1 Introduction

Relations are the fundamental fabric of reality.
(Michele Coscia)

1.1 Motivation

Alongside the exponential growth of computer networks over the last few decades,
we have witnessed concurrent and equally rapid growth in a field called network
science. Once computer networks brought network structure into clearer focus, sci-
entists began to recognize networks almost everywhere, even in phenomena that had
already received centuries of attention using other methods, and to apply network
theory to organize and expand knowledge right throughout the sciences, in every field
and discipline.

The set of possible examples is vast, and sources mentioning or treating hundreds
of different applications of network methods and graph theory are listed in the reading
notes at the end of the chapter. In computer science and machine learning alone, we
see computational graphs, graphical networks, neural networks, and deep learning.
In operations research, network analysis focuses on minimum cost flow, traveling
salesman, shortest path, and assignment problems. In biology, networks are a standard
way to represent interactions between bioentities.

In this book, our interest lies in economic and social phenomena. Here, too, net-
works are pervasive. Important examples include financial networks, production net-
works, trade networks, transport networks, and social networks. For example, social
and information networks affect trends in sentiments and opinions, consumer deci-
sions, and a range of peer effects. The topology of financial networks helps to deter-
mine the relative fragility of the financial system, while the structure of production
networks affects trade, innovation, and the propagation of local shocks.

Figures 1.1 and 1.2 show two examples of trade networks. Figure 1.1 is called a
Sankey diagram, which is a kind of figure used to represent flows. Oil flows from left
to right. The countries on the left and below are the top 10 exporters of crude oil, while
the countries on the right are the top 20 consumers. The figure relates to one of our
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Figure 1.1 International trade in crude oil 2021
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1.1 Motivation 3

Figure 1.2 International trade in commercial aircraft during 2019

core topics: optimal (and equilibrium) flows across networks. We treat optimal flows
at length in Chapter 3.!

Figure 1.2 shows international trade in large commercial aircraft in 2019.2 Node
size is proportional to total exports, and link width is proportional to exports to the
target country. The USA, France, and Germany are revealed as major export hubs.

While some readers viewing Figures 1.1 and 1.2 might at first suspect that the
network perspective adds little more than an attractive technique for visualizing data,
it actually adds much more. For example, in Figure 1.2, node colors are based on
a ranking of “importance” in the network called eigenvector centrality, which we
introduce in §1.4.3.4. Such rankings and centrality measures are an active area of

! This figure was constructed by QuantEcon research fellow Matthew McKay, using International Trade
Data (SITC, Rev 2) collected by The Growth Lab at Harvard University.

2 This figure was also constructed by Matthew McKay, using data 2019 International Trade Data SITC
Revision 2, code 7924. The data pertain to trade in commercial aircraft weighing at least 15,000 kg.
It was sourced from CID Dataverse.
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research among network scientists. Eigenvector and other forms of centrality feature
throughout the text. For example, we will see that these concepts are closely connected
to — and shed new light on — fundamental ideas first developed many years ago by
researchers in the field of input—output economics.

In addition, in production networks, it turns out that the nature of shock propagation
is heavily dependent on the underlying structure of the network. For example, for a
few highly connected nodes, shocks occurring within one firm or sector can have an
outsized influence on aggregate-level fluctuations. Economists are currently racing to
understand these relationships, their interactions with various centrality measures, and
other closely related phenomena.

To understand this line of work, as well as other applications of network methods
to economics and finance, some technical foundations are required. For example,
to define eigenvector centrality, we need to be familiar with eigenvectors, spectral
decompositions, and the Perron-Frobenius theorem. To work with Katz centrality,
which also features regularly in network science and economics, we require a sound
understanding of the Neumann series lemma. The Perron-Frobenius theorem and
the Neumann series lemma form much of the technical foundation of this textbook.
We review them in detail in §1.2 and develop extensions throughout the remaining
chapters.

One reason that analysis of networks is challenging is high dimensionality. To see
why, consider implementing a model with n economic agents. This requires 7 times
more data than one representative agent in a setting where agents are atomistic or
coordinated by a fixed number of prices. For example, Carvalho and Grassi (2019)
model the dynamics of n = 6 x 10° firms, all of which need to be tracked when
running a simulation. However, if we wish to model interactions between each pair i, j
(supply linkages, liabilities, etc.), then, absent sparsity conditions, the data processing
requirement grows like O(n?).3 In the Carvalho and Grassi (2019) example, n? is
3.6 x 10'3, which is very large even for modern computers. One lesson is that network
models can be hard to solve, even with powerful computers, unless we think carefully
about algorithms.

In general, to obtain a good grasp on the workings of economic networks, we will
need computational skills plus a firm understanding of linear algebra, probability, and
a field of discrete mathematics called graph theory. The rest of this chapter provides
relevant background in these topics. Before tackling this background, we recommend
that readers skim the list of common symbols on page xix, as well the mathematical
topics in the appendix, which starts on page 180. (The appendix is not intended for
sequential reading but rather as a source of definitions and fundamental results to be
drawn on in what follows.)

3 See §A.3 for a discussion of big O notation.

https://doi.org/10.1017/9781009456340.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009456340.003

1.2 Spectral Theory 5

1.2 Spectral Theory

In this section we review some linear algebra needed for the study of graphs and
networks. Highlights include the spectral decomposition of diagonalizable matrices,
the Neumann series lemma, and the theorem of Perron and Frobenius.

1.2.1 Eigendecompositions

Our first task is to cover spectral decompositions and the spectral theorem. We begin
with a brief review of eigenvalues and their properties. (If you are not familiar with
eigenvalues and eigenvectors, please consult an elementary treatment first. See, for
example, Cohen (2021).)

1.2.1.1  Eigenvalues

Fix A in M"*", A scalar A € C is called an eigenvalue of A if there exists a nonzero
complex vector e € C”" such that Ae = Ae. A vector e satisfying this equality is
called an eigenvector corresponding to the eigenvalue A. (Notice that eigenvalues and
eigenvectors are allowed to be complex, even though we restrict elements of A to be
real.) The set of all eigenvalues of A is called the spectrum of A and written as c(A).
As we show below, A has at most n distinct eigenvalues.

In Julia, we can check for the eigenvalues of a given square matrix A via
eigvals (A). Here is one example

using LinearAlgebra

A= [0 —1;
1 0]
eigenvals = eigvals (A7)

Running this code in a Jupyter cell (with Julia kernel) produces

2-element Vector{ComplexF64}:
0.0 — 1.0im
0.0 + 1.0im

Here im stands for i, the imaginary unit (i.e., i> = —1).

EXERCISE 1.2.1. Using pencil and paper, confirm that Julia’s output is correct. In
particular, show that

A:(? _01) =  o(A)={i, —i},

with corresponding eigenvectors (—1, i Yland (=1, —i)T.

If A € 0(A) and e is an eigenvector for A, then (A, e) is called an eigenpair.
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EXERCISE 1.2.2. Prove: if (A, e) is an eigenpair of A and « is a nonzero scalar, then
(A, ae) is also an eigenpair of A.

LEMMA 1.2.1 A € C is an eigenvalue of A if and only if det(A — AI) = 0.

Proof If A € R, then Lemma 1.2.1 follows directly from Theorem A.4.8 on
page 201, since det(A — AI) = 0 is equivalent to the existence of a nonzero vector e
such that (A — Al)e = 0, which in turn says that A is an eigenvalue of A. The same
arguments extend to the case A € C because the statements in Theorem A.4.8 are
also valid for complex-valued matrices (see, e.g., Jdnich (1994)). O

It can be shown that p(A) := det(A — AI) is a polynomial of degree n.* This
polynomial is called the characteristic polynomial of A. By the fundamental theorem
of algebra, there are n roots (i.e., solutions in C to the equation p(A) = 0), although
some may be repeated as in the complete factorization of p(A). By Lemma 1.2.1,

(i) each of these roots is an eigenvalue, and
(i1) no other eigenvalues exist besides these n roots.

If A € g(A) appears k times in the factorization of the polynomial p(A), then A is
said to have algebraic multiplicity k. An eigenvalue with algebraic multiplicity one
is called simple. A simple eigenvalue A has the property that its eigenvector is unique
up to a scalar multiple, in the sense of Exercise 1.2.2. In other words, the linear span
of {e € C": (A, e) is an eigenpair} (called the eigenspace of 1) is one-dimensional.

EXERCISE 1.2.3. For A € M"*", show that A € 0(A) iff TA € 6(TA) for all T > 0.

EXERCISE 1.2.4. A useful fact concerning eigenvectors is that if the characteristic
polynomial p(A) := det(A — AI) has n distinct roots, then the n corresponding
eigenvectors form a basis of C". Prove this for the case where all eigenvectors are real
— that is, show that the n (real) eigenvectors form a basis of R”. (Bases are defined in
§A.4.2. Proving this for n = 2 is also a good exercise.)

1.2.1.2  The Eigendecomposition
What are the easiest matrices to work with? An obvious answer to this question is:
diagonal matrices. For example, when D = diag(A;) with i € [n],

« the linear system Dx = b reduces to n completely independent scalar equations;
+ the -th power D’ is just diag(A}); and
« the inverse D! is just diag(/\i_l), assuming all A;’s are nonzero.

While most matrices are not diagonal, there is a way that “almost any”” matrix can
be viewed as a diagonal matrix, after translation of the usual coordinates in R” via an
alternative basis. This can be extremely useful. The key ideas are described below.

4 See, for example, Janich (1994), chapter 6.
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A € M™*" is called diagonalizable if
A= PDP! for some D = diag(Ay, ..., A,) and nonsingular matrix P.

We allow both D and P to contain complex values. The representation PDP~! is
called the eigendecomposition or the spectral decomposition of A.
One way to think about diagonalization is in terms of maps, as in

R" —4 4 R”

T

cr -2 ¢n

Either we can map directly with A or, alternatively, we can shift to C” via P~!, apply
the diagonal matrix D, and then shift back to R" via P.

The equality A = PD P~ can also be written as AP = P D. Decomposed across
column vectors, this equation says that each column of P is an eigenvector of A, and
each element along the principal diagonal of D is an eigenvalue.

EXERCISE 1.2.5. Confirm this. Why are column vectors taken from P nonzero, as
required by the definition of eigenvalues?

EXERCISE 1.2.6. The trace of a matrix is equal to the sum of its eigenvalues, and the
determinant is their product. Prove this fact in the case where A is diagonalizable.

EXERCISE 1.2.7. The asymptotic properties of the map m +— A™ are determined
by the eigenvalues of A. This is clearest in the diagonalizable case, where A =
P diag(A;)P~!. To illustrate, use induction to show that

A = Pdiag(A)P™' = A™ = Pdiag(A")P~! forallm € N. (1.1)

When does diagonalizability hold?

While diagonalizability is not universal, the set of matrices in IM"*” that fail to
be diagonalizable has “Lebesgue measure zero” in IM"*". (Loosely speaking, only
special or carefully constructed examples will fail to be diagonalizable.) The next
results provide conditions for the property.

