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Fourier—Mukai transforms and canonical divisors

Yukinobu Toda

ABSTRACT

Let X be a smooth projective variety. We study a relationship between the derived cate-
gory of X and that of a canonical divisor. As an application, we study Fourier—-Mukai
transforms when x(X) = dim X — 1.

1. Introduction

Let X be a smooth projective variety and D(X) the bounded derived category of coherent sheaves
on X. Recently, D(X) has drawn much attention from many aspects, especially mirror symmetry,
moduli spaces of stable sheaves, and birational geometry. Kontsevich [MK94] conjectured the exis-
tence of equivalence between the derived category of X and the derived Fukaya category of its mirror.
From the physical viewpoint, we cannot distinguish the mirror pair by observations or experiments,
so this gives a motivation for the new concept of ‘spaces’. In this respect, the properties that are
invariant under the Fourier-Mukai transform (i.e. categorical invariant) can be considered as the
essential properties of the ‘spaces’. For example, the Serre functor Sx = ®Qwx[dim X] is such a
categorical invariant.

On the other hand, there are many works concerning the derived equivalent varieties. Let FM(X)
be a set of isomorphism class of smooth projective varieties that have equivalent derived categories
to X. In [Muk81], Mukai showed that if A is an abelian variety and A is its dual variety, then
A belongs to FM(A). This fact implies that D(X) does not completely determine X. However, if
we assume that Ky or —Kx is ample, Bondal and Orlov [BDO1] showed that FM(X) consists of
X itself. When X is a minimal surface, Bridgeland and Maciocia [BMO01] described FM(X), and
the non-minimal case was treated by Kawamata [Kaw02]. In these cases, we can see the following
common phenomenon:

‘if more information about Kx is given, then FM(X) is smaller; for example, the greater
k(X,+Kx) is, the smaller is FM(X).’

The main purpose of this paper is to explain why this phenomenon occurs. The idea is to
extract information concerning Serre functors. Here we state the main theorem. Let Y € FM(X)
and ® : D(X) — D(Y) an equivalence of triangulated categories. Let P € D(X x Y) be a kernel
of ®. Here the definition of kernel will be given in Definition 2.1. Let ¥ : D(Y) — D(X) be a
quasi-inverse of ®, and £ € D(X x Y) be a kernel of ¥. Then we prove the following.

e ® induces an isomorphism of vector spaces, H*(X,mKx) — H°(Y,mKy) for m € Z; this is
also proved in [Cal03]. Let E € [mKx/| correspond to ET € |[mKy|.

e @ induces a bijection between 7o ([, £;) and 7o ([, E;r) Here E; € /m;Kx|fori=1,...,n
and m; € Z; n and m; are arbitrary, and 7y means connected component. Let C' € mo((;; E;)
correspond to CT € mo (N, EZT)
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FOURIER-MUKAI TRANSFORMS AND CANONICAL DIVISORS
Then the main theorem is the following.
THEOREM 1.1. Assume that C' and C' satisfy the following conditions:
e C and CT are complete intersections;

L L
e PR Ocxy, £€R® Ocxy are sheaves, up to shift.

Then there exists an equivalence of triangulated categories ®¢ : D(C) — D(CT) such that the
following diagram is 2-commutative.

D(X) —% D(C) =25~ D(X)
@l @cl [
LiZ iot,
D(Y)—= D(C') —=D(Y)

The assumptions are satisfied if |m; K x| are free, E; € |m;K x| are generic members, and P is a
sheaf, up to shift. The above theorem says that ‘If there are many members in |mK x|, then we can
reduce the problem of describing FM(X) to the lower dimensional case’. As an application, we study
Fourier—-Mukai transforms when x(X) = dim X — 1. Using this method, we give a generalization of
the theorem of Bondal and Orlov [BDO01], and determine FM(X) when dim X = 3 and x(X) = 2.

From the viewpoint of birational geometry, there are some works concerning derived categories
and birational geometry. For example, Bridgeland [Bri02] constructed smooth three-dimensional
flops as a moduli space of perverse point sheaves, which are objects in derived category. Surprisingly
his method gives an equivalence of derived categories under flops simultaneously. This result was
generalized by Chen [Che02] and Kawamata [Kaw02]. The existence of flops and flips is a very
difficult problem in birational geometry, and Bridgeland’s result gives a possibility of treating the
problem by a moduli theoretic method.

2. Derived categories and Serre functors

Notation and conventions
e Throughout this paper, we assume all the varieties are defined over C.

e For smooth projective variety X, let D(X) := D%(Coh(X)), i.e. bounded derived category of
coherent sheaves on X. The translation functor is written [1], and the symbol E[m| means the
object E shifted to the left by m places.

e wy means canonical bundle, and Kx means canonical divisor. For a Cartier divisor D, we
write the global section of Ox (D) as H°(X, D), |D| means linear system, and Bs |D| is a base
locus as usual.

e For the derived functors, we omit R or L if the functors we want to derive are exact.
e For another variety Y, we denote by p; the projections p; : X XY — X, ps: X XY =Y.

e For a closed point x € X, O, means a skyscraper sheaf supported at x.

In this section we recall some definitions and properties concerning derived categories.

DEFINITION 2.1. For an object P € D(X x Y), we define a functor ®%_,. : D(X) — D(Y) by

% _y(E) := Rpa. (pr ® P).
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The object P is called the kernel of ®% .. For a morphism p : P; — Py in D(X x Y), we also
denote by ®% - the natural transform:

M . &P Po
@X—>Y . @X—>Y q)X—>Y7

induced by pu.

The functor of the form @;}_}Y is called an integral functor. If an integral functor gives an
equivalence of categories, then it is called a Fourier—Mukai transform. The following theorem is
fundamental in this paper.

THEOREM 2.2 (Orlov [Orl97]). Let ® : D(X) — D(Y') give an equivalence of C-linear triangulated
categories. Then there exists an object P € D(X x Y') such that ® is isomorphic to the functor
@@_}Y, Moreover, P is uniquely determined up to isomorphism.

Next we introduce the notion of Fourier-Mukai partners.

DEFINITION 2.3. We define FM(X) as the set of isomorphism classes of smooth projective
varieties Y, which has an equivalence of C-linear triangulated categories, ® : D(X) — D(Y).
If Y € FM(X), Y is called a Fourier-Mukai partner of X.

By Theorem 2.2, if Y € FM(X), then D(Y) is related to D(X) by a Fourier-Mukai transform.
To study the relation between derived categories and canonical divisors, the following Serre functor
plays an important role.

