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Abstract. The combined effect of a subsurface steady homogeneous
flow and a chromospheric uniform magnetic field on the solar p- and
f-modes is evaluated theoretically for a simple model of the Sun. The
derived dispersion relation is solved analytically in limit of the long wave-
length approximation and is evaluated numerically for arbitrary wave-
lengths. The influence of an equilibrium flow is more dominant in limit
of small wavenumbers. For arbitrary wavelengths the effect of a mag-
netic field might be stronger than frequency shifts caused by a steady
homogeneous flow.

1. Introduction

The aim of our study is to evaluate theoretically the combined effect of large-scale
sub-surface motions (e.g., a meridional flow) and an atmospheric magnetic field
on the frequencies of the solar p- and f-modes. Erdelyi, R., Varga, E., & Zetenyi
M. (1999) have studied the effect of a sub-surface motion on magnetoacoustic-
gravity surface waves in a model of the solar interior - solar atmosphere interface.
The main characteristics of their isothermal atmosphere was a magnetic though
constant-,B plasma, while in the sub-surface interior region there was a uniform
and homogeneous equilibrium flow. They found the flow causes a shift of the
MAG modes, which in certain cases bifurcate. Erdelyi & Taroyan (1999) gen-
eralised the above model by allowing the temperature to increase linearly with
depth in the sub-surface zone. They derived the dispersion relation and an-
alytical formulae for the frequencies of p- and f-modes in the limit of small
wavenumbers. Numerical solutions were presented for other cases.

In the present paper, we introduce a horizontal uniform flow Uo == (V, 0, 0)
in the lower (internal) region z > 0, while the upper atmospheric region of the
model is embedded in a uniform magnetic field. This solar model, without a flow
has been considered by, e.g., Evans & Roberts (1990). We derive the dispersion
relation and solve it analytically for the small wavenumber case. The obtained
dispersion relation is also evaluated numerically for arbitrary wavelengths.
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2. The small wavenumber approximation
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Using the notations of Evans & Roberts (1990), we derive the following formu-
lae for frequency shifts from the obtained dispersion relation (which contains
hypergeometric and confluent hypergeometric functions) in the limit of small
wavenumbers, i.e., when K ---+ 0:

for n = 1,2, ... p-modes and

n = 1 +~ ~(2K)~ + 'Yc (2K)m+l
cspV2(m + 1) 2f(m + 2)(2,8 + Ie)

for the f-mode.
Studying these formulae we see that in the limit of small wavenumbers

the flow has a stronger influence on the p- and f-mode frequencies than the
atmospheric magnetic field.

3. Numerical Results

Numerical results are obtained and presented in Fig. 1 by solving the full dis-
persion relation and taking the same parameter values as in Evans & Roberts
(1990). In the presence of a uniform magnetic field there are no cutoff frequen-
cies, unlike in the case with no magnetic field.

Recent measurements of p-mode frequencies (Braun & Fan 1998) show a
significant frequency shift between poleward- and equatorward-traveling waves
measured over solar latitudes 20° - 60°, which is consistent with the Doppler
effect of a poleward meridional flow of the order of 10 mise The measurements
show frequency shifts in the range of, e.g., 1 - 3J-LHz for I = 477. As one can
see from, e.g., our last figure, the frequency shift predicted by our model is in
agreement with these measurements.
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Figure 1. Cyclic frequency shift ~vv == v(l, B, V) - v(l, B, 0) (JlHz)
with B == 0 (upper panels) and B == 30 G (middle panels) as a function
of the spherical harmonic degree l and the flow V (km/s) for the f- and
n == 1 p-mode; Ll±vv == v(l,B,V) - v(l,B,-V) (JlHz) with V == 10
ta]« as a function of the frequency v(l, B, 0) (lower panels) for p-modes.
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