THEOREM 1.2.2 A matrix A € M"*" is diagonalizable if and only if its eigenvectors
form a basis of C".

This result is intuitive: for A = PD P! to hold, we need P to be invertible, which
requires that its n columns are linearly independent. Since C”" is n-dimensional, this
means that the columns form a basis of C”".

COROLLARY 1.2.3 IfA € M™*" has n distinct eigenvalues, then A is diagonalizable.

Proof See Exercise 1.2.4. O
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EXERCISE 1.2.8. Give a counterexample to the statement that the condition in Corol-
lary 1.2.3 is necessary as well as sufficient.

There is another way that we can establish diagonalizability, based on symmetry.
Symmetry also lends the diagonalization certain properties that turn out to be very
useful in applications. We are referring to the following celebrated theorem.

THEOREM 1.2.4 (Spectral theorem) [f A € M™" is symmetric, then there exists a
real orthonormal n x n matrix U such that

A=UDU" with A;j € Ry foralli, where D = diag(Ay, ..., A,).

Since, for the orthonormal matrix U, we have U = U~} (see Lemma A.4.9), one
consequence of the spectral theorem is that A is diagonalizable. For obvious reasons,
we often say that A is orthogonally diagonalizable.

1.2.1.3  Worker Dynamics
Let’s study a small application of eigendecomposition. Suppose that, each month,
workers are hired at rate a and fired at rate . Their two states are unemployment
(state 1) and employment (state 2). Figure 1.3 shows the transition probabilities for a
given worker in each of these two states.
We translate these dynamics into the matrix

-« a

P, = , here 0<a,B < 1. 1.2

w ( ‘B 1 — ﬁ) w ﬁ (1.2)

« Row 1 of P, gives probabilities for unemployment and employment, respectively,
when currently unemployed.

« Row 2 of P, gives probabilities for unemployment and employment, respectively,
when currently employed.

unemployed

Figure 1.3 Worker transition dynamics
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EXERCISE 1.2.9. Using Lemma 1.2.1, show that the two eigenvalues of P, are A| := 1
and A, :=1 — a — . Show that, when min{«, B} > O,

() = =)

are two corresponding eigenvectors and that A; and A, are simple.

EXERCISE 1.2.10. Show that, when @ = 8 = 0, the eigenvalue A is not simple.

Below we demonstrate that the m-th power of P,, provides m-step transition prob-
abilities for workers. Anticipating this discussion, we now seek an expression for P,
at arbitrary m € IN. This problem is simplified if we use diagonalization.

EXERCISE 1.2.11. Assume that min{a, §} > 0. (When @ = § = 0, computing the
powers of P, is trivial.) Show that

_ 1 0 1 —a
P,=EDE™" when D=(0 Az) and E=<1 ﬁ)

Using (1.1), prove that

o | (ﬁ+a(1—a—ﬁ)’" a(l—(l—a—ﬁ)’")) 13

Yoa+p\pU - —a—B") a+pl—a—p"

for every m € N.

1.2.14  Left Eigenvectors
A vector ¢ € C" is called a left eigenvector of A € M"*" if ¢ is an eigenvector of
AT. In other words, ¢ is nonzero, and there exists a A € C such that AT e = Ae. We
can alternatively write the expression as ¢ ' A = Ae ', which is where the name “left”
eigenvector originates.

Left eigenvectors will play important roles in what follows, including that of
stochastic steady states for dynamic models under a Markov assumption. To help
distinguish between ordinary and left eigenvectors, we will at times call (ordinary)
eigenvectors of A right eigenvectors of A.

If A is diagonalizable, then so is AT. To show this, let A = PDP~! with D =
diag(A;). We know from earlier discussion that the columns of P are the (right)
eigenvectors of A.

EXERCISE 1.2.12. Let Q = (PT)™!. Provethat QTP =T and AT = QDQ\.
The results of the last exercise show that, when A = PDP~!, the columns of
(P ")~ coincide with the left eigenvectors of A. (Why?) Equivalently, A = PDQ,

where Q = (&1, ...,&,) is the n X n matrix with i-th column equal to the i-th left
eigenvector of A.
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EXERCISE 1.2.13. Let (¢;)7_; be right eigenvectors of A, and let (¢;)7_, be the left
eigenvectors. Prove that

(eiej)=1{i=j}  (@.j€n). (1.4)

[Hint: Use the results of Exercise 1.2.12.]

EXERCISE 1.2.14. Continuing with the notation defined above and continuing to
assume that A is diagonalizable, prove that

n n
A=) Aieje] and A" = Alee] (1.5)
i=1 i=1
for all m € IN. The expression for A on the left-hand side of (1.5) is called the spectral
representation of A.

EXERCISE 1.2.15. Prove that each n x n matrix Aieie;r in the sum )/, /\,-e,-el.T is
rank 1.

1.2.1.5  Similar Matrices
Diagonalizability is a special case of a more general concept: A € M"*" is called
similar to B € IM"*" if there exists an invertible matrix P such that A= PBP~!.In
this terminology, A is diagonalizable if and only if it is similar to a diagonal matrix.

EXERCISE 1.2.16. Prove that similarity between matrices is an equivalence relation
(see §A.1.2) on IM"*",

EXERCISE T.2.17. The fact that similarity is an equivalence relation on IM"*”"
implies that this relation partitions IM"*" into disjoint equivalence classes, elements
of which are all similar. Prove that all matrices in each equivalence class share the
same eigenvalues.

EXERCISE 1.2.18. Prove: If A is similar to B, then A™ is similar to B"”. In particular

A=PBP' — A" =PB"P 'forallm € N.

The last result is a generalization of (1.1). When A is large, calculating the powers
AF can be computationally expensive or infeasible. If, however, A is similar to some
simpler matrix B, then we can take powers of B instead, and then transition back to A
using the similarity relation.’

5 The only concern with this shift process is that P can be ill-conditioned, implying that the inverse is
numerically unstable.
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1.2.2 The Neumann Series Lemma

Most high school students learn that, if a is a number with |a| < 1, then
1

Zai = . (1.6)

. 1—a
i=0

This geometric series representation extends to matrices: If A is a matrix satisfying a
certain condition, then (1.6) holds, in the sense that 2120 Al = (I — A)~!. (Here I
is the identity matrix.) But what is the “certain condition” that we need to place on
A, which generalizes the concept |a] < 1 to matrices? The answer to this question
involves the “spectral radius” of a matrix, which we now describe.

1.2.2.1  Spectral Radius
Fix A € M™*". With |z| indicating the modulus of a complex number z, the spectral
radius of A is defined as

r(A) ;= max{|A|: A is an eigenvalue of A}. (1.7)

Within economics, the spectral radius has important applications in dynamics, asset
pricing, and numerous other fields. As we will see, the same concept also plays a key
role in network analysis.

REMARK 1.2.1 For any square matrix A, we have r(AT) = r(A). This follows from
the fact that A and A" always have the same eigenvalues.

Example 1.2.1: As usual, diagonal matrices supply the simplest example: If
D = diag(d;), then the spectrum o(D) is just {d;};e[n], and hence (D) = max; |d;|.

After executing
import numpy as np
The following Python code computes the spectral radius of a square matrix M:
def spec_rad (M) :
return np.max (np.abs (np.linalg.eigvals (M)))
1.2.2.2  Geometric Series
We can now return to the matrix extension of (1.6) and state a formal result.

THEOREM 1.2.5 (Neumann series lemma (NSL)) If A is in M"*" and r(A) < 1,
then I — A is nonsingular and

(I-A)"'= ZA’". (1.8)
m=0

The sum anozo A™ is called the power series representation of (I — AL

Convergence of the matrix series is understood as element-by-element convergence.
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A full proof of Theorem 1.2.5 can be found in Cheney (2013) and many other
sources. The core idea is simple: if S = I + A + A> + --- then I + AS = S.
Reorganizing gives (I — A)S = I, which is equivalent to (1.8). The main technical
issue is showing that the power series converges. The full proof shows that this always
holds when r(A) < 1.

EXERCISE 1.2.19. Fix A € M"*", Prove the following: if r(A) < 1, then, for each
b € R", the linear system x = Ax + b has the unique solution x* € IR” given by

o
x* = Z A"b. (1.9)
m=0

1.2.3 The Perron—Frobenius Theorem

In this section we state and discuss a suprisingly far-reaching theorem due to Oskar
Perron and Ferdinand Frobenius, which has applications in network theory, machine
learning, asset pricing, Markov dynamics, nonlinear dynamics, input—output analysis,
and many other fields. In essence, the theorem provides additional information about
eigenvalues and eigenvectors when the matrix in question is positive in some sense.

1.2.3.1  Order in Matrix Space

We require some definitions. In what follows, for A € Mk we write

« A > 0if all elements of A are nonnegative and
« A > 0if all elements of A are strictly positive.

It’s easy to imagine how nonnegativity and positivity are important notions for
matrices, just as they are for numbers. However, strict positivity of every element of a
matrix is hard to satisfy, especially for a large matrix. As a result, mathematicians rou-
tinely use two notions of “predominantly strictly positive,” which sometimes provide
sufficient positivity for the theorems that we need.

Regarding these two notions, for A € M"*", we say that A > 0 is

o irreducibleif )", A™ > 0 and
« primitive if there exists an m € N such that A™ > 0.

Evidently, for A € M"*" we have
A>0 — Aprimitive —> Airreducible — A > 0.

A nonnegative matrix is called reducible if it fails to be irreducible.

EXERCISE 1.2.20. By examining the expression for P in (1.3), show that P, is

(1) irreducible if and only if 0 < a, 8 < 1; and
(i) primitive if and only if 0 < a, 8 < 1 and min{a, } < 1.
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In addition to the above notation, for A, B € M"** we also write

e« A>2BifA—B>0andA > BifA—B >0,
e« AKO0iIf—A >0, etc.

EXERCISE 1.2.21. Show that < is a partial order (see §A.2.1) on Mk,

The partial order < discussed in Exercise 1.2.21 is usually called the pointwise
partial order on M"*¥. Analogous notation and terminology are used for vectors.

The following exercise shows that nonnegative matrices are order-preserving maps
(see §A.2.3) on vector space under the pointwise partial order — a fact we shall exploit
many times.

EXERCISE 1.2.22. Show that the map x +— Ax is order-preserving (see §A.2.3)
whenever A > 0 (i.e., x < y implies Ax < Ay for any conformable vectors x, y).

1.2.3.2 Statement of the Theorem
Let A be in M"™*", In general, r(A) is not an eigenvalue of A. For example,

A =diag(—1,0) = o0(A) ={-1,0} whiler(A) =1.

But r(A) is always an eigenvalue when A > 0. This is just one implication of the
following famous theorem.