DEFINITION 2.4. Let 7 be a C-linear triangulated category of finite type. An exact equivalence
S : 7T — T is called a Serre functor if there exists a bifunctorial isomorphism

Hom(E, F) — Hom(F, S(E))*
for E,F eT.

As in [BDO1, Proposition 1.5], if a Serre functor exists, then it is unique up to canonical iso-
morphism. If X is a smooth projective variety and 7 = D(X), then Serre duality implies that the
Serre functor Sy is given by Sx(E) = F ® wx[dim X].

PROPOSITION-DEFINITION 2.5. Let X, Y, Z be varieties, and p;; be projections from X xY x Z
onto corresponding factors. Let us take F € D(X xY), G € D(Y x Z). We define GoF € D(X x Z)
as
L
G o F i=Rpus. (1o & p3G).
Then we have the isomorphism of functors: @%,_)Zoq))f{_)y & q)g(o_f)z, and for a morphism i : Fi — Fo
in D(X xY), the isomorphism of natural transforms:

g K ~ I . §9oF1 GoFy
DY _goPy =, O, — Oy

Moreover, the operation o is associative, i.e. (HoG)oF = Ho (G o F).

Proof. The proof of (I>§g,_> 50 <I>§_)Y = @%Of  is seen in several references. For example, see [Che02,
Proposition 2.3]. The same proof works for natural transforms, formally replacing F by p. We can
check that the operation o is associative by the same method, but we would like to give the proof

for the lack of references. Let X, Y, Z, W be varieties, and take F € D(X xY), G € D(Y x Z)
and H € D(Z x W). We change the index Dij to pxy etc. Let Dus, Gus, s and s, be projections,
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given as in the following diagrams.

X XY xZ X xZxW
PXY lﬁ axz l m
PxXz axw
X xY X xZ Y xZ X xZ X xW Z x W
X xY xW Y xZxW
TXY l TYw Sy z l SZW
TXW Sy w
X xY X x W Y xW Y xZ Y x W Zx W

Let 74y Or Ty be projections from X x Y x Z x W onto corresponding factors, for example as
in the following diagram.

X XY XxZxW

TXY Z Y ZW
TXZW
TXYW

XxYxZ X xYxW X xZxW Y xZxW
Then H o (G o F) is calculated as
* L *
Ho(GoF)=Raxwsx (qu(g o F)® qZWH>
~ * * L * L *
= Rgxwx <QXZRPXZ* (pxyf ® pyzg> ® QZWH)
~ * * L * L *
= Rgxwx (RWXZW*WXYZ (pXY]: ® pyzg) ® qZWH)
= Rgxw«Rmxzws <7TXYZ (pXYJ: ® pyzg) ® 7TXZWQZWH)
= RWXW* (7TXYJ: & Wyzg & ﬂ-ZWH) .

Here the third isomorphism follows from flat base change, and fourth isomorphism from projec-
tion formula. Similarly, (H o G) o F is calculated as

L
(HoG)oF = Rrxwsx (r{/W(H 0G) ® r}}y}")
= RT’XW* (TwaSYW* (Syzg & Ssz) & T’ny)
L L
= Rrxws (RTFXYW*W;ZW (33329 ® S*ZWH) ® T?{Y}—)
=~ Rﬂ'XW* <7TYZg &® WZWH ® nyf) .
Therefore, we obtain the isomorphism Ho (GoF) = (HoG)o F. O
Here we give one remark. The category D(X x Y') is like a category of functors from D(X) to
D(Y). In fact, an object F € D(X x Y) corresponds to a functor ®% -, and a morphism F — G
gives a natural transform ®% , — @%ﬁy. However, as remarked in [Cal03], this correspondence is
not faithful, i.e. the non-trivial morphism F — G may induce a trivial natural transform. Although

natural transform is a categorical concept, it is not useful for our purpose. So sometimes we use the
objects of D(X xY') instead of functors, and treat their morphisms as if they are natural transforms.
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3. Moduli spaces of stable sheaves

In this section, we introduce the notation of the moduli spaces of stable sheaves, and recall some
properties. These are used for the applications of Theorem 1.1. The details are given in [DM97]. Let
X be a projective scheme and H be a polarization. For a non-zero object E' € Coh(X), its Hilbert
polynomial has the following form:

&7}

(|E) m'  (a;(E) € Z,d = dim(Supp E)).

d
X(E@H™™) =) =
i=0 ’

We define a rank of F and its reduced Hilbert polynomial by

tK(E) i= ag(E) faa(Ox), p(E, H) i= x(E & H®™) Jag(E).
Now let us introduce the order on Q[m] as follows: if p,p’ € Q[m], then p < p’ if and only if
p(m) < p'(m) for sufficiently large m. We denote p < p’ if p(m) < p’(m) for sufficiently large m.

DEFINITION 3.1. A non-zero object E € Coh(X) is said to be H-semistable if E is pure, i.e. there
exists no subsheaf of dimension lower than d, and for all subsheaves F' C E, we have p(F,H) <
p(E, H). An object FE is said to be H-stable if FE is H-semistable and for all subsheaves F' C E, we
have p(F, H) < p(E, H).

Using the above stability, we can consider the moduli spaces of stable (semistable) sheaves. Also
we can consider the relative version of the moduli spaces of such sheaves, under the projective
morphism f : X — S and f-ample divisor H. Let T" be an S-scheme, and px : X xgT — X and

pr: X xgT — T be projections. We define a contravariant functor MH(X/S) : (Sch/S)° — (Sets)
as follows:

- F € Coh(X xgT), which are flat over T,
M7 (X/S)(T) := { and for all geometric points Speck(t) — T, / ~ .
f‘XXSpeC k(t) is p;(H‘XXSpeC k(t)—semistable.
Here for E, E' € Coh(X xgT), the equivalence relation ~ is the following:

E~F ¥ E~FE @prL for some L € Pic(T).

Then there exists a projective scheme

M(x/8) — 8,
which corepresents MH(X /S). Let M7 (X/S) C MH(X /S) be a subset that corresponds to stable
sheaves. It is known that M*(X/S) is an open subscheme of MH(X /S), for example see [DM97].

DEFINITION 3.2. Let M C MH(X/S) be an irreducible component. The component M is called
fine if it is projective over S and there exists a universal sheaf on X xg M.

The following theorem is due to Mukai [Muk87].

THEOREM 3.3 (Mukai [Muk87]). For x € M, we denote by E, the corresponding stable sheaf.
Then there exists a universal family on X xg M if

ged{x(E; @ N') | N is a vector bundle on X} =1
holds.

