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Abstract. We describe all possible coradically graded pointed Hopf algebras of
dimension p5 (where p is an odd prime number) over an algebraically closed ®eld of
characteristic 0.
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1. Introduction. The lifting procedure described in [2] is a powerful tool for
classifying pointed Hopf algebras. It has been applied successfully to the classi®ca-
tion of pointed Hopf algebras of dimension p3 in [2] and dimension p4 in [4]. It has
been used also in the classi®cation of pointed Hopf algebras of dimension 32 in [10].
We describe here all pointed coradically graded Hopf algebras of dimension p5 (we
assume p is odd since the case p � 2 is treated in [10]). Some of these algebras are
known and can be found in the referred articles as well as in [3], [8]. Classi®cation
problems of pointed Hopf algebras have been also treated in [6], [9] and [7].

Our main references for Hopf algebras are [13] and [11]. For Nichols algebras
we refer to [12] and [1].

The article is organized as follows: in Section 2 we give the notation and de®-
nitions we use and the ®rst results we need. In Section 3 we describe all possible
Nichols algebras of dimension p5ÿj over groups of order pj (j � 1; . . . ; 4). In Section
4 we prove necessary auxiliary results; some of them have interest on their own, e.g.
Theorem 4.3. In Section 5 we prove that any pointed Hopf algebra of dimension p5

over k is generated by group-like and skew-primitive elements. In other words, any
coradically graded pointed Hopf algebra of dimension p5 can be recovered by
bosonization (or biproduct) from one of the Nichols algebras appearing in Theorem
3.2. Furthermore, this proves also that any pointed Hopf algebra of dimension p5

can be recovered by lifting (in the sense of [2]) of one of these bosonizations. Thus
the classi®cation of the pointed Hopf algebras of dimension p5 could be done in
principle using the lifting procedure. This article contains the ®rst steps in this
direction. In Section 6 we address the remaining steps and consider some illustrating
examples.

This is part of the doctoral thesis of the author, who thanks N. Andruskiewitsch
for his guidance.

2. Notation and preliminary results. The letter k will stand for an algebraically
closed ®eld of characteristic 0. All Hopf algebras are k-algebras. For ÿ a group and
g 2 ÿ we denote by ÿg the isotropy subgroup ÿg � fh 2 ÿ j hg � ghg. Let q 2 k. For
n � m 2 N, we use the standard notation
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�n�q �
Xnÿ1
i�0

qi; �0�q � 1; �n�!q �
Yn
i�1
�i�q;

n

m

� �
q
� �n�!q
�m�!q�nÿm�!q

:

For A a Hopf algebra, we say that A is pointed if and only if the simple sub-
coalgebras of A are 1-dimensional (if and only if the irreducible representations of
A� are 1-dimensional).

Let A � �i�0A�i� be a graded Hopf algebra. We say that A is coradically graded
if the graduation corresponds to the coradical ®ltration of A; i.e. if Ar � �r

i�0A�i�
8r � 0, where A0 � A1 � . . . stands for the coradical ®ltration of A. In particular, A
being coradically graded and pointed implies that A�0� ' kÿ, where ÿ is the group
of group-likes of A.

Let H be a Hopf algebra. We denote by H
HYD the category of (left-left) Yetter±

Drinfeld modules over H (see [11]) and by c its braiding. Let A be a coradically
graded pointed Hopf algebra and A�0� � kÿ; then

R � AcoA�0� � fx 2 A j �id
 ����x� � x
 1g � �iR�i�; �2:1�

(where � : A! A�0� is the canonical projection), is a braided Hopf algebra in the
category kÿ

kÿYD. The Hopf algebra A can be recovered by bosonization: A � R#kÿ.
Furthermore, R is coradically graded and R�0� � k1. If moreover R is generated as
an algebra by R�1�, then we say that R is a Nichols algebra.

If R is a Nichols algebra, then R is uniquely determined (up to isomorphism) by
V � R�1�, which coincides with the space of primitive elements P�R�. We write
R � B�V�.

We refer to the survey [1] for details on these constructions (Nichols algebras
are called TOBAs in that article).

Proposition 2.2. Let f be any ®eld, and let H be a Hopf algebra over f. Let V be
an object in H

HYD. Suppose V has a basis fx1; . . . ; x�g such that c�xi 
 xj� � bijxj 
 xi
for certain bij 2 f (since c is an automorphism, bij 2 f�). We take for each i � 1; . . . ; �

Ni �
order of bii if bii 6� 1 and is a root of unity,
1 if bii is not a root of unity,
1 if bii � 1 and char f=0,
char f if bii � 1 and char f>0.

8><>:
Then dim B�V� �Qi Ni. Moreover, if B�V� is ®nite dimensional, then the equality
holds if and only if bijbji � 1; 8i 6� j.