THEOREM 1.2.6 (Perron—Frobenius) If A > 0, then r(A) is an eigenvalue of A with
nonnegative real right and left eigenvectors:

3 nonzero e, € € Rﬁ such that Ae = r(A)e and eTA= r(A)é‘T. (1.10)
If A is irreducible, then, in addition,

(i) r(A) is strictly positive and a simple eigenvalue;
(ii) the eigenvectors e and € are everywhere positive; and
(iii) eigenvectors of A associated with other eigenvalues fail to be nonnegative.

If A is primitive, then, in addition,

(i) the inequality |A| < r(A) is strict for all eigenvalues A of A distinct from r(A);
and

(ii) with e and € normalized so that (€,e) = 1, we have
rA)A" > el (m— o). (1.11)

The fact that r(A) is simple under irreducibility means that its eigenvectors are
unique up to scalar multiples. We will exploit this property in several important
uniqueness proofs.

In the present context, r(A) is called the dominant eigenvalue or Perron root of A,
while ¢ and e are called the dominant left and right eigenvectors of A, respectively.
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Why do we use the word “dominant” here? To help illustrate, let us suppose that
A € M™*" ig primitive and fix any x € R". Consider what happens to the point x,, :=
A™x as m grows. By (1.11) we have A™x ~ r(A)"ce for large m, where ¢ = ¢ ' x.
In other words, asymptotically, the sequence (A™x),,cN is just scalar multiples of
e, growing at rate Inr(A). Thus, 7(A) dominates other eigenvalues in controlling the
growth rate of A”x, while e dominates other eigenvectors in controlling the direction

of growth.

EXERCISE 1.2.23. The n X n matrix P = e €T in (1.11) is called the Perron
projection of A. Prove that P> = P (a property that is often used to define projection
matrices) and rank P = 1. Describe the one-dimensional space that P projects all of
R” into.

Example 1.2.2: Fix A > 0. If r(A) = 1, then I — A is not invertible. To see this,
observe that, by Theorem 1.2.6, since 7(A) is an eigenvalue of A, there exists a
nonzero vector e such that (I — A)e = 0. The claim follows. (Why?)

1.2.3.3  Worker Dynamics IT
We omit the full proof of Theorem 1.2.6, which is quite long and can be found in
Meyer (2000), Seneta (2006b), or Meyer-Nieberg (2012).6 Instead, to build intuition,
let us prove the theorem in a rather simple special case.
The special case we will consider is the class of matrices

P, = (1;(1 lfﬁ) with 0<a,Bp <1
This example is drawn from the study of worker dynamics in §1.2.1.3.

You might recall from §1.2.1.3that Ay = land A, =1 —a — . Clearly r(A) =1,
so r(A) is an eigenvalue, as claimed by the first part of the Perron—Frobenius theorem.

From now on we assume that min{a, 8} > 0, which just means that we are exclud-
ing the identity matrix in order to avoid some tedious qualifying remarks.

The two right eigenvectors (e, ez) and two left eigenvectors (€1, €3) are, respec-
tively,

wf) o=(3) o) = oo

EXERCISE 1.2.24. Verify these claims. (The right eigenvectors were treated in
§1.2.1.3)

EXERCISE 1.2.25. Recall from Exercise 1.2.20 that P, is irreducible if and only
if both @ and § are strictly positive. Show that all the claims about irreducible

6 See also Glynn and Desai (2018), which provides a new proof of the main results, based on probabilistic
arguments, including extensions to infinite state spaces.
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matrices in the Perron—-Frobenius theorem are valid for P, under this irreducibility
condition.

EXERCISE 1.2.26. Recall from Exercise 1.2.20 that P, is primitive if and only if
0 < a,B <1 and min{a, B} < 1. Verify the claim (1.11) for P,, under these conditions.
In doing so, you can use the expression for P} in (1.3).

1.2.34  Bounding the Spectral Radius
Using the Perron—Frobenius theorem, we can provide useful bounds on the spectral
radius of a nonnegative matrix. In what follows, fix A = (a;;) € M and set

o rowsum;(A) := Zj a;jj = the i-th row sum of A and
« colsum;(A) := ), a;; = the j-th column sum of A.

LEMMA 1.2.7 IfA > 0, then

(i) min; rowsum;(A) < r(A) < max; rowsum;(A) and

(i) min; colsum;(A) < 7(A) < max; colsum;(A).

Proof Let A be as stated and let e be the right eigenvector in (1.10). Since
e is nonnegative and nonzero, we can and do assume that Y _ jej = 1. From
Ae = r(A)e, we have Zj ajjej = r(A)e; for all i. Summing with respect to i
gives Y j colsum;(A)e; = r(A). Since the elements of e are nonnegative and sum to
one, r(A) is a weighted average of the column sums. Hence the second pair of bounds
in Lemma 1.2.7 holds. The remaining proof is similar (use the left eigenvector). [

1.3 Probability

Next we review some elements of probability that will be required for analysis of
networks.

1.3.1 Discrete Probability

We first introduce probability models on finite sets and then consider sampling meth-
ods and stochastic matrices.

1.3.1.1  Probability on Finite Sets
Throughout this text, if S is a finite set, then we set

PS) = peRy: Y pkx)= 1}

xeS
and call Z(S) the set of distributions on S. We say that a random variable X taking
values in $ has distribution ¢ € 2(S) and write X 4 @ if

P{X =x} =¢(x) forallx € S.
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0,0, 1)

N

(1,0, 0) g
(0, 1, 0)

Figure 1.4 If S = {1,2,3}, then 2(S) is the unit simplex in R3

A distribution ¢ can also be understood as a vector (¢(x;));_; € R" (see Lemma
A.1.2 in §A.1.3). As a result, D(S) can be viewed as a subset of R”. Figure 1.4
provides a visualization when § = {1,2,3}. Each ¢ € 2(S) is identified by the point
(@1, 9(2),9(3)) in R.

More generally, if |S| = n, then 2(S) can be identified with the unit simplex in
R", which is the set of all n-vectors that are nonnegative and sum to one.

Throughout, given x € S, we use the symbol O, to represent the element of 2(S)
that puts all mass on x. In other words, 0, (y) = 1{y = x} forall y € S. In Figure 1.4,
each Oy is a vertex of the unit simplex.

We frequently make use of the law of total probability, which states that, for a
random variable X on S and arbitrary A C S,

P{X € A} =) P{X € A|X € Bj)P{X € B}, (1.12)

where {B;} is a partition of S (i.e., finite collection of disjoint subsets of S such that
their union equals S).

EXERCISE 1.3.1. Prove (1.12) assuming IP{X € B;} > O for all ;.
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1.3.1.2  Inverse Transform Sampling
Let S be a finite set. Suppose we have the ability to generate random variables that are
uniformly distributed on (0, 1]. We now want to generate random draws from S that
are distributed according to arbitrary @ € 2(S).

Let W be uniformly distributed on (0, 1], so that, for any a < b € (0, 1], we have
P{a < W < b} = b — a, which is the length of the interval (a,b].” Our problem will
be solved if we can create a function z > x(z) from (0, 1] to S such that k(W) has
distribution ¢. One technique is as follows. First we divide the unit interval (0, 1] into
disjoint subintervals, one for each x € S. The interval corresponding to x is denoted
I(x) and is chosen to have length ¢(x). More specifically, when S = {x1,...,xn},
we take

1(x;) == (gi—1, qil, where ¢q; = @(x1)+---+ @(x;) and qo:=0.

You can easily confirm that the length of 7(x;) is ¢(x;) for all i.
Now consider the function z — x(z) defined by
K@) =Y xl{zelx)}  (z€(.1]) (1.13)
xeS
where 1{z € I(x)} is one when z € I(x) and zero otherwise. It turns out that k(W)
has the distribution we desire.
EXERCISE 1.3.2. Prove:

(i) Forall x € S, we have x(z) = x if and only if z € I(x).
(ii) The random variable k(W) has distribution ¢.

EXERCISE 1.3.3. Let @, «, and W be as defined above. Prove that E1{x(W) = j} =
@(j) holds forall j € [n].

EXERCISE 1.3.4. Using Julia or another language of your choice, implement the
inverse transform sampling procedure described above when § = {1,2,3} and ¢ =
(0.2,0.1,0.7). Generate 1,000,000 (quasi)independent draws (X;) from ¢, and con-
firm that (1/n) > "7, 1{X; = j} = @(j) for j € {1,2,3)}.

The last exercise tells us that the law of large numbers holds in this setting, since,
under this law, we expect that

] n
=Y 1Xi = j} > E1{X; = j}
i=1

with probability one as n — oo. In view of Exercise 1.3.3, the right-hand side equals

().

7 The probability is the same no matter whether inequalities are weak or strict.
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EXERCISE 1.3.5. Suppose that, on a computer, you can generate only uniform ran-
dom variables on (0, 1], and you wish to simulate a flip of a biased coin with heads
probability 6 € (0, 1). Propose a method.

EXERCISE 1.3.6. Suppose that, on a computer, you are able to sample from distri-
butions ¢ and 1 defined on some set S. The set S can be discrete or continuous and,
in the latter case, the distributions are understood as densities. Propose a method to
sample on a computer from the convex combination f(s) = 6@(s) + (1 — 8)YP(s),
where 6 € (0, 1).

1.3.1.3  Stochastic Matrices
A matrix P = (p;;) € M™"*" is called a stochastic matrix if

P>0 and P1 =1, where 1 € R" is a column vector of ones.

In other words, P is nonnegative and has unit row sums.

We will see many applications of stochastic matrices in this text. Often the appli-
cations are probabilistic, where each row of P is interpreted as a distribution over a
finite set.

EXERCISE 1.3.7. Let P, Q be n x n stochastic matrices. Prove the following facts.

(i) P Q is also stochastic.
(ii) r(P)=1.
(iii) There exists a row vector 1p € R, such that )1 = 1 and ¢ P = ¢.

The vector 1P in part (iii) of Exercise 1.3.7 is called the PageRank vector by some
authors, due to its prominence in Google’s PageRank algorithm. We will call it a
stationary distribution instead.® Stationary distributions play a key role in the theory
of Markov chains, to be treated in §4.1. Ranking methods are discussed again in
§1.4.3. PageRank is treated in more detail in §4.2.3.3.

1.3.2 Power Laws

Next we discuss distributions on the (nondiscrete) sets R and R. We are particu-
larly interested in a certain class of distributions that are apparently nonstandard and
yet appear with surprising regularity in economics, social science, and the study of
networks. We refer to distributions that are said to obey a “power law.”

In what follows, given a real-valued random variable X, the function

F(t):=P{X <1} (teR)
8 Stationary distributions of stochastic matrices were intensively studied by many mathematicians well

over a century before Larry Page and Sergey Brin patented the PageRank algorithm, so it seems unfair
to allow them to appropriate the name.
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is called the cumulative distribution function (cpr) of X. The counter cDF (CCDF)
of X is the function G(t) :=P{X >t} =1 — F(¢).