We have the following criteria to find the fine moduli scheme.

LEMMA 3.4. If ged{x(E, ® H®") | n € Z} = 1, then M is projective over S, i.e. there exists no
properly semistable boundary. Hence, M is fine by Theorem 3.3.
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Proof. Indeed if there exists some # € M \ M, then there exists a subsheaf F C E, such that
p(F,H) = p(E,, H). If we take n;,w; € Z such that Y w; - x(E, ® H®") = 1, then
3w x(F ® H*) = aq(F) /aq(Ey).

As the left-hand side is an integer and 0 < ay(F)/aq(F,) < 1, we have a contradiction. So by the
above theorem M is fine. O

Finally, we recall the significant result on the moduli spaces of stable sheaves and derived cate-
gories, established by Bridgeland and Maciocia [BM02]. We say that a family of sheaves {Up}penr
on X is complete if the Kodaira—Spencer map

T,M — Ext’ (U, Uy,)
is bijective.
THEOREM 3.5 (Bridgeland and Maciocia [BMO02]). Let X be a smooth projective variety of dimen-
sion n and {U,}pen be a complete family of simple sheaves on X parameterized by an irreducible

projective scheme M of dimension n. Suppose that Homx (U, ,U,,) = 0 for p; € M, p; # p2 and
the set

T(U) := {(p1,p2) € M x M | Ext’y Uy, ,Up,) #0 for some i € Z}

has dimI'(U) < n + 1. Suppose also that U, @ wx = U, for all p € M. Then M is a nonsingular
projective variety and ®Y, . : D(M) — D(X) is an equivalence.

4. Correspondences of canonical divisors

In this section we fix two smooth projective varieties X and Y, such that Y € FM(X). The purpose
of this section is to establish the relation between the canonical divisors of X and Y, and state our
main theorem. We fix the following notation:

e &: D(X)— D(Y) gives an equivalence and P € D(X x Y) is a kernel of ®;
e U:D(Y)— D(X) is a quasi-inverse of ® and £ € D(X x Y) is a kernel of ¥;
o Sx :=Quwx|[dimX]: D(X) — D(X) is a Serre functor of D(X).
As Serre functor is categorical, we have the isomorphism of functors,
7:PoSy — Sy od.

Note that the kernel of left-hand side is P ® pjwx[dim X| and right-hand side is P ® piwy [dim Y].
So by Theorem 2.2, we have the isomorphism,

p:P®piwx[dim X] — P ® pbwy [dim Y].
Therefore, dim X = dim Y, and there exists an isomorphism for all m € Z,
Pm t PR piw{"™ = P @ pswi™
Therefore, we can see the following proposition.

PROPOSITION 4.1. The isomorphism of graded C-algebras is induced by {pm }mez:

{pi}: @ Homxxy (P, P ® pjwi™) — @ Homyxxy (P, P @ pwi™).
meZ meZ

Proof. Clear by the above argument. O
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Next we compare the vector spaces H(X, mKy) and Homxxy (P, P @ pjw{™). As ® gives an
identification of categories, ® must give the bijection between functors D(X) — D(X) and functors
D(X) — D(Y). In this respect, the following lemma is obvious.

LEMMA 4.2. The following functor,
Po:D(X xX)3a—Poaec DX xY),
gives equivalence.

Proof. Let ¥ be a quasi-inverse of ®, and £ € D(X x Y) be a kernel of ¥. Let Ax € X x X and
Ay C Y xY bediagonals. Note that the operations Oa 0, Oa, o induce identities. As EoP = Op ,
Po& = Op,, the following functor:

Eo: DX XxY)3br—Eo0be D(X xX)

gives a quasi-inverse by Proposition—Definition 2.5. U

In the same way, we have equivalence of categories:
oP:DY xY)3ar—aoP e DX XY).
We have the following lemma.

LEMMA 4.3. The following diagrams are 2-commutative.

D(X x X)—22 = D(X xY) DY xY)—2 = D(X xY)

A*1 |pf(*>é7> A

D(X) =—— D(X) D(Y) =———D(Y)

Here A means diagonal embedding.

Proof. Let us check the left diagram commutes. Let p;; be projections from X x X x Y onto
corresponding factors. Take a € D(X). Then

L
P o (A*a) = Rp13* <p>{2A*a & p;?;’P)
. * L *
=~ Rp13« ((A X idy )«pia @ p2377)

L
= Rplg*(A X idy)* (p’fa (124 (A X idy)*ngp)

, L
=pra®@P.
The second isomorphism follows from the flat base change of the diagram below
AXidY
XxY XxXxY

lpl lpm

X 2 X x X
and the third isomorphism follows from projection formula. O

As the immediate corollary, we have the following.

COROLLARY 4.4. The isomorphism of graded C-algebras is induced by ®:

{Gm}mez - @ H(X,mKx) = € H(Y,mKy).
meZ meZ
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Proof. By Lemma 4.3, we have the isomorphism of graded C-algebras:

my Po * m
P Homx . x (A.Ox, Ayw{™) —> @) Homx .y (P, P @ piw™),

meZ meZ
@ Homy «y (A, Oy, A*wgm) ©P, @ Homxxy (P,P ® pzwgm).
meZ meZ

As HY(X,mKx) = Homxxx(A.Ox, A.w$™), combining pl, given in Proposition 4.1, we obtain
the corollary. O

Now let us interpret the isomorphism ¢, : H*(X,mKx) — H°(Y,mKy) categorically. Take
o€ H(X,mKx) and o' := ¢,,(0) € H(Y,mKy). Let d := dim X = dimY. Then we can think
of o and of as natural transforms,

o:idxy — S%[—md], o' :idy — SP[—md]
Here S'¢[—md] is an m-times composition of the shifted Serre functor, Sx[—d] = Qwx. Let
T 2 ® 0 SR [—md] — SP[—md] o @
be the isomorphism of functors, induced by 7: ® o Sx — Sy o ® naturally.
LEMMA 4.5. The following composition is equal to o'
idy = ®oidy o® ! 197 & 6 S~ dm] o &L TSm0 B o & = ST [—dm).

Proof. This follows from Proposition—Definition 2.5 for natural transforms, and the construction
of of. O

Let E :=div(o) € [mKx/|, ET := div(cT) € [mKy|. For the closed subscheme Z < X, we define
the full subcategory Dz(X) C D(X) as follows:
Dz(X):={a € D(X)|Suppa:=USupp H'(a) C Z}.
We can observe the following.

