi = max{X1, . . . , Xn}), (4)

where t ∈ [0, 1] stands for their λ. Such a function may be called the asymptotic winning rate
since it tells us how the chance of correctly recognising the maximum is distributed over time;
hence, the best-choice total probability must satisfy

P ∗ =
∫ 1

0
w(t) dt.

In this paper, we prove the conjecture of [3] regarding the convergence and we derive an explicit
formula for the winning rate (4). In fact, we show more: the function w appears as the exact
winning rate in a continuous-time version of the best-choice problem associated with a planar
Poisson process (as developed in [4], [5], [7], and [16]).

2. The Poisson framework

We start by recalling the setup from [4] and [5]. Consider a homogeneous planar Poisson
process (PPP) in the semi-infinite strip R = [0, 1]× ] − ∞, 0], with Lebesgue measure as
intensity. The generic atom a = (t, x) ∈ R of the PPP is understood as score x observed at
time t . Let F = (Ft , t ∈ [0, 1]) be the filtration with Ft being the σ -algebra generated by the
PPP restricted to [0, t]× ]−∞, 0]. We say that an atom a = (t, x) of the PPP is a record if there
are no other PPP-atoms northwest of a. The maximum of the PPP is an atom a∗ = (t∗, x∗)
with the largest x-value. Alternatively, the maximum a∗ can be defined as the last record of the
PPP, that is the record with the largest t-value. For τ , i.e. a F -adapted stopping rule with values
in [0, 1], the performance of τ ∗ is defined as the probability of the event {τ = t∗}, interpreted
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as the best choice from the PPP. The associated best-choice problem amounts to maximising
the probability of the event {τ = t∗}.

In a Poissonised version of the Gilbert–Mosteller problem, the observations sampled from
the [0, 1] uniform distribution arrive on [0, �] at epochs of a rate 1 Poisson process [1], [2], [8],
[12]. This is equivalent to the PPP setup with background space [0, �] × [0, 1], which can be
mapped linearly onto [0, 1] × [−�, 0] so that the componentwise order of points is preserved.
Now, the optimal stopping in [0, 1] × [−�, 0] fits in the framework with the background space
R by a minor modification of the stopping criterion: a stopping rule τ adapted to F is evaluated
by the probability of the event {τ = t∗, a∗ > −�} that stopping occurs at the maximum atom
and above −�. In this sense we shall speak of a constrained best-choice problem.

Let � = {(t, x) ∈ R : − x(1 − t) < c}, where c is as in (3). It is known [4] that the optimal
stopping rule is the first time (if any) when the record process enters �, that is

τ ∗ = min{t : there is a record a = (t, x) ∈ �}
(or τ ∗ = 1 if no such t ∈ [0, 1[ exists). Similarly, the optimal stopping rule for the constrained
problem is the first time (if any) when the record process enters �(�) := � ∩ ([0, 1]× [0, −�]).

Let
g(�, t) := P(τ ∗ = t∗, t∗ < t, x∗ > −�)

be the probability that τ ∗ wins by stopping above −� and before t , and let

g(∞, t) := P(τ ∗ = t∗, t∗ < t).

By the above relation, between the constrained and unconstrained problems, we have

g(�, t) = g(∞, t) for 0 ≤ t ≤
(

1 − c

�

)
+
.

The winning rate in the Poisson problem is defined as

w(t) = ∂tg(∞, t).

3. Computing the rate

Because the atoms southwest of (x, −�) fall outside the stopping region �(�), we have
∂�g(�, t) = 0 and g(∞, t) = g(c/(1 − t), t), for � > c/(1 − t). To determine ∂�g(�, t) for
� > c/(1 − t), consider two rectangles R1 = [0, t] × [−�, 0] and R2 = [0, t] × [−� + δ, 0],
with small δ > 0. The optimal constrained stopping rules in R1 and R2 stop before t at
distinct atoms if and only if the record process enters �(�) at some atom a0 = (σ, ξ) ∈
[(1 − c/�)+, t] × [−�, −� + δ]. Now, stopping at a0 ∈ R1 \ R2 is a win if a0 = a∗, which
occurs with probability

p1 = e−��

(
t −

(
1 − c

�

)
+

)
δ

�
+ o(δ) = e−�

(
t −

(
1 − c

�

)
+

)
δ + o(δ).

On the other hand, stopping in R2 is a win (and stopping at a0 is a loss) if a0 is followed by some
k > 0 atoms in [σ, 1] × [−�, 0], the leftmost of these k atoms appears within [σ, t] × [−�, 0]
and it is the overall maximum a∗ which is an event of probability

p2 = e−�
∞∑

k=1

ck+1

(k + 1)!
[

1 − (k + 1)
t − (1 − c/�)+

c/�

(1 − t)k

(c/�)k
− (1 − t)k+1

(c/�)k+1

]
1

k

δ

�
+ o(δ).
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Figure 1: The winning rate. Reprinted with permission from the Journal of the American Statistical
Association. Copyright 1966 by the American Statistical Association. All rights reserved.