A useful property that holds for any nonnegative random variable X and p € R4
is the identity

o0
E X7 :/ ptP7IP{X > 1) dr. (1.14)
0

See, for example, Cinlar (2011), p. 63.

1.3.2.1  Heavy Tails
Recall that a random variable X on R is said to be normally distributed with mean

u and variance o2, and we write X < N(u, 02), if X has density

_ 1 —(—w?
Q) == o2 exp( 752 > (t € R).

One notable feature of the normal density is that the tails of the density approach
zero quickly. For example, ¢(f) goes to zero like exp(—tz) as t — 0o, which is

extremely fast.
A random variable X on R is called exponentially distributed and we write
x4 Exp(A) if, for some A > 0, X has density

pt)=Ae M (1 >0).

The tails of the exponential density go to zero like exp(—t) as t — oo, which is also
relatively fast.

When a distribution is relatively light-tailed, in the sense that its tails go to zero
quickly, draws rarely deviate more than a few standard deviations from the mean.
In the case of a normal random variable, the probability of observing a draw more
than three standard deviations above the mean is around 0.0014. For six standard
deviations, the probability falls to 101,

In contrast, for some distributions, “extreme” outcomes occur relatively frequently.
The left panel of Figure 1.5 helps to illustrate this by simulating 1,000 independent
draws from Student’s t-distribution, with 1.5 degrees of freedom. For comparison,
the right subfigure shows an equal number of independent draws from the N(0,4)
distribution. The Student’s t draws reveal tight clustering around zero combined with
a few large deviations.

Formally, a random variable X on R is called light-tailed if its moment generating
function

m@) :=Ee*X (>0 (1.15)

is finite for at least one r > 0. Otherwise X is called heavy-tailed.’

9 Terminology on heavy tails varies across the literature, but our choice is increasingly standard. See, for
example, Foss et al. (2011) or Nair et al. (2021).

https://doi.org/10.1017/9781009456340.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009456340.003

20 Introduction

Student t draws NO 2)with =2
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Figure 1.5 Independent draws from Student’s t- and normal distributions

Example 1.3.1: If X 4N (U, 02), the moment generating function of X is known to

be
202

m(t) = exp (yt + T) (t>0).

Hence X is light-tailed.

Example 1.3.2: A random variable X on (0, c0) is said to have lognormal density
and we write X 4 LN(u, o) ifIn X 4 N(u, 02). The mean and variance of this
distribution are, respectively,

EX =exp(u +02/2) and Var X = (exp(c?) — 1) exp + 02).

The moment generating function m(#) is known to be infinite for all # > 0, so any
lognormally distributed random variable is heavy-tailed.

For any random variable X and any r > 0, the (possibly infinite) expectation E| X |"
called the r-th moment of X.

LEMMA 1.3.1 Let X be a random variable on R. If X is light-tailed, then all of its

moments are finite.

Proof Pick any r > 0. We will show that EX” < oo. Since X is light-tailed, there
exists a t > 0 such that m(t) = Eexp(rX) < oo. For a sufficiently large constant x
we have exp(zx) > x" whenever x > X. As a consequence, with F as the distribution
of X, we have

X o0
EX" = / x" F(dx) +/ x"F(dx) < X" +m() < co. O
0 x

EXERCISE 1.3.8. Prove that the lognormal distribution has finite moments of every
order.
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Together with Lemma 1.3.1, Exercise 1.3.8 shows that existence of an infinite
moment is a sufficient but not necessary condition for heavy tails.

1.3.2.2  Pareto Tails
Given a > 0, a nonnegative random variable X is said to have a Pareto tail with tail
index « if there exists a ¢ > 0 such that

lim t*P{X >t} =c. (1.16)
t—00
In other words, the ccDr G of X satisfies
G(t) ~ ct™“ for large t. (1.17)

If X has a Pareto tail for some « > 0, then X is also said to obey a power law.

Example 1.3.3: A random variable X on R is said to have a Pareto distribution
with parameters x, @ > 0 if its CCDF obeys

ift <x

<
G(t) = .
x/nH* ifr>x

(1.18)

It should be clear that such an X has a Pareto tail with tail index «.

Regarding Example 1.3.3, note that the converse is not true: Pareto-tailed random
variables are not necessarily Pareto-distributed, since the Pareto tail property only
restricts the far right-hand tail.

EXERCISE 1.3.9. Show that, if X has a Pareto tail with tail index «, then E[X"] = oo
for all » > «. [Hint: Use (1.14).]

From Exercise 1.3.9 and Lemma 1.3.1, we see that every Pareto-tailed random
variable is heavy-tailed. The converse is not true, since the Pareto tail property (1.16)
is very specific. Despite this, it turns out that many heavy-tailed distributions encoun-
tered in the study of networks are, in fact, Pareto-tailed.

EXERCISE 1.3.10. Prove: If X 4 Exp(A) for some A > 0, then X does not obey a
power law.

1.3.2.3  Empirical Power Law Plots
When the Pareto tail property holds, the ccDF satisfies In G(t) ~ Inc — a In ¢ for large
t. In other words, G is eventually log linear. Figure 1.6 illustrates this using a Pareto
distribution. For comparison, the cCDF of an exponential distribution is also shown.
If we replace the ccpF G with its empirical counterpart — which returns, for each
x, the fraction of the sample with values greater than x — we should also obtain an
approximation to a straight line under the Pareto tail assumption.
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In G(x)
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Figure 1.6 CCDF plots for the Pareto and exponential distributions

firm size (market value)

slope = —1.32

10 11 12 13 14
log value

Figure 1.7 Empirical ccDF plots for largest firms (Forbes)

For example, consider the cross-sectional distribution of firm sizes. While the pre-
cise nature of this distribution depends on the measure of firm size, the sample of firms,
and other factors, the typical picture is one of extreme heavy tails. As an illustration,
Figure 1.7 shows an empirical ccDF log—log plot for market values of the largest
500 firms in the Forbes Global 2000 list, as of March 2021. The slope estimate and
data distribution are consistent with a Pareto tail and infinite population variance.
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Discrete Power Laws

Let X be a random variable with the Pareto distribution, as described in Example 1.3.3.
The density of this random variable on the set [x,00) is p(t) = ¢t~ with ¢ := ax®
and y := a + 1. The next exercise extends this idea.

EXERCISE 1.3.11. Let X be a random variable with density p on R4. Suppose that,
for some constants ¢ > 0, ¥ > 1, and x € R4, we have

p(t)=ct™” whenever > X. (1.19)
Prove that X is Pareto-tailed with tail index a 1=y — 1.
The discrete analog of (1.19) is a distribution on the positive integers with
fk) =ck™V (1.20)

for large k. In the special case where this equality holds for all kK € N, and ¢ is chosen
so that 3", .y f(k) = 1, we obtain the zeta distribution.!

In general, when we see a probability mass function with the specification (1.20)
for large k, we can identify this with a Pareto tail, with tail index & = y — 1. Figure
1.8 illustrates with y = 2.

27 —@— zeta distribution with v = 2
density of Pareto with tail index «

1 -

\

-
e T o

04 - ———9— —

2 4 6 8 10

Figure 1.8 Zeta and Pareto distributions

10 Obviously the correct value of ¢ depends on 7y, so we can write ¢ = H()’) for some suitable function
H. The correct function for this normalization is called the Riemann zeta function.
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1.4 Graph Theory

Graph theory is a major branch of discrete mathematics. It plays an essential role in
this text because it forms the foundations of network analysis. This section provides a
concise introduction to graph theory suitable for our purposes.'!

Graph theory has another closely related use: Many economic models are stochastic
and dynamic, which means that they specify states of the world and rates of transition
between them. One of the most natural ways to conceptualize these notions is to view
states as vertices in a graph and transition rates as relationships between them.

We begin with definitions and fundamental concepts. We focus on directed graphs,
where there is a natural asymmetry in relationships (bank A lends money to bank
B, firm A supplies goods to firm B, etc.). This costs no generality, since undirected
graphs (where relationships are symmetric two-way connections) can be recovered by
insisting on symmetry (i.e., existence of a connection from A to B implies existence
of a connection from B to A).

1.4.1 Unweighted Directed Graphs

We begin with unweighted directed graphs and examine standard properties, such as
connectedness and aperiodicity.

1.4.1.1  Definition and Examples
A directed graph or digraph is a pair & = (V, E), where

« V is afinite nonempty set and
« FE is a collection of ordered pairs (u#,v) € V x V called edges.

Elements of V are called the vertices or nodes of €. Intuitively and visually, an edge
(u,v) is understood as an arrow from vertex u to vertex v.

Two graphs are given in Figures 1.9 and 1.10. Each graph has three vertices. In
these cases, the arrows (edges) could be thought of as representing positive possibility
of transition over a given unit of time.

middle class
it

Figure 1.9 A digraph of classes

11 Graph theory is often regarded as originating from work by the brilliant Swiss mathematician Leonhard
Euler (1707-1783), including his famous paper on the “Seven Bridges of Konigsberg.”
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middle class .@

Figure 1.10 An alternative edge list

For a given edge (u,v), the vertex u is called the tail of the edge, while v is called
the head. Also, u is called a direct predecessor of v, and v is called a direct
successor of u. For v € V, we use the following notation:

o Av) := the set of all direct predecessors of v
o O(v) := the set of all direct successors of v

Also, the in-degree and out-degree of v € V are defined by

o theiy(v) := | Av)| and
o the 04(v) := |O(V)|, respectively.

If i;(v) = 0 and o4(v) > O, then v is called a source. If either O(v) = @ or
O(v) = {v}, then v is called a sink. For example, in Figure 1.10, “poor” is a sink
with an in-degree of 3.

1.4.1.2  Digraphs in NetworkX
Both Python and Julia provide valuable interfaces to numerical computing with
graphs. Of these libraries, the Python package NetworkX is probably the most mature
and fully developed. It provides a convenient data structure for representing digraphs
and implements many common routines for analyzing them. To import it into Python
we run

import networkx as nx

In all of the code snippets shown below, we assume readers have executed this
import statement, as well as

import numpy as np
import matplotlib.pyplot as plt

As an example, let us create the digraph in Figure 1.10, which we denote henceforth
by &,. To do so, we first create an empty DiGraph object:

G_p = nx.DiGraph ()

Next we populate it with nodes and edges. To do this we write down a list of all
edges, with poor represented by p and so on:
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Finally, we add the edges to our DiGraph object:

for e in edge_list:
u, v = e

G_p.add_edge (u, v)

Adding the edges automatically adds the nodes, so G_p is now a correct repre-
sentation of &,. For our small digraph we can verify this by plotting the graph via
NetworkX with the following code:
fig, ax = plt.subplots()
nx.draw_spring (G_p, ax=ax, node_size=500, with_labels=True,

font_weight='bold’, arrows=True, alpha=0.8,

connectionstyle="arc3, rad=0.25", arrowsize=20)
plt.show ()

This code produces Figure 1.11, which matches the original digraph in Figure 1.10.
DiGraph objects have methods that calculate the in-degrees and out-degrees of
vertices. For example,

G_p.in_degree ('p’)

prints 3.