LEMMA 4.6. In the above situation, ® takes Dg(X) to Dgi(Y).

Proof. Take a € Coh(X)N Dp(X). Let o' : idy — S¥4[~Imd] = @w{™ be an I-times composition
of 0. Then
da):a —a® w?}lm
are zero-maps for sufficiently large . Then by the above categorical interpretation of of, we have
that
(01! (®(a)) : ®(a) — B(a) @ W™

are also zero-maps. As (O'T)l is a natural transform, locally multiplying the defining equation of [ET,
we have Supp ®(a) C Ef. As Dp(X) is generated by Coh(X) N Dg(X), the lemma follows. O

For the sake of applications, it is convenient to generalize the above lemma to the intersections
of canonical divisors.

COROLLARY 4.7. Take E; € |m;Kx| and their corresponding divisors Ej € |m;Ky| for i =
1,2,...,n. There exists a one-to-one correspondence,

7T0<ﬁEZ'> 90*—>CTE7T0<ﬁEZT>,

i=1 i=1

such that ® takes Dc(X) to D+ (Y'). Here my means connected component.
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Proof. Lemma 4.6 shows that ® takes Dng,(X) to D
n?:l Ez As

et (Y). Take a connected component C' C

HOH]Y (¢(Ocred )7 Q(Ocred )) = HomX (Ocred ? Ocred ) = C’

Supp ®(Oc,.,) is connected. Therefore, there exists a unique connected component ctc Niey E;r
such that Supp ®(O¢,_,) C CT. We show that ® takes D¢ (X) to Dt (Y). It suffices to show that
® takes Coh(O¢) to Dp+(Y). Take a closed point z € C. Then Supp(®(O,)) is connected by the
same reason. As there exists a non-trivial morphism O¢,_, — O, we have ®(0,) € D (Y). Let
us take a simple Oc-module F. Then as Supp(®(F)) is connected and there exists a non-trivial
morphism F — O, for some closed point € C, we have ®(F) € Ds:(Y). The lemma follows by
taking Harder—Narasimhan filtrations. O

Unfortunately, the natural functor D(C') — D¢ (X) does not give an equivalence. (In general, the
latter has larger Ext-groups.) However, the existence of equivalence between D¢ (X) and Dq+(Y)
leads us to the speculation that D(C) and D(CT) may be equivalent. If D(C) and D(CT) are
equivalent, then the relation between C' and C' will give us information of the relation between
X and Y. One of the purposes of this paper is to claim that this speculation is true, under some
technical conditions. We assume the following conditions on C, CT and P,€ € D(X x Y). Recall
that P, & are kernels of ® and &~ 1.

e C and CT are complete intersections.

L L
e PR Ocxy and £ ® Ocxy are sheaves, up to shift.

These conditions are satisfied, for example, if the linear systems |m;K x| are free and E; are generic
members and P is a sheaf. Now we can state our main theorem.

THEOREM 4.8. Under the above conditions, there exists equivalence ®¢ : D(C') — D(CT) such that
the following diagram is 2-commutative.

D(X) =% D(C) %= D(X)

@l (] d
Li*

D(Y) —<L p(cty 2¢ D(y)

Here ic, i+ are inclusions of C, CT into X and Y, respectively.

5. Proof of Theorem 4.8
In this section, we give the proof of Theorem 4.8. We use the notation of the previous section. First,
we explain the plan of the proof. We divide the proof into four steps. In Steps 1 and 2, we show

L L
there exists an isomorphism, P ® Ocxy = P ® Oxyct. Using this and the assumptions, we find
a Po € D(C x C1), and construct a functor ®¢ : D(C) — D(CT). In Steps 3 and 4, we will show
that ®¢ gives the desired equivalence.

L L
Step 1. There exists an isomorphism P ® O, xy =P ® OXxET'

Proof. We omit the index i, and write E; as F, etc. We have the following exact sequences:
0— Ox Lw?ém—>0}3®w?§m—>0

!
0 — Oy U—>w§9m—>(9Ef®w§€?m—>0.
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L L
Applying pj(x) ® P and p3(x) ® P respectively, we obtain the distinguished triangles:

id @p*o
p LLoPT,

id@psot
E—

L
P @pjwd™ — P ® Opxy ® pjwi™ — P[1]
L

On the other hand, by Lemma 4.3 and the definition of ¢,, given in Corollary 4.4, we obtain the
following commutative diagram.

id @pto © L
P® pTme PR Opxy ®p1‘w§?m

id @psot ® L
P P @ pswy PROxypt ® pgwgm

Here p,, is an isomorphism constructed in the previous section. Therefore, there exists an (not
necessarily unique) isomorphism,

L *, QM ~v L * Qm
P ® Opxy @piwy " =P @ Ox gt @ pawy .
L L
As P ®p”{w}8}m =P ®p§w§§m, we have an isomorphism, P ® Ogxy =P & Oxypi- O
Step 2. There exists an isomorphism,
L L
P @ Ocxy 2P @ Oxyot-

Proof. By using the isomorphism of Step 1 n-times, we can get the isomorphism:

L L L L
P& < (09 OEixy> =P® < X OXXEJ>’

1<i<n 1<i<n

On the other hand, we have
L L

® OEiXY = @ pTACU ® OXXET = @ pSBC’a

1<i<n Cemo(Nizy Ei) 1<isn Cremo(N, ED)
for some Ac € De(X), Ber € Der(Y). Therefore, we have the following isomorphism:

L * ~ L *
P PropiAc= P PepBe.
Cemo(Ni, Ei) Cremo(izy B))

Now we have the following lemma.

L L
LEMMA 5.1. The objects P ® p{Ac, P @ psBat are supported on C x CT.

L
Proof. We show that P ® pjAc is supported on C' X CT. The other case follows similarly. We can
write,

P GIKIJ plAc = @ Rers
Cremo(Mi, EY)
where R is supported on C' x C’. Take C’ # C € my(NE;) and assume that R is not zero. Let us
take a sufficiently ample line bundle £ on X. As ®(Ac®L) € D (Y), we have Rpay (R @piL) = 0.