Proof. See [2, §3]. &

We recall (see for instance [1]) that if ÿ is a ®nite group, the category kÿ
kÿYD is

semisimple. The simple objects are the modules M�g; �� de®ned as follows: let g 2 ÿ,
� an irreducible representation of the isotropy group ÿg. Let W be the space
a�ording �, and take

M�g; �� � Indÿ
ÿg
W � kÿ
kÿg

W;

with the usual module structure and the comodule structure given by
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��h
 w� � hghÿ1 
 �h
 w� 2 kÿ
M�g; ��:

Remark 2.3. Since g is central in ÿg, if � is an irreducible representation of ÿg

then the Schur lemma says that ��g� � qid, for some q 2 k�.

Definition 2.4. We say that V 2 H
HYD has a matrix �bij� if it has a basis

fx1; . . . ; x�g such that c�xi 
 xj� � bijxj 
 xi.

This happens for instance if ÿ is abelian. This happens also under a weaker
condition: let V � �iM�gi; �i� and suppose that the subgroup ÿ0 of ÿ generated by
the conjugacy classes of all the gi is abelian. Then V comes from the abelian case in
the sense of [1, De®nition 3.1.8] and consequently has a matrix. In this case V can be
considered as a Yetter±Drinfeld module over ÿ0 and B�V�#kÿ can be reconstructed
as an extension of ÿ=ÿ0 by B�V�#kÿ0. A su�cient condition for ÿ0 to be abelian in
the case V �M�g; �� is that the isotropy subgroup ÿg be invariant in ÿ (see [1,
Lemma 3.1.9]). Since we are working in characteristic 0, if V has a matrix �bij� and
B�V� is ®nite dimensional then, by Proposition 2.2, bii 6� 1; 8i.

If V has a matrix �bij� with bijbji � 1; 8i 6� j, then it can be shown that B�V� has
a PBW basis of the form

fxn11 � � � xn�� j 0 � ni < Nig;
where Ni is de®ned as in Proposition 2.2. The relations are given by

xNi

i � 0; xixj � bijxjxi; 8i > j:

Thus B�V� is a quantum linear space as an algebra. We notice that the lines kxi
(i � 1; . . . ; �) are not Yetter±Drinfeld submodules in general. In order to agree with
the terminology of [2], we shall denote such an algebra by QLS only when the lines
kxi are Yetter±Drinfeld modules 8i. Thus, a QLS in kÿ

kÿYD is given by a module
V � ��i�1M�gi; �i�, where

g1; . . . ; g� 2 ÿ are central elements, and
�1; . . . ; �� 2 ÿ̂ are characters such that
�i�gj��j�gi� � 1; 8i 6� j:

8<: �2:5�

For V 2 kÿ
kÿYD, we shall say that B�V� is a QLS over ÿ0 � ÿ if V is a Yetter±Drinfeld

module in kÿ0
kÿ0YD and the conditions 2.5 hold for ÿ0. A 1-dimensional QLS will be

called also Quantum Line (or QL), and a 2-dimensional QLS will be called also
Quantum Plane (or QP).

According to [3], if V has a matrix �bij� we say that V is of Cartan type if there
exists a (generalized) Cartan matrix �aij� such that

bijbji � b
aij
ii ; 8i; j � 1; . . . ; �:

We transfer to V the terminology over the Cartan matrix �aij�.

Lemma 2.6. Let g be central in ÿ and � an irreducible representation of ÿ. Let
V �M�g; ��. By 2.3, g acts by a scalar on V, say q. Let N be the order of q. Then
dim B�V� � Ndeg �.
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Proof. Since g is central, V comes from the abelian case, and consequently c has
a matrix �bij�. It is straightforward to see that bij � q, 8i; j. Then Proposition 2.2
applies and the result follows. &

Lemma 2.7. Let g 2 ÿ and � an irreducible representation of ÿg. Let V �M�g; ��.
Suppose that dimV < p, where p is the smallest prime dividing jÿj. Then g is central,
deg � � 1 and thus B�V� is a QL over ÿ with dim B�V� � N, where N is the order of
��g�.

Proof. We have dimV � �ÿ : ÿg� deg��� < p. Since �ÿ : ÿg� and deg��� both
divide jÿj, necessarily �ÿ : ÿg� � 1, whence g is central, and deg��� � 1. The result
follows from Proposition 2.2. &

Remark 2.8. Since dim B�V� � 1� dimV, the hypothesis of the preceding
lemma is satis®ed if dim B�V� � p.

Remark 2.9. By Lemma 2.7, we have that if V � �iM�gi; �i� is such that
dimV < p, then gi is central and �i is a character 8i, and furthermore
dim B�V� �Qi Ni, where Ni is the order of �i�gi�.

3. Main results.

Lemma 3.1. Let A be a coradically graded pointed Hopf algebra of dimension p5.
Let ÿ � G�A� be the group of group-likes of A. Let R � Acokÿ 2 kÿ

kÿYD be the coin-
variants (thus A � R#kÿ) and let V � R�1� be the primitive elements of R. Assume
that V generates R as an algebra (i.e. R � B�V�). Then the following possibilities
arise.

1. If jÿj � p5, then V � 0 and A � kÿ.
2. If jÿj � p4, then V is 1-dimensional and R is a QLS.
3. If jÿj � p3, then