Figure 1.11 NetworkX digraph plot
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14.1.3 Communication
Next we study communication and connectedness, which have important implications
for production, financial, transportation, and other networks, as well as for dynamic
properties of Markov chains.

A directed walk from vertex u to vertex v of a digraph & is a finite sequence
of vertices, starting with u and ending with v, such that any consecutive pair in the
sequence is an edge of . A directed path from u to v is a directed walk from u to v
such that all vertices in the path are distinct. For example, in Figure 1.12, (3,2,3,2,1)
is a directed walk from 3 to 1 but not a directed path, while (3,2, 1) is both a directed
path and a directed walk from 3 to 1.

As is standard, the length of a directed walk (or path) counts the number of edges
rather than vertices. For example, the directed path (3,2, 1) from 3 to 1 in Figure 1.12
is said to have length 2.

Vertex v is called accessible (or reachable) from vertex u, and we write u — v,
if either u = v or there exists a directed path from u to v. A set U C V is called
absorbing for the directed graph (V, E) if no element of V \ U is accessible from U'.

Example 1.4.1: Let £ = (V, E) be a digraph representing a production network,
where elements of V are sectors, and (i, j) € E means that i supplies products or
services to j. Then sector m is an upstream supplier of sector £ whenever m — .

Example 1.4.2: The vertex {poor} in the Markov digraph displayed in Figure 1.10 is
absorbing, since {middle, rich} is not accessible from {poor}.

Two vertices u and v are said to communicate if u — vand v — u.
EXERCISE 1.4.1. Let (V, E) be a directed graph, and write u ~ v if u and v commu-
nicate. Show that ~ is an equivalence relation (see §A.1.2).

Since communication is an equivalence relation, it induces a partition of V into
a finite collection of equivalence classes. Within each of these classes, all elements
communicate. These classes are called strongly connected components. The graph
itself is called strongly connected if there is only one such component; that is, v is
accessible from u for any pair (u,v) € V x V. This corresponds to the idea that any
node can be reached from any other.

Figure 1.12 Strongly connected components of a digraph (rectangles)
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Example 1.4.3: Figure 1.12 shows a digraph with strongly connected components {1}
and {2, 3}. The digraph is not strongly connected.

Example 1.4.4: In Figure 1.9, the digraph is strongly connected. In contrast, in Figure
1.10, rich is not accessible from poor, so the graph is not strongly connected.

NetworkX can be used to test for communication and strong connectedness, as well
as to compute strongly connected components. For example, applied to the digraph in
Figure 1.12, the code

G = nx.DiGraph()
G.add_edge (1, 1)
G.add_edge (2, 1)
G.add_edge (2, 3)
G.add_edge (3, 2)

4

list (nx.strongly_connected_components (G))

prints [{1}, {2, 3}1.

1.4.14  Aperiodicity
A cycle (u,v,w, ...,u) of adirected graph & = (V, E) is a directed walk in & such that
(1) the first and last vertices are equal and (ii) no other vertex is repeated. The graph is
called a directed acyclic graph if it contains no cycles. The graph is called periodic
if it contains at least one cycle and, moreover, there exists a k > 1 such that the length
of every cycle is a multiple of k. The graph is called aperiodic if it is not periodic.

Example 1.4.5: In Figure 1.13, the cycles are (a, b, a), (b,a,b), (b,c,b), (c,b,c),
(c,d,c) and (d, c,d). Hence the length of every cycle is 2 and the graph is periodic.

EXERCISE 1.4.2. Prove the following: If & is a directed acyclic graph, then, for any
node u in &, there exists a node v such that u — v and o4(v) = 0.

An obvious sufficient condition for aperiodicity is existence of even one self-loop.
The digraphs in Figures 1.9-1.12 are aperiodic for this reason.

The next result provides an easy way to understand aperiodicity for connected
graphs. Proofs can be found in Norris (1998) and Héaggstrom et al. (2002).

Figure 1.13 A periodic digraph
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LEMMA 1.4.1 Let & = (V,E) be a digraph. If & is strongly connected, then & is
aperiodic if and only if, for all v € V, there exists a ¢ € N such that, for all k > q,
there exists a directed walk of length k from v to v.

It is common to call a vertex v satisfying the condition in Lemma 1.4.1 aperiodic.
With this terminology, Lemma 1.4.1 states that a strongly connected digraph is aperi-
odic if and only if every vertex is aperiodic.

NetworkX can be used to check for aperiodicity of vertices or graphs. For example,
if G is a DiGraph object, then nx.is_aperiodic (G) returns True or False
depending on the aperiodicity of G.

14.1.5 Adjacency Matrices
There is a simple map between edges of a graph with fixed vertices and a binary matrix
called an adjacency matrix. The benefit of viewing connections through adjacency
matrices is that they bring the power of linear algebra to the analysis of digraphs. We
illustrate this briefly here and extensively in §1.4.2.
If €= (V,E)isadigraph with V = {v1, ...,v,}, then the n x n adjacency matrix
corresponding to (V, E) is defined by'?

A= (aij)lgi,jgn with a,'j = ]1{(vi,vj) € E} (121)

For example, with {poor, middle, rich} mapped to (1,2,3), the adjacency matrix cor-
responding to the digraph in Figure 1.10 is

100
A=|1 11 (1.22)
111

An adjacency matrix provides us with enough information to recover the edges of
a graph. More generally, given a set of vertices V = {vi,...,v,;}, an n X n matrix
A = (aij)1<i, j<n With binary entries generates a digraph & with vertices V and edges

E={(vi,vj)) eV xV:aj=1}.

The adjacency matrix of this graph (V, E) is A.

EXERCISE 1.4.3. A digraph (V, E) is called undirected if (u,v) € E implies (v,u) €
E. What property does this imply on the adjacency matrix?

REMARK 1.4.1 The idea that a digraph can be undirected, presented in Exercise
1.4.3, seems contradictory. After all, a digraph is a directed graph. Another way to
introduce undirected graphs is to define them as a vertex-edge pair (V,E), where
each edge {u,v} € E is an unordered pair, rather than an ordered pair (u,v). However,

12 Note that, in some applied fields, the adjacency matrix is transposed: a;; = 1 if there is an edge from j
to i, rather than from i to j. We will avoid this odd and confusing definition (which contradicts both
standard graph theory and standard notational conventions in the study of Markov chains).
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the definition in Exercise 1.4.3 is essentially equivalent and more convenient for our
purposes, since we mainly study directed graphs.

Like NetworkX, the Python library quantecon provides a graph object that sup-
plies certain graph-theoretic algorithms. In the case of QuantEcon’s DiGraph object,
algorithms are implemented by interfacing with routines in SciPy, and an instance
is created by supplying an adjacency matrix. For example, to construct a digraph
corresponding to Figure 1.10, we use the corresponding adjacency matrix (1.22):

import quantecon as qge
import numpy as np

A= ((1, 0, 0),
(L, 1, 1,),

(1, 1, 1))

)

4
)
A = np.array (A # Convert to NumPy array

G = ge.DiGraph (A7)
Let’s print the set of strongly connected components, as a list of NumPy arrays:
G.strongly_connected_components

The outputis [array ([0]), array([l, 21)].

1.4.2 Weighted Digraphs

Early quantitative work on networks tended to focus on unweighted digraphs, where
the existence or absence of an edge is treated as sufficient information (e.g., following
or not following on social media, existence or absence of a road connecting two
towns). However, for some networks, this binary measure is less significant than the
size or strength of the connection.

As one illustration, consider Figure 1.14, which shows flows of funds (i.e., loans)
between private banks, grouped by country of origin. An arrow from Japan to the
USA, say, indicates aggregate claims held by Japanese banks on all US-registered
banks, as collected by the Bank of International Settlements (BIS). The size of each
node in the figure is increasing in the total foreign claims of all other nodes on this
node. The widths of the arrows are proportional to the foreign claims they represent.!3
The country codes are given in Table 1.1.

In this network, an edge (u,v) exists for almost every choice of u and v (i.e.,
almost every country in the network).!# Hence existence of an edge is not particularly
informative. To understand the network, we need to record not just the existence or

13 Data for the figure was obtained from the BIS consolidated banking statistics, for Q4 of 2022. Our
calculations used the immediate counterparty basis for financial claims of domestic and foreign banks,
which calculates the sum of cross-border claims and local claims of foreign affiliates in both foreign
and local currencies. The foreign claim of a node to itself is set to zero.

14 I fact arrows representing foreign claims less than US$10 million are cut from Figure 1.14, so the
network is even denser than it appears.
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Table 1.1 Codes for the 16-country financial network

AU  Australia DE Germany CL Chile ES Spain

PT Portugal FR  France TR Turkey GB  United Kingdom
US  United States  IE Ireland AT Austria IT Italy

BE  Belgium Jp Japan SW  Switzerland  SE Sweden

Figure 1.14 International private credit flows by country
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absence of a credit flow, but also the size of the flow. The correct data structure for
recording this information is a “weighted directed graph,” or “weighted digraph.” In
this section we define this object and investigate its properties.

14.2.1 Definitions
A weighted digraph @ is a triple (V, E,w) such that (V, E) is a digraph and w is a
function from E to (0, 00), called the weight function.

REMARK 1.4.2  Weights are traditionally regarded as nonnegative. In this text we
insist that weights are also positive, in the sense that w(u,v) > 0 for all (u,v) € E.
The reason is that the intuitive notion of zero weight is understood, here and below, as
absence of a connection. In other words, if (u,v) has “zero weight,” then (u,v) is not
in E, sow is not defined on (u,v).

Example 1.4.6: As suggested by the discussion above, the graph shown in Figure
1.14 can be viewed as a weighted digraph. Vertices are countries of origin, and an
edge exists between country u and country v when private banks in # lend nonzero
quantities to banks in v. The weight assigned to edge (u,v) gives total loans from u to
v as measured according to the discussion of Figure 1.14.

Example 1.4.7: Figure 1.15 shows a weighted digraph, with arrows representing
edges of the induced digraph (compare with the unweighted digraph in Figure 1.9).
The numbers next to the edges are the weights. In this case, you can think of the
numbers on the arrows as transition probabilities for a household over, say, one year.
For example, a rich household has a 10% chance of becoming poor.

The definitions of accessibility, communication, periodicity, and connectedness
extend to any weighted digraph & = (V,E,w) by applying them to (V, E). For
example, (V, E,w) is called strongly connected if (V, E) is strongly connected. The
weighted digraph in Figure 1.15 is strongly connected.

04

middle class

Figure 1.15 A weighted digraph
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1.4.2.2  Adjacency Matrices of Weighted Digraphs
In §1.4.1.5 we discussed adjacency matrices of unweighted digraphs. The adjacency
matrix of a weighted digraph (V, E,w) with vertices {v1, ...,v,} is the matrix

. w(vi,v;) if(v,vj) € E
A= (aij)lgi,jgn with ajj = K
0 otherwise.