It follows that

∂�g(�, t) = lim
δ→0

p1 − p2

δ
= e−�

∫ t

(1−c/�)+

(
1 −

∞∑
k=1

[
�k(1 − σ)k

k! k − �k(1 − t)k

k! k
])

dσ.

Now, computing the mixed second derivative ∂�tg(�, t) and integrating in � from 0 to c/(1− t),
we obtain the winning rate in the Poisson problem, which is our main result.

Proposition 1. The winning rate is given by the formula

w(t) = −e−c+e−ct − e−ct/(1−t)

t
+e−ct − te−c

1 − t
+ c

1 − t

{
I

(
c

1 − t
, c

)
−I

(
ct

1 − t
, ct

)}
, (5)

where c is as in (3) and, for 0 < s < t ,

I (t, s) =
∫ t

s

ξ−1e−ξ dξ.

The boundary values of w are w(0) = 1−e−c = 0.552 6 . . . and w(1) = e−c = 0.447 3 . . . ,
in accordance with [3, Figure 3]. The graph of (5) in Figure 1 exhibits a curve identical to that
in [3, Figure 3].

The special value (3) of c was not used in the argument, hence the right-hand side of (5)
gives the winning rate for every stopping rule defined by a stopping region like � but with an
arbitrary positive constant in place of c. We also note that the winning rate in the constrained
problem coincides with w(t) for t < (1 − c/�)+.

4. Embedding and convergence

It remains to show that w given by (5) is indeed the limiting value for the finite-n problem
in (4). To that end, we will exploit the embedding technique from [4].

With n fixed, divide R in strips Ji = [(i − 1)/n, i/n[ × ] − ∞, 0], i = 1, . . . , n.
Consider a sequence Yn = ((Ti, Yi), i = 1, . . . , n), where (Ti, Yi) is an atom with the largest
x-component within the strip Ji . Observe that the point process of records in Yn is a subset
of the set of records of the PPP in R; in particular, max{Yi} = x∗. By homogeneity of the
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PPP we have T1, Y1, . . . , Tn, Yn jointly independent, with each Ti uniformly distributed on
[(i − 1)/n, i/n[ and each Yi exponentially distributed on ] − ∞, 0] with rate 1/n. It follows
that the discrete time optimal stopping problem of recognising the maximum in Yn is equivalent
to the Gilbert–Mosteller problem with exponentially distributed observations.

Let τ̂n be the optimal stopping rule for recognising the maximum in Yn. We shall view τ̂n

as a strategy for choosing the maximum of PPP with the additional option of partial return
meaning that τ̂n assumes values in [0, 1], that

{
i − 1

n
< τ̂n ≤ i

n

}
∈ Fi/n,

and that {(i − 1)/n < τ̂n ≤ i/n} is associated with the stopping at (Ti, Yi). Explicitly, τ̂n stops
at the first time the sequence of Yn-records enters

�n =
n⋃

i=1

]
i − 1

n
,

i

n

]
× [bn−i , 0],

where bk = n log dk and the dks are the decision numbers as in (2). The partial return option
implies that the winning chance of τ̂n is higher than that of τ ∗.

Let a′ be the last record before a∗. We can easily check that τ ∗ and τ̂ may differ only if
either a∗ or a′ hit the domain

	n := (�n \ �) ∪ (� \ �n).

By [4, Equation (11)] we have ((i − 1)/n, bn−i ) /∈ � and (i/n, bn−i ) ∈ �, for i = 1, . . . , n.
This combined with the fact that the distribution of t∗ is uniform and that of x∗ is exponential
yields

n P(a∗ ∈ 	n ∩ Ji) < exp

( −nc

n − i + 1

)
− exp

( −nc

n − i

)
= O(n−1)

uniformly in i ≤ n. A similar estimate holds also for a′ and, because

P

(
i − 1

n
< τ̂n ≤ i

n

)
= P(τn = i), w

(
i

n

)
= P(τ ∗ = t∗, a∗ ∈ Ji) + O(n−1)

(the second statement holds since w is smooth on [0, 1]), we can deduce the following result.

Proposition 2. As n → ∞ the optimal stopping rule τn satisfies

max
1≤i≤n

{∣∣∣∣w
(

i

n

)
− n P(τn = i, Xi = max{X1, . . . , Xn})

∣∣∣∣
}

= O(n−1),

where w is given by (5).
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