971

https://doi.org/10.1112/50010437X06001977 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06001977

Y. Tobpa
On the other hand, if £ is sufficiently ample and H?(R¢v) # 0, then pa. (H4(Rev) ® piL) # 0 and
RPpo, (HY(Rer) @ piL£) = 0 for p > 0. As there exists the following spectral sequence:
Eg’q = RPPQ*(Hq(RC/) ®p’1k£) = Rp+qp2* (Rcl X pfﬁ),

we have Rpa.(Rer @ piL) # 0. However, this is a contradiction. O

L L
By the lemma above we have P @ pjAc = P ® psBet. As we have assumed C' and CT are
complete intersections, we have Ac = O¢, Boi = O+ in our case. Combining these, we have the
desired isomorphism:

L L
P®Ocxy =P ® Oxyct- O
L L
By the assumptions, the object P ® Ocxy = P ® Ox o+ is a sheaf, up to shift. This sheaf is

Ocxy-module and also Oy, ~t-module. Hence, this object is a O, t-module, so there exists an
object P € D(C x CT), such that

L L
P ® OCXY = P ® OXXC'T = iCXCT*PC'

Let ¢ := q)gi ot D(C) — D(CT). In what follows, we do not use the fact these are sheaves up

to shift, and show that ®¢ gives a desired equivalence.

Step 3. In the diagram of Theorem 4.8 we have the following isomorphisms of functors:

PooLic =0 ;o Ligio®=®, ,
. ~ 4 (de Xi 1)« Po .~ xL(icxidy)*P
Lots © @C = q>C—>Y ¢ 9 ®o 10x — (I)C(_)CY v) .
See the following diagram.
X x Ct
"CXid/’ Yﬁcf
icxct
C x Ct . X xY
idwk Afy
CxY

Proof. Let us calculate ®¢ o Liy, by using Proposition—Definition 2.5. The other formulas follow
similarly. Let qio: X x O x Ct = X x C, qo3 : X x O x Ct - O x Ct, qi3: X xCx CT — X x Cf
be projections. Let I'c € X x C be the graph of the inclusion ic. Let j be the inclusion of T'c x CT

O
into X x C x CT. As Lic =@ Xr_fc, we can compute the kernel of ®¢ o Lif, as follows:

L L
Rq13« (tﬁg(’)rc ® ngPc) = Rqi3« (OFCXCT ® q;ﬂ’o)
= RQl3*j*Lj*qu3’PC
= (ZC X idCT)*Rq23*j*Lj*Lq§3PC
= (ic x idgt)«Ro(go3 0 j)«L(g3 0 j)"Pc
= (ic X idcf)*PC.

Here the third isomorphism follows from ¢i3 0 j = (i¢c X idgt) 0 gag 0 j and the last isomorphism
follows as ¢og3 o j is identity. U

Step 4. A desired equivalence is given by ®¢.
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By Step 3, to prove that the diagram of Theorem 4.8 commutes, we only have to check that the
following hold:
(ic xidgt)«Po 2 Lidx xict) P, (ide xict)«Pco = Lic x idy )*P.

There exists the following morphism:

PP & Oyt ZigwerPo = (idy it )a(ic x idgr )P
Taking its adjoint, we have a morphism L(idx Xiot)*P — (ic X idet)«Po. Let us take its distin-
guished triangle:
Q — L(idx Xict)*P — (ic x idgt)«Po — QJ1].
By applying (idx Xict)«, we get the distinguished triangle,

L o
(idx xict)«Q — P ® Oxyct — ioxctPo — (idx Xict)«Q[1].
So, we have (idx Xigt)«Q = 0. Therefore, @ = 0 and the morphism L(idx Xio+)*P—(ic xXidgt)«Pe
is an isomorphism. We can prove the isomorphism (idc xigt)«Pc = L(ic % idy )*P similarly.
Finally, we prove that ®¢ gives an equivalence. Let us define ¥¢ : D(CT) — D(C) as in the
same way of ®¢, from U = ®~!. Then the following diagram commutes.

Take a closed point 2z € C. Then by the diagram above, icy 0 Vo o o (O,) = icx(Oy), so ¥ o
®c(0,) =2 O,. Then, by [Bri99, Lemma 4.3|, the kernel of U o ®¢ is a sheaf on C' x C, therefore
it must be a line bundle on its diagonal. Hence ¥ o & = ®Lc for some line bundle L& on C.
However, again by the diagram above, we have Vo o @(O¢) = O¢. This implies that Lo = O¢

~

and Vo o & = id. Similarly, ¢ o V¢ = id. Therefore, ®¢ is an equivalence and the proof of
Theorem 4.8 is completed.

Remark 5.2. The conditions of kernels are required to find the object P which satisfies

L L
P & OCXY = P & OXXCT = iCXCT*PC'

In fact, if we can find such a P¢, then our theorem holds by using Pe. In Steps 3 and 4, we did not
use the fact that these are sheaves.

6. Fourier—-Mukai transforms of varieties of k(X) =dim X — 1

In this section we explain the important situation to which Theorem 4.8 can be applied. Let us
consider the situation when Kx (or —Kx) is semi-ample, i.e. [mKx]| is free for some m > 0 (or
m < 0). When Kx is semi-ample, we have the following morphism, called the Iitaka fibration:

mx : X — Z:=Proj @ H°(X,mKx).
m=0

The Kodaira dimension of its generic fiber is zero. Let Y € FM(X) and @ : D(X) — D(Y) be an
equivalence. Note that Ky is also semi-ample by Corollary 4.7. By Corollary 4.4, the target of its
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litaka fibration is also Z. Let my : Y — Z be the litaka fibration. Let us take a general closed point
p € Z. Let X, := my'(p) and Y, := 7' (p). Assume that the kernel of ® satisfies the condition as
in Theorem 4.8, for example the kernel of @ is a sheaf. Then Theorem 4.8 states that there exists
equivalence @, : D(X,,) — D(Y}) such that the following diagram commutes.

D(X) —% D(X,) ~*~ D(X)
% . l % (%)
D(Y) D(Y, D(Y)

Here 4, and j, are inclusions, i, : X, — X, jp : Yp — Y. The conditions of kernels are satisfied if
k(X) = dim X — 1. Note that Fourier-Mukai partners of the varieties of x(X) = dim X are studied
in [Kaw02].

THEOREM 6.1. Let X be a smooth projective variety such that Kx is semi-ample, and k(X) =
dimX — 1. Let Y € FM(X) and ® : D(X) — D(Y') be an equivalence. Then in the above notation,
there exists an equivalence ®, : D(X,) — D(Y}) such that the diagram ({)) commutes.

L
Proof. Let P € D(X xY) be a kernel of ®. It suffices to show that P ® Ox,xy is a sheaf, up to
shift. Note that

L L
P @ Ox,xy &P ® Oxxy,,
by Step 2 of Theorem 4.8. By taking the functors whose kernels are the left-hand side and right-hand
side, respectively, we can obtain the isomorphism of functors:

L L
O(x ® OXP) =0(x) ® pr.