Clearly, once the vertices in V are enumerated, the weight function and adjacency
matrix provide the same information. We often work with the latter, since it facilitates
computations.

Example 1.4.8: With {poor, middle, rich} mapped to (1,2, 3), the adjacency matrix
corresponding to the weighted digraph in Figure 1.15 is

09 0.1 0
A=]04 04 02]. (1.23)
0.1 0.1 08

In QuantEcon’s DiGraph implementation, weights are recorded via the keyword

weighted:

A= ((0.9, 0.1, .0),
(0.4, 0.4, 2),
(0.1, 0.1, ))

A = np.array (A)

0}
Il

ge.DiGraph (A, weighted=True) # Store weights

REMARK 1.4.3  Every unweighted digraph can be regarded as a weighted digraph
by introducing a weight function that assigns unit weight to each edge. The resulting
adjacency matrix is binary and agrees with our original definition for unweighted
digraphs in (1.21). In this sense, the set of unweighted digraphs is a subset of the set
of all weighted digraphs.

One of the key points to remember about adjacency matrices is that taking the
transpose “reverses all the arrows” in the associated digraph.

Example 1.4.9: The digraph in Figure 1.16 can be interpreted as a stylized version of
a financial network, with vertices as banks and edges showing flow of funds, similar
to Figure 1.14 on page 31. For example, we see that bank 2 extends a loan of size 200
to bank 3. The corresponding adjacency matrix is

https://doi.org/10.1017/9781009456340.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781009456340.003

34 Introduction

Figure 1.16 A network of credit flows across institutions

0 100 O 0 0

50 0 200 0 O
A=10 0 0 100 O |. (1.24)

0 500 O 0 50

150 0 250 300 O

The transposition is

0 50 O 0 150

0 200 O 0 250]. (1.25)
0 0 100 O 300
0 0 0 50 O

The corresponding network is visualized in Figure 1.17. This figure shows the
network of liabilities after the loans have been granted. Both of these networks
(original and transpose) are useful for the analysis of financial markets (see, e.g.,
Chapter 5).

It is not difficult to see that each nonnegative n x n matrix A = (a;;) can be viewed
as the adjacency matrix of a weighted digraph with vertices equal to [n]. The weighted
digraph € = (V, E,w) in question is formed by setting

V=[nl, E={{jeVxV:a;>0} and w(,j)=a;foral(,j) €E.

We call & the weighted digraph induced by A.
The next exercise helps to reinforce the point that transposes reverse the edges.

EXERCISE 1.4.4. Let A = (a;;) be a nonnegative n X n matrix, and let & = ([n], E,w)
and &€ = ([n], E’,w’) be the weighted digraphs induced by A and AT, respectively.
Show that
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Figure 1.17 The transpose: a network of liabilities

(1) (j,k) € E"if and only if (k, j) € E.
(i) j - kin & ifand only if k — jin &.

1.4.2.3  Application: Quadratic Network Games
Acemoglu et al. (2016) and Zenou (2016) consider quadratic games with n agents
where agent k seeks to maximize

up(x) := —%x,f +axAx + Xk Ek. (1.26)
Here x = (xi)l’.’zl, A is a symmetric matrix with a;; = O for all i, a € (0,1) is a
parameter, and ¢ = (e,-),’f: | is a random vector. (This is the set up for the quadratic
game in §21.2.1 of Acemoglu et al. (2016).) The k-th agent takes the decisions x; as
given for all j # k when maximizing (1.26).
In this context, A is understood as the adjacency matrix of a graph with vertices
V = [n], where each vertex is one agent. We can reconstruct the weighted digraph
(V,E,w) by setting w(i, j) = a;; and letting E be all (7, j) pairs in [n] x [n] with
a;j > 0. The weights identify some form of relationship between the agents, such as
influence or friendship.

EXERCISE 1.4.5. A Nash equilibrium for the quadratic network game is a vector
x* € R" such that, for all i € [n], the choice xl.* of agent i maximizes (1.26) taking xf;
as given for all j # i. Show that, whenever r(A) < 1/, a unique Nash equilibrium
x™* exists in R” and, moreover, x* := (I — ozA)_ls.

The network game described in this section has many interesting applications,
including social networks, crime networks and peer networks. References are provided
in §1.5.
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1.4.24  Properties
In this section, we examine some of the fundamental properties of and relationships
among digraphs, weight functions, and adjacency matrices. Throughout this section,
without loss of generality, we consider a weighted digraph with V' = [n].
As an additional convention, if A is an adjacency matrix, and A is the k-th power
of A, then we write al{‘. for a typical element of Ak 'With this notation, we observe
that, since At = ASA’, the rules of matrix multiplication imply

n
ait' =Y ayay;  (,jelnl, steN). (1.27)
=1

(A is the identity.) The next proposition explains the significance of the powers.

PROPOSITION 1.4.2 Let @ be a weighted digraph with adjacency matrix A. For
distinct vertices i, j € [n] and k € N, we have

al{‘j >0 <= there exists a directed walk of length k fromi to j.

Proof (<) The statement is true by definition when k = 1. Suppose in addition that

< holds at kK — 1, and suppose there exists a directed walk (i, £,m, ...,n, j) of length
k—1
in

of a directed walk, so a,; > 0. Applying (1.27) now gives af‘j > 0.

k from i to j. By the induction hypothesis we have a > (. Moreover, (n, j) is part

(=) Left as an exercise (just use the same logic). O

Example 1.4.10: In §4.1 we show that if elements of A represent one-step transition
probabilities across states, then elements of A’, the ¢-th power of A, provide ¢-step
transition probabilities. In Markov process theory, (1.27) is called the
Chapman—Kolmogorov equation.

In this context, the next result is fundamental.

THEOREM 1.4.3  Let & be a weighted digraph. The following statements are equiva-
lent:

(i) & is strongly connected.
(ii) The adjacency matrix generated by € is irreducible.

Proof Let & be a weighted digraph with adjacency matrix A. By Proposition 1.4.2,
strong connectedness of & is equivalent to the statement that, for each i, j € V, we can
find a k > 0 such that afl. > 0. (If i = j then set k = 0.) This, in turn, is equivalent to
Yoo A™ > 0, which is irreducibility of A. O

Example 1.4.11: Strong connectivity fails in the digraph in Figure 1.18, since vertex
4 is a source. By Theorem 1.4.3, the adjacency matrix must be reducible.
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ar

Figure 1.18 Failure of strong connectivity

We will find that the property of being primitive is valuable for analysis. (The
Perron—Frobenius theorem hints at this.) What do we need to add to strong connect-
edness to obtain primitiveness?

THEOREM 1.4.4  For a weighted digraph & = (V, E,w), the following statements are
equivalent:

(i) G is strongly connected and aperiodic.
(ii) The adjacency matrix generated by € is primitive.

Proof of Theorem 1.4.4  First we show that, if € is aperiodic and strongly connected,
then, for all i, j € V, there exists a g € N such that afj > 0 whenever k > ¢. To this
end, pick any 7, j in V. Since & is strongly connected, there exists an s € N such that
af ;> 0. Since Zis aperiodic, we can find an m € IN such that £ > m implies a ;> 0.
Picking £ > m and applying (1.27), we have

5+E § : a’
a”, rj / lj ]] > 0.

reVv

Thus, with t = s + m, we have a s 0 whenever k >

((i) = (i1)). By the preceding argument, given any i, j € V, there exists an s(i, j) €
N such that a;;? > 0 whenever m > s(i, j). Setting k := maxs(i, j) over all (i, j)
yields AF > 0.

((ii) = (1)). Suppose that A is primitive. Then, for some k € IN, we have Ak >
0. Strong connectedness of the digraph follows directly from Proposition 1.4.2. It

remains to check aperiodicity.
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Aperiodicity will hold if we can establish that a’ff’l > 0, since then we have a cycle

of length k and another of length k + 1. To show that this holds, we use (1.27) to write
alffrl = Zaleafl Za Zaie,
eV LeVv

where a := mingcy aéfl > 0. The proof will be done if Zeev aye > 0. But this must be
true, since otherwise vertex 1 is a sink, which contradicts strong connectedness. [

Example 1.4.12: In Exercise 1.2.20 we worked hard to show that P,, is irreducible if
and only if 0 < a, 8 < 1, using the approach of calculating and then examining the
powers of P,, (as shown in (1.3)). However, the result is trivial when we examine the
corresponding digraph in Figure 1.3 and use the fact that irreducibility is equivalent
to strong connectivity. Similarly, the result in Exercise 1.2.20 that P, is primitive if
and only if 0 < a, 8 < 1 and min{a, B} < 1 becomes much easier to establish if we
examine the digraph and use Theorem 1.4.4.

1.4.3 Network Centrality

When studying networks of all varieties, a recurring topic is the relative “centrality” or
“importance” of different nodes. One classic application is the ranking of web pages
by search engines. Here are some examples related to economics:

« In which industry will one dollar of additional demand have the most impact on
aggregate production, once we take into account all the backward linkages? In
which sector will a rise in productivity have the largest effect on national output?

« A negative shock endangers the solvency of the entire banking sector. Which
institutions should the government rescue, if any?

« In the network games considered in §1.4.2.3, the Nash equilibrium is
x* = (I — aA)~'e. Players’ actions are dependent on the topology of the
network, as encoded in A. A common finding is that the level of activity or effort
exerted by an agent (e.g., severity of criminal activity by a participant in a criminal
network) can be predicted from their “centrality” within the network.

In this section we review essential concepts related to network centrality. !

1.4.3.1  Centrality Measures
Let G be the set of weighted digraphs. A centrality measure associates to each & =
(V,E,w) in G a vector m(%) € R!V!, where the i-th element of m(%) is interpreted
as the centrality (or rank) of vertex v;. In most cases m(&) is nonnegative. In what
follows, to simplify notation, we take V = [n].

15 Centrality measures are sometimes called “influence measures,” particularly in connection with social
networks.
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O

Figure 1.19 Hub vs. authority

(Unfortunately, the definitions and terminology associated with even the most com-
mon centrality measures vary widely across the applied literature. Our convention is
to follow the mathematicians, rather than the physicists. For example, our terminology
is consistent with Benzi and Klymko (2015).)

1.4.3.2  Authorities vs. Hubs
Search engine designers recognize that web pages can be important in two differ-
ent ways. Some pages have high hub centrality, meaning that they link fo valu-
able sources of information (e.g., news aggregation sites). Other pages have high
authority centrality, meaning that they contain valuable information, as indicated
by the number and significance of incoming links (e.g., websites of respected news
organizations). Figure 1.19 helps to visualize the difference.

Similar ideas can be and have been applied to economic networks (often using
different terminology). For example, in the production networks we study below, high
hub centrality is related to upstreamness: Such sectors tend to supply intermediate
goods to many important industries. Conversely, a high authority ranking will coincide
with downstreamness.

In what follows we discuss both hub-based and authority-based centrality mea-
sures, providing definitions and illustrating the relationship between them.

1.4.3.3  Degree Centrality
Two of the most elementary measures of “importance” of a vertex in a given digraph
& = (V, E) are its in-degree and out-degree. Both of these provide a centrality mea-
sure. In-degree centrality i(¥) is defined as the vector (i;(v)),cv. Out-degree cen-
trality o(9) is defined as (04(v))yev. If & is expressed as a NetworkX DiGraph
called G (see, e.g., §1.4.1.2), then i(&) can be calculated via

iG = [G.in_degree(v) for v in G.nodes ()]

This method is relatively slow when & is a large digraph. Since vectorized oper-
ations are generally faster, let’s look at an alternative method using operations on
arrays.
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To illustrate the method, recall the network of financial institutions in Figure 1.16.
We can compute the in-degree and out-degree centrality measures by first converting
the adjacency matrix, which is shown in (1.24), to a binary matrix that corresponds to
the adjacency matrix of the same network viewed as an unweighted graph:

01000
10100
u=|o o0 o0 1 0 (1.28)
01 00 1
10110

Now U(i, j) = 1 if and only if i points to j. The out-degree and in-degree centrality
measures can be computed as

o©=U1l and i(©)=U'1, (1.29)

respectively. That is, summing the rows of U gives the out-degree centrality measure,
while summing the columns gives the in-degree measure.

The out-degree centrality measure is a hub-based ranking, while the vector of in-
degrees is an authority-based ranking. For the financial network in Figure 1.16, a high
out-degree for a given institution means that it lends to many other institutions; a high
in-degree indicates that many institutions lend to it.

Notice that, to switch from a hub-based ranking to an authority-based ranking, we
need only transpose the (binary) adjacency matrix U. We will see that the same is
true for other centrality measures. This is intuitive, since transposing the adjacency
matrices reverses the directions of the edges (Exercise 1.4.4).

For a weighted digraph & = (V, E,w) with adjacency matrix A, the weighted out-
degree centrality and weighted in-degree centrality measures are defined as

o(®) =A1 and i(©)=A"1, (1.30)

respectively, by analogy with (1.29). We present some intuition for these measures in
applications below.

Unfortunately, while in- and out-degree measures of centrality are simple to calcu-
late, they are not always informative. As an example, consider again the international
credit network shown in Figure 1.14. There, an edge exists between almost every node,
so the in- or out-degree-based centrality ranking fails to effectively separate the coun-
tries. This can be seen in the out-degree ranking of countries corresponding to that net-
work in the top left panel of Figure 1.20 and in the in-degree ranking in the top right.

There are other limitations of degree-based centrality rankings. For example, sup-
pose web page A has many inbound links, while page B has fewer. Even though page
A dominates in terms of in-degree, it might be less important than web page B to, say,
a potential advertiser, when the links into B are from more heavily trafficked pages.
Thinking about this point suggests that importance can be recursive: The importance
of a given node depends on the importance of other nodes that link to it. The next set
of centrality measures we turn to has this recursive property.
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Figure 1.20 Centrality measures for the credit network

1.4.3.4  Eigenvector Centrality

Let € = (V, E,w) be a weighted digraph with adjacency matrix A. Recalling that r(A)
is the spectral radius of A, the hub-based eigenvector centrality of & is defined as
the e € RY} that solves

e Ae. (1.31)

T (A
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Element-by-element, this is

1
ej = ) Jgr;] ajjej foralli € [n]. (1.32)

Note the recursive nature of the definition: The centrality obtained by vertex i is
proportional to a sum of the centralities of all vertices, weighted by the “rates of flow”
from i into these vertices. A vertex i is highly ranked if (a) there are many edges
leaving i, (b) these edges have large weights, and (c) the edges point to other highly
ranked vertices.

When we study demand shocks in §2.1.3, we will provide a more concrete inter-
pretation of eigenvector centrality. We will see that, in production networks, sectors
with high hub-based eigenvector centrality are important suppliers. In particular, they
are activated by a wide array of demand shocks once orders flow backwards through
the network.

EXERCISE 1.4.6. Show that (1.32) has a unique solution, up to a positive scalar
multiple, whenever A is strongly connected.'®

As the name suggests, hub-based eigenvector centrality is a measure of hub cen-
trality: Vertices are awarded high rankings when they point to important vertices. The
next two exercises help to reinforce this point.

EXERCISE 1.4.7. Show that nodes with zero out-degree always have zero hub-based
eigenvector centrality.

To compute eigenvector centrality when the adjacency matrix A is primitive, we
can employ the Perron—Frobenius theorem, which tells us that 7(A) ™™ A" — e as

m — 00, where ¢ and e are the dominant left and right eigenvectors of A. This implies
r(A)7™A™1 — ce, wherec:=¢' 1. (1.33)

Thus, evaluating r(A)~™ A™1 at large m returns a scalar multiple of e. The package
NetworkX provides a function for computing eigenvector centrality via (1.33).

One issue with this method is the assumption of primitivity, since the conver-
gence in (1.33) can fail without it. The following function uses an alternative tech-
nique, based on Arnoldi iteration, which typically works even when primitivity fails.
(The authority option is explained below.)

import numpy as np
from scipy.sparse import linalg

def eigenvector_centrality (A, m=40, authority=False):

mimn
Computes and normalizes the dominant eigenvector of A.

mmwn

16 While the dominant eigenvector is only defined up to a positive scaling constant, this is no reason for
concern, since positive scaling has no impact on the ranking. In most cases, users of this centrality
ranking choose the dominant eigenvector e satisfying |le|| = 1.
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Figure 1.21 A network with a source and a sink

A_temp = A.T if authority else A

r, vec_r = linalg.eigs (A_temp, k=1, which='LR")
e = vec_r.flatten() .real

return e / np.sum(e)

EXERCISE 1.4.8. Show that the digraph in Figure 1.21 is not primitive. Using the
code above or another suitable routine, compute the hub-based eigenvector centrality
rankings. You should obtain values close to e = (0.3694,0.2612,0.3694, 0). Note that
the sink vertex (vertex 4) obtains the lowest rank.

The middle left panel of Figure 1.20 shows the hub-based eigenvector centrality
ranking for the international credit network shown in Figure 1.14. Countries that are
rated highly according to this rank tend to be important players in terms of supply of
credit. Japan takes the highest rank according to this measure, although countries with
large financial sectors, such as Great Britain and France, are not far behind. (The color
scheme in Figure 1.14 is also matched to hub-based eigenvector centrality.)

The authority-based eigenvector centrality of €is defined as the e € R'} solving

e= 1 ATe. (1.34)
r(A)

The difference between (1.34) and (1.32) is just transposition of A. (Transposes do

not affect the spectral radius of a matrix.) Element-by-element, this is

ej = TlA) Z aije;  forall j € [n]. (1.35)
i€[n]
We see e; will be high if many nodes with high authority rankings link to j.

The middle right panel of Figure 1.20 shows the authority-based eigenvector
centrality ranking for the international credit network shown in Figure 1.14. Highly
ranked countries are those that attract large inflows of credit, or credit inflows from
other major players. The USA clearly dominates the rankings as a target of inter-bank
credit.

EXERCISE 1.4.9. Assume that A is strongly connected. Show that authority-based
eigenvector centrality is uniquely defined up to a positive scaling constant and equal
to the dominant left eigenvector of A.
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1.4.3.5 Katz Centrality
Eigenvector centrality can be problematic. Although the definition in (1.32) makes
sense when A is strongly connected (so that, by the Perron-Frobenius theorem,
r(A) > 0), strong connectedness fails in many real world networks. We will see
examples of this in §2.1, for production networks defined by input—output matrices.

In addition, while strong connectedness yields strict positivity of the dom-
inant eigenvector, many vertices can be assigned a zero ranking when it fails
(see, e.g., Exercise 1.4.7). This zero ranking often runs counter to our intuition
when we examine specific networks.

Considerations such as these encourage the use of an alternative notion of centrality
for networks called Katz centrality, originally due to Katz (1953), which is positive
under weaker conditions and uniquely defined up to a tuning parameter. Fixing § in
(0,1/r(A)), the hub-based Katz centrality of weighted digraph & with adjacency
matrix A, at parameter f3, is defined as the vector x := x(f3, A) € ]R’}r that solves

Ki=p Y ajx;+1 forallie[n]. (1.36)
J€ln]
The intuition is very similar to that provided for eigenvector centrality: High centrality
is conferred on i when it is linked to by vertices that themselves have high centrality.
The difference between (1.36) and (1.32) is just in the additive constant 1.

EXERCISE 1.4.10. Show that, under the stated condition 0 < 8 < 1/r(A), hub-based
Katz centrality is always finite and uniquely defined by

K= —-BA) 1= (BAL (1.37)

€20

where 1 is a column vector of ones.

EXERCISE 1.4.11. We know from the Perron—-Frobenius theorem that the eigenvector
centrality measure will be everywhere positive when the digraph is strongly connected.
A condition weaker than strong connectivity is that every vertex has positive out-
degree. Show that the Katz measure of centrality is strictly positive on each vertex
under this condition.

The attenuation parameter § is used to ensure that x is finite and uniquely defined
under the condition 0 < < 1/r(A). It can be proved that, when the graph is strongly
connected, hub-based (resp., authority-based) Katz centrality converges to the hub-
based (resp., authority-based) eigenvector centrality as g 1 1/ r(A).17
in the bottom two panels of Figure 1.20, the hub-based (resp., authority-based) Katz
centrality ranking is seen to be close to its eigenvector-based counterpart.

When r(A) < 1, we use § = 1 as the default for Katz centrality computations.

This is why,

EXERCISE 1.4.12. Compute the hub-based Katz centrality rankings for the simple
digraph in Figure 1.21 when § = 1. You should obtain k¥ = (5,4,5,1). Hence, the

17 See, for example, Benzi and Klymko (2015).
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source vertex (vertex 1) obtains equal highest rank, and the sink vertex (vertex 4)
obtains the lowest rank.

Analogously, the authority-based Katz centrality of & is defined as the ¥ € R",
that solves
Kj=B > ajxi+1  foralljen]. (1.38)

i€[n]

EXERCISE 1.4.13. Show that, under the restriction 0 < 8 < 1/r(A), the unique
solution to (1.38) is given by

k=U-pAT)Y "1 = «'=1T7-pA)"" (1.39)

(Verify the stated equivalence.)

EXERCISE 1.4.14. Compute the authority-based Katz centrality rankings for the
digraph in Figure 1.21 when 8 = 1. You should obtain x = (1,6,4,4). Notice that the
source vertex now has the lowest rank. This is due to the fact that hubs are devalued
relative to authorities.