Note that the above isomorphism can be also applied to derived categories of quasi-coherent sheaves.
Let us consider ®(0O,,) for x € X,,. Take a general morphism:

vy : SpecCllt, ..., ta—1]] — X,
which takes a closed point of SpecCl[tq,...,tq-1]] to € X,. Here d := dimX. Let R, :=
vz Cl[t1, .. ., tg—1]] € QCoh(X). Then R, GLKJ Ox, = O,, and
®(0,) = O(R,) Q% Oy,
= jpeLj, ®(Rz).
As Y} is one-dimensional, Lj; ®(R;) is a direct sum of its cohomologies. As
Homx (O,, O,) = Homy (®(0,), ®(0,)) = C,

we can conclude ®(0,) is a coherent Oy, -module, up to shift. We may assume that ®(0,) is a sheaf
for general € X,. Then for all z € X,,, ®(O,) is a sheaf. Hence,

L L L,
P @ Ozxy &P @ Ox,xy @ p1OR,,

is a sheaf. The above object is calculated by the spectral sequence:

L
= Tor_ XXY(Hq(A),p’{(’)RI) = HPT(P @ Opxy).

L
Here A := P ® Ox,xy. The above spectral sequence degenerates at Fs-terms, as EP? =0 for
p < —2. Therefore, if k # 0, H*(A) ® p;Og, = 0 for x € X,,. This implies that H*(A) = 0
for k # 0. O
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As the immediate application, we generalize the theorem of Bondal and Orlov [BDO1].

THEOREM 6.2. Let C be an elliptic curve and Z be a smooth projective variety. Assume that Ky
or —Ky is ample. Then FM(C x Z) = {C x Z}.

Proof. We show the theorem when K is ample. The other case follows similarly. Let us take
Y € FM(C x Z), and let ® : D(C' x Z) — D(Y) be an equivalence. As C is an elliptic curve, the
projection C' x Z — Z gives litaka fibration. Note that Ky is also semi-ample, and let 7: Y — Z
be its Titaka fibration. Take a general closed point p € Z and fix it. Let CT := 7 1(p). Then we can
find an object U € D(C x CT) such that (I)%—CT : D(C) — D(CT) gives equivalence by Theorem 6.1.
Note that C' = CT, as Fourier-Mukai partners of a curve consists of itself. On the other hand, as in
Lemma 4.2, the following functor gives equivalence:

o :D(Cx Z)3ar—aold € D(CT x Z).
Let us compose the above equivalence with ¥ := &1, We obtain the equivalence:
(oU) oW : D(Y) — D(C x Z) — D(CT x Z2),
which takes O, to O, ) forall x € CT. Therefore, we obtain the birational map over Z by Lemma 7.3
below,
f:Y--»Ctx 2z

Note that f is defined on the neighborhood of C't. As Y and C' x Z are both minimal models, f
is isomorphic in codimension one. We show that f is in fact an isomorphism. Let us take an ample

divisor H C Y, and its strict transform Hf ¢ C' x Z. It suffices to show that H' is nef. However,
this is clear as HT is effective and we can deform HT freely using translations of CT. U

7. Fourier—-Mukai partners of 3-folds of k(X) =2

In this section, we study FM(X) when dim X = 3 and k(X ) = 2. The relative moduli spaces of stable
sheaves for three-dimensional Calabi-Yau fibrations are studied in [BM02]. Combining Theorem 4.8
with their results, we can study FM(X) in this case. Before that, we recall some terminology of
birational geometry, and give some useful lemmas.

DEFINITION 7.1. Let X and Y be projective varieties with only canonical singularities. A birational
map « : X --+» Y is called crepant, if there exists a smooth projective variety Z and birational
morphisms f: Z — X, g: Z — Y, such that ao f = g, and f*Kx = ¢*Ky. In this case, we say
that X and Y are K-equivalent under a.

The following birational transform called a ‘flop’ is a special kind of crepant birational map.

DEFINITION 7.2. Let X and Y be projective varieties with only canonical singularities. A birational
map « : X --» Y is called a flop, if there exist a normal projective variety W and crepant birational
morphisms ¢ : X — W, ¢ : Y — W that satisfy the following:

¢=1vouw

¢ and v are isomorphisms in codimension one;

relative Picard numbers of ¢, 1 are one;

e let H be a ¢-ample divisor on X and H’ be its strict transform on Y; then —H' is 1-ample.

In this paper, we will only use flops of smooth 3-folds. In dimension three, crepant birational
maps are connected by a finite number of flops [Kaw02, Theorem 4.6]. Next we give some useful
lemmas.
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LEMMA 7.3. Let X andY be smooth projective varieties, and ® : D(X) — D(Y') be an equivalence.
Assume for some closed point © € X, we have dim Supp ®(O,) = 0. Then there exists an open
neighborhood U of x, and r € Z, such that for 2/ € U, there exists f(x') € Y which satisfies
®(Oy) = Of (e [r]. Moreover, X and Y are K-equivalent under birational map f: X --» Y.

Proof. As ® gives an equivalence, we have

Extg/(q)(or)v ®(0.)) = {2: z i 87

Then using the same argument as in [BDO1, Proposition 2.2], there exists a point y € Y and r € Z
such that ®(0;) = O,[r]. Then as in [BMO01, Theorem 2.5], we can find a desired U and a birational
map f. Let P € D(X xY) be a kernel of ®. As

P ®p’{wx =P ®p§wy,

as in §4, pjwx and piwy are numerically equal on SuppP. By the construction of f, we have
'y € SuppP, where I'y is a graph of f. Therefore, X and Y are K-equivalent under f. U

LEMMA 7.4. Let X andY be smooth projective varieties, and ® : D(X) — D(Y') gives equivalence.
Then the following hold.
(i) For a closed point x € X, wy is numerically zero on Supp ®(O,).
(ii) If x € Bs|mKx]|, then Supp ®(O,) C Bs |mKy|.
(iii) If x ¢ Bs|mKx]|, then Supp ®(O,) N Bs|mKy| = 0.

Proof. (i) As ® and the Serre functor commute, we have ®(0,) ® wy = ®(O,). Part (i) follows
from this.

(ii) This follows from Lemma 4.6 immediately.

(iii) Take = ¢ Bs|mKx| and assume that there exists y € Supp®(O;) N Bs|mKy|. Then
there exists a non-zero map ®(0,) — O,i] for some i. Therefore, there exists a non-zero map
Oy — ¥(Oy)[i]. As U(O,)[i] is supported on Bs |mK x|, this is a contradiction. O

Now we state the main theorem of this section.
THEOREM 7.5. Let X be a smooth projective 3-fold of K(X) = 2. Then Y € FM(X) if and only if
one of the following holds.

(1) X and Y are connected by a finite number of flops.
(2) There exists the following diagram.

flops
Y e p) JH(d) M << X

N

where m : M — S is an elliptic fibration with wyr =, 0, H € Pic(M) is a polarization and d € 7.
JH(d) ¢ MH(M/S) is an irreducible component which is fine, and contains a point corresponding
to line bundles of degree d on smooth fibers of .

The ‘if’ direction is already proved in [BM02, Theorem 8.3] and [Bri02], when S is smooth. We
can check that the assumption ‘S is smooth’ is not required in their proof, hence the ‘if” direction
holds. We prove the ‘only if” direction. Let us take Y € FM(X). We use the same notation as in the
previous sections. In particular, ® : D(X) — D(Y") gives equivalence, P € D(X xY) is a kernel of ®,
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and V¥ is a quasi-inverse of ®. Note that, by Lemma 7.3, we may assume that dim Supp ®(0,) > 1
for all x € X. In this situation, we construct a diagram (2) or show that (1) holds. We divide the
proof into five steps.

Step 1. Application of Theorem 4.8

First, we apply Theorem 4.8, and give the preparation for the proof. As dim X = dimY = 3, we
can run minimal model programs and obtain birational minimal models X i, and Yiin.

x MMy y, . MMP

N

Here nx, my are litaka fibrations. Note that dim Z = 2, and generic fibers of wx, my are elliptic
curves. Then, for sufficiently large m, we obtain isomorphisms,

X\ Bs|mKx| — X\ Cx, Y \Bs|mKy| — Vi \ Cy,

for some closed subsets C'x C Xin, Cy C Ymin with dim Cx < 1, dim Cy < 1. Let us take general
members E; € /mKx|, for i = 1,2. By Corollary 4.4, we have the isomorphism of linear systems:

ImK x| — |mKy].
Let E;r € |mKy| correspond to E;. Also note that we have the isomorphisms:
HY(X,mKx) = H (X, mKx.. ), HY(X,mKy) = H° (Y, mKy,. ),
for sufficiently divisible m. Let

E; c |mKX EZ{T S |memin|,

min|7

correspond to F;, Ej under the above isomorphisms, respectively. Then, if we choose F; sufficiently
general, then we have

E'NE,NCx = 0.
Therefore we have the following decompositions:

E1N By = (B{nEy) [[Bs|mKx|, EjnE}=(E]nE)]]BsmKy|.

Now let us take C' € mo(E] N EY). We can consider C' as a curve on X. Using Corollary 4.7 and
Lemma 7.4, we can find CT € 7r0(E1T N Eg) such that ® takes Do (X) to Dei(Y). Now using the

L
same argument as in Theorem 6.1, we can see P ® O¢xy is a sheaf, up to shift. Then we can
apply Theorem 4.8, so there exists an equivalence ®¢ : D(C) — D(C1), such that the diagram of
Theorem 4.8 commutes.

Step 2. Construction of M

In this step, we construct a desired M. We construct M as a moduli space of stable sheaves on Y.
Let us take z € C, and consider ®¢(0,) € D(C'). As in Theorem 6.1, we may assume that ®¢(0,)
is a simple sheaf on C'T. As CT is an elliptic curve, ®¢(0,) is a stable sheaf on CT. Let rk ®¢(0,) = a
and deg ®¢(O;) = b. By the commutative diagram of Theorem 4.8, ®(O,) is a stable sheaf on Y
supported on CT, with respect to any polarization. Then take a polarization H’' € Pic(Y), and
consider the moduli space of stable sheaves M’ (Y/SpecC). Let

M c M (Y/SpecC)
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be an irreducible component, which contains a point corresponding to ®(0,) € Coh(Y"). Note that
there exists a birational map:

fiiX - M,

which takes a general point € X to a point of M, corresponding to a stable sheaf ®(O,). We show
that M is a fine moduli scheme or (1) holds. For E, F € D(X), we define x(E, F') as follows:

X(E,F):=Y (~1)'dim Ext (E, F).
As x(®(Ox),®(0;)) = x(Ox,0;) = 1, Riemann-Roch imply that
b-chy D(Ox)" + a(er(®(Ox)*) - CT) = 1.
Here ®(Ox)* means that derived dual of ®(Ox). We divide into two cases.
Case 1. b= 0. If b = 0, then a = ¢;(®(Ox)*) - CT = 1. Therefore, there exists an effective
divisor E on Y such that E - CT = 1. There exists a birational map
foiY - M,

such that fo takes the general point y € Y to a point corresponding to Oc, (E N Cy —y), a degree
zero line bundle on C),. Here Cj, is a compact fiber of the Iitaka fibration Y --» Z, which contains y.
Composing these we obtain a birational map,

fi=fylofi: X - M-,

which satisfies f(x) € Supp ®(0O,) for general x € X. Therefore, I'y C Supp P, where I'f is a graph
of f. As piKx = p5Ky on SuppP, it is also true on I'y. Therefore, X and Y are K-equivalent
under birational map f.

Case 2. b # 0. Let us replace H' to det ®(Ox)* + IbH' for | > 0. Then we may assume
ged(a(H' - C1),b) = 1. Then

ged{x(®(0,) @ H®™) | m € Z} = gcd{ma(H' - CT) +b|m e 7}
= 1.

By Lemma 3.4, this implies that M is a fine moduli scheme.

Step 3

This scheme M is smooth and the universal sheaf &/ € Coh(Y x M) gives an equivalence
=Y v D(M) — D(Y).

Proof. For p € M, let U, € Coh(Y') be the corresponding stable sheaf. We check that the conditions
of Theorem 3.5 are satisfied. First we show U}, ® wy = U,,. Let

be an elimination of indeterminacy. Consider morphisms
gxid: X xY — X xY, hxid:XxY — M xY,

and objects
L(g xid)*P € D(X xY), (hxid)*U € Coh(X x Y).
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Take x € X and let lexy & XY — X XY be an inclusion. Then

Lii yo(hxid)'U = Un(z)-
Take open subsets X? € X, Y? Cc Y, Z% ¢ Z such that the rational maps X --» Z, Y --» Z are
defined on X°, Y9 and X° — Z° Y0 — Z9 are smooth projective. From here, we shrink Z if

necessary. As fi is defined on X°, we can think X as an open subset of X.Soifre X0 X , then
®(Oy(x)) = Up(z)- This implies that

Supp(h x id)*U N (X® x V) = SuppL(g x id)*P N (X° x V).
Therefore, by Lemma 7.6 below, we have
Supp(h x id)*U C SuppL(g x id)*P C X xY.
Therefore, for all z € X , we have
Supp(h x id)*U N (z xY) C SuppL(g xid)*P N (z x Y).

So SuppUy,() C Supp ®(Oy(s)) follows. As wy is numerically zero on Supp ®(Oy,) ), this is also true
on Supp Uy, hence on Suppl, for all p € M. Therefore, U, @ wy is also H '_stable and its reduced
Hilbert polynomial is equal to U, i.e.

p(Uy, H') = p(Up @ wy, H').

On the other hand, there exists a non-trivial map U, — U, ®wy by semi-continuity. So U, = U, dwy
for all p € M.

Secondly, we show that the set
T(U) := {(p1,p2) € M x M | Extl (Uy,,Uyp,) # 0 for some i € Z}

has dimT'(U) < 4. Tt suffices to show that if (p1,p2) € T'(U) \ Aps, where Ay is a diagonal, then
pi € M\ f1(X?). Assume that p; € f1(X°). As Extl, (Uy,,Up,) # 0, we have Supp U, NSupp Uy, # 0.
Take an irreducible component | C Suppl,, such that Supply, N1 # 0. As we have assumed
p1 € f1(X?), we have

SuppUy,, N Bs |mKy| = 0.

So it follows that [ is not contained in Bs|mKy|. Furthermore, Ky -1 = 0, as Ky is numerically
zero on SuppU,. Therefore, [ N Bs|mKy| = () and [ is contained in the fiber of the Iitaka fibration,
Y \ Bs|mKy| — Z. This implies that [ = Suppl,, and therefore Suppl,,, = SuppU,,, as SuppU,,
is connected. Therefore, U, is a stable sheaf on Suppl),,, so p» € fi (X9). Let ¢; € X° be points
such that p; = f1(q;). Then Extl Uy, ,Up,) = Extly (O, Oyy) # 0 implies that ¢1 = g2 and p; = pa.
However, this contradicts to (p1,p2) ¢ Ans. O

In the above proof, we used the following lemma.

LEMMA 7.6. The support of (h x id)*U, Supp(h x id)*U, is irreducible.

Proof. Let f : X xY — X be a projection. Note that a general fiber of the restriction of f
to Supp(h x id)*U is an elliptic curve. Therefore if Supp(h x id)*U is not irreducible, then there

exists p € Ass((h x id)*U) such that dim O oy = L Take a non-zero element of the maximal
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ideal ¢ E.n?f(p) C O 7y Then Og 5. al O% j(p) I8 injective. Since (h x id)*U is flat over X, we
have an injection,

((h x i) U), L5 (b x id)U),,
and f*t € mpO sy, But this contradicts the statement p € Ass((h x id)*U). O

Step 4

The schemes X and M are connected by finite number of flops and M has an elliptic fibration
m: M — S with wy; =, 0.

Proof. Consider the following composition:
Vody : D(M)— DY) — D(X).
This is an equivalence and for general points p € M, we have
dim Supp ¥ o ®/(0,) = 0.

Therefore, X and M are connected by a finite number of flops. As Suppld C Y x M is irreducible
and all of the fibers of the projection SuppUd — M are one-dimensional, this is a well-defined family
of proper algebraic cycles in the sense of [JK96]. Therefore, there exists a morphism M — Chow(Y),
which takes p € M to an algebraic cycle whose support is equal to Suppl,,. Let

M 5 S — Chow(Y)

be a Stein factorization. We show that wys =, 0. Let us take p,p’ € M such that n(p) = 7'(p).
Then by the definition of 7, it follows that

Supp ®17(0p) = Supp P (Oy).

Let ustake ¢ € Supp ®/(O,). Thenp’ € Supp(®ar)~1(0O,). Therefore, 717 (p) C Supp(®rr) 1 (O,).
This implies that wy; =5 0. O

Step 5
There exists a polarization H C M, d € Z, such that J(d) is fine and smooth. Moreover, ¥ and
JH (d) are connected by a finite number of flops.

Proof. We continue the same argument. Let us take a general closed point y € Y. The object
(@ar)~H(Oy) € D(M)

is a stable sheaf on a general fiber of 7. Let its rank and degree be ¢ and d, respectively. Let
H € Pic(M) be a polarization and take an irreducible component M+ c M (M/S) that contains
a point corresponding to (®57)~1(O,). Similarly, take an irreducible component J (d) ¢ M*(M/S)
that contains a point corresponding to line bundles of degree d on smooth fibers of 7. By the same
argument as before, we can choose H such that

Mt — S, 7 JH(d) — S,

are fine moduli schemes (or X and Y are connected by finite number of flops if d = 0). By [BMO02,
Theorem 8.3], M+ and J(d) are smooth, wy+ = 0, wyn(g =q 0, and the universal sheaf
V € Coh(M™ xg M) gives an equivalence

Oy =0V s D(MT) "5 D(M).
As the composition
Ppro @4 : D(MT) = D(M) = D(Y)
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takes general points to general points, Y and M are connected by a finite number of flops. By
[Ati57, Theorem 6], there exists the following birational map over S:

M* 3 E— AE € JH(d).

As they are both minimal over S, MT and J(d) are connected by a finite number of flops. Now
we have obtained the diagram (2). O

If X is minimal we have a better result. By the abundance theorem in dimension three, Kx is
semi-ample. Let mx : X — Z be its Iitaka fibration. We define Ax > 0 as follows:

Ax = ged{el(E)- fx | E € D(X)},

where fx is a cohomology class of a general fiber of mx. For a polarization H on X, let J(b)
M"(X/Z) be as in the Theorem 7.5. The proof of the following theorem is almost the same as in
the previous theorem and is left to the reader.

THEOREM 7.7. Let X be a smooth minimal 3-fold with k(X) = 2. Then Y € FM(X) if and only if
there exists some b € Z that is co-prime to Ax, and there exists a polarization H on X, for which
JH(b) is a fine moduli scheme, such that Y and J"(b) are connected by finite number of flops.

As JH (b + Ax) = JH(b), birational classes of FM(X) are finite in the above case. By [Kaw97],
the number of three-dimensional minimal model in a fixed birational class is finite. So we obtain
the following corollary.

COROLLARY 7.8. Let X be a smooth minimal 3-fold with x(X) = 2. Then §FM(X) < oo.
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