1.4.4 Scale-Free Networks

What kinds of properties do large, complex networks typically possess? One of the
most striking facts about complex networks is that many exhibit the scale-free prop-
erty, which means, loosely speaking, that the number of connections possessed by
each vertex in the network follows a power law. The scale-free property is remarkable
because it holds for a wide variety of networks, from social networks to citation, sales,
financial, and production networks, each of which is generated by different underlying
mechanisms. Nonetheless, they share this specific statistical structure.

We begin this section by defining the degree distribution and then discuss its prop-
erties, including possible power law behavior.

1.4.4.1 Empirical Degree Distributions
Let & = (V, E) be a digraph. Assuming without loss of generality that V = [n] for
some n € N, the in-degree distribution of G is the sequence (¢;,(k));_, defined by

> vev Hia(v) =k}

n

Qin(k) = (k=0,...,n), (1.40)

where i;(v) is the in-degree of vertex v. In other words, the in-degree distribution eval-
uated at k is the fraction of nodes in the network that have in-degree k. In Python, when
Zis expressed as a NetworkX DiGraph called G and import numpy as np has
been executed, the in-degree distribution can be calculated via

def in_degree_dist (G):
n = G.number_of_ nodes|()
iG = np.array([G.in_degree(v) for v in G.nodes()])
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phi = [np.mean(iG == k) for k in range(n+1)]
return phi

The out-degree distribution is defined analogously, replacing iy with o4 in (1.40),
and denoted by (¢ our(k));_-

Recall that a digraph & = (V,E) is called undirected if (#,v) € E implies
(v,u) € E. If @is undirected, then iy(v) = 04(v) for all v € V. In this case we usually
write ¢ instead of ¢;, or ¢,,; and refer simply to the degree-distribution of the
digraph.

A scale-free network is a network whose degree distribution obeys a power law,
in the sense that there exist positive constants ¢ and ) with

(k) ~ ck™7 for large k. (1.41)

Here @(k) can refer to the in-degree or the out-degree (or both), depending on our
interest. In view of the discussion in §1.3.2.4, this can be identified with the idea that
the degree distribution is Pareto-tailed with tail index o =y — 1.

Although we omit formal tests, the degree distribution for the commercial aircraft
international trade network shown in Figure 1.2 on page 3 is approximately scale-free.
Figure 1.22 illustrates this by plotting the degree distribution alongside f(x) = cx™7
with ¢ = 0.2 and y = 1.1. (In this calculation of the degree distribution, performed
by the NetworkX function degree_histogram, directions are ignored and the
network is treated as an undirected graph.)

Attention was drawn to the scale-free nature of many networks by Barabdsi and
Albert (1999). They found, for example, that the in-degree and out-degree distributions
for internet pages connected by hyperlinks both follow power laws. In subsequent
years, many networks have been found to have the scale-free property, up to a first
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Figure 1.22 Degree distribution for international aircraft trade
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approximation, including networks of followers on Twitter (Pearce, 2017; Punel and
Ermagun, 2018), other social networks (Rybski et al., 2009), and academic collabora-
tion networks (e.g., papers plus citations).

Within economics and finance, Carvalho (2014) shows that the weighted out-degree
distribution for US input—output data (discussed further in Chapter 2) obeys a power
law, as does the Katz centrality measure. Carvalho et al. (2021) document power
law tails for the in-degree (suppliers) and out-degree (customers) distributions in a
Japanese network of interacting firms. Scale-free degree distributions have also been
observed in a number of financial and inter-bank credit networks (Kim et al., 2007,
Ou et al., 2007; De Masi et al., 2011).

In many cases, the scale-free property of a given network has significant implica-
tions for economic outcomes and welfare. For example, a power law in input—output
networks often typically indicates dominance by a small number of very large sectors
or firms. This in turn affects both the dynamism of the industry and the likelihood of
aggregate instability caused by firm-level shocks. We explore some of these issues in
Chapter 2.

1.4.4.2 Random Graphs

One way to explore the implications of different dynamics for the degree distribution
of graphs is to specify a law for generating graphs randomly and then examine the
degree distribution that results. This methodology leads to insights on the kinds of
mechanisms that can generate scale-free networks.

We begin with one of the most popular and elementary ways of randomly generat-
ing an undirected graph, originally examined by Erdos and Rényi (1960). The process
to generate a graph & = (V, E) is

(i) fix anintegern € N and a p € (0, 1);
(ii) view V := [n] as a collection of vertices;
(iii) let E = {#}; and
(iv) foreach (i,j) € V x V withi # j, add the undirected edge {i, j} to the set of
edges E with probability p.

In the last step additions are independent — each time, we flip an unbiased 1D coin
with head probability p and add the edge if the coin comes up heads.

The Python code below provides a function that can be called to randomly generate
an undirected graph using this procedure. It applies the combinations function
from the itertools library, which, for the call combinations (A, k), returns
a list of all subsets of A of size k. For example,

import itertools
letters = "a’, 'b", 'c’
list (itertools.combinations (letters, 2))
returns [ ("a’, ’'b’), ("a’, ’'c’), ('b’, 'c’)].
We use combinations to produce the set of all possible edges and then add them

to the graph with probability p:
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Figure 1.23 An instance of an Erdos—Renyi random graph

def erdos_renyi_graph(n=100, p=0.5, seed=1234):
"Returns an Erdos—-Renyi random graph."
np.random. seed (seed)
edges = itertools.combinations (range(n), 2)
G = nx.Graph()

for e in edges:
if np.random.rand() < p:
G.add_edge (*e)
return G

(The code presented here is a simplified version of functionality provided by the
library NetworkX. It is written for clarity rather than efficiency. More efficient versions
can be found both in NetworkX and in Julia’s Graphs.jl library.)

The left-hand side of Figure 1.23 shows one instance of a graph that was generated
by the erdos_renyi_graph function, with n = 100 and p = 0.05. Lighter colors
on a node indicate higher degree (more connections). The right-hand side shows
the degree distribution, which exhibits a bell-shaped curve typical for Erdos—Renyi
random graphs. In fact one can show (see, e.g., Bollobas (1999) or Durrett (2007))
that the degree distribution is binomial, with

n—1

qo(k)=< . )pk(l—p)”_l_k k=0,....,n—1).

1.4.4.3  Preferential Attachment
Clearly Erdos—Renyi random graphs fail to replicate the heavy right-hand tail of the
degree distribution observed in many networks. In response to this, Barabdsi and
Albert (1999) proposed a mechanism for randomly generating graphs that feature the
scale-free property.
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Figure 1.24 An instance of a preferential attachment random graph

The stochastic mechanism they proposed is called preferential attachment. In
essence, each time a new vertex is added to an undirected graph, it is attached by
edges to m of the existing vertices, where the probability of vertex v being selected
is proportional to the degree of v. Barabasi and Albert (1999) showed that the result-
ing degree distribution exhibits a Pareto tail in the limit as the number of vertices
converges to +o00o. A careful proof can be found in Chapter 4 of Durrett (2007).

Although we omit details of the proof, we can see the power law emerge in sim-
ulations. For example, Figure 1.24 shows a random graph with 100 nodes generated
by NetworkX’s barabasi_albert_graph function. The number of attachments
m is set to 5. The simulated degree distribution on the right-hand side of Figure 1.24
already exhibits a long right tail.

The preferential attachment model is popular not just because it replicates the scale-
free property of many real-world networks but also because its mechanism is simple
and plausible. For example, in citation networks, we can imagine that a well-cited
paper is more likely to attract additional citations than a poorly cited paper. Similar
intuition can be applied to an individual on a social network, where the number of
links is measured in terms of the number of followers.

Chapter Notes

The Perron—Frobenius theorem is due to Oskar Perron (1880-1975) and Ferdinand
Georg Frobenius (1849-1917). The main results were proved by 1912. As early as
1915, Dénes Konig (1884-1944) saw the connection between the Perron—Frobenius
theorem and graph theory, and provided an alternative proof using bipartite graphs.
Some of the history is discussed in Schrijver (2005).

We have already mentioned the textbooks on economic and social networks by
Jackson (2010), Easley et al. (2010), Borgatti et al. (2018), and Goyal (2023), as well
as the handbook by Bramoullé et al. (2016). Jackson (2014) gives a survey of the
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literature. Within the realm of network science, the high level texts by Newman (2018),
Menczer et al. (2020), and Coscia (2021) are excellent.

One good text on graphs and graph-theoretic algorithms is Kepner and Gilbert
(2011). Ballester et al. (2006) provide an interpretation of Katz centrality (which
they call Bonacich centrality) in terms of Nash equilibria of quadratic games.
Sharkey (2017) presents a new interpretation of Katz centrality using control theory.
Polovnikov et al. (2022) use Katz centrality to uncover hidden ultimate owners in firm
ownership data. Du et al. (2015) show how PageRank can be obtained as a competitive
equilibrium of an economic problem. Calvé-Armengol et al. (2009) develop a model
in which the outcomes for agents embedded in a network are proportional to the
Katz centrality. Elliott and Golub (2019) show that, in a setting where agents can
create nonrival, heterogeneous public goods, an important set of efficient solutions are
characterized by contributions being proportional to agents’ eigenvector centralities
in the network.

Kumamoto and Kamihigashi (2018) provide a detailed survey of power laws in
economics and the social sciences, including a discussion of the preferential attach-
ment model of Barabdsi and Albert (1999). Newman (2005) is also highly readable.
The textbook of Durrett (2007) is rigorous, carefully written, and contains interesting
motivational background, as well as an extensive citation list for studies of scale-free
networks.

It should be clear from the symbol ~ in (1.41) that the definition of scale-free net-
works is not entirely rigorous. Moreover, when connecting the definition to observed
networks, we cannot obtain complete clarity by taking a limit, as we did when we
defined power laws in §1.3.2, since the number of vertices is always finite. This impre-
cision in the definition has led to heated debate (see, e.g., Holme (2019)). Given the
preponderance of positive empirical studies, we take the view that, up to a reasonable
degree of approximation, the scale-free property is remarkably widespread.

In §1.4.2.3 we briefly mentioned network games, social networks, and key play-
ers. These topics deserve more attention than we are able to provide. An excellent
overview is given in Zenou (2016). Amarasinghe et al. (2020) apply these ideas to
problems in economic development. Valuable related papers include Allouch (2015),
Belhaj et al. (2016), Demange (2017), Belhaj and Deroian (2019), and Galeotti et al.
(2020).

Another topic we reluctantly omit in order to keep the textbook short is endogenous
network formation in economic environments. Influential papers in this field include
Jackson and Wolinsky (1996), Bala and Goyal (2000), Watts (2001), Hojman and
Szeidl (2008), Galeotti and Goyal (2010), and Graham (2017).

Finally, Candogan et al. (2012) study the profit maximization problem for a monop-
olist who sells items to participants in a social network. The main idea is that, in
certain settings, the monopolist will find it profitable to offer discounts to key players
in the network. Atalay et al. (2011) argue that in-degrees observed in US buyer—
supplier networks have lighter tails than a power law and supply a model that better
fits their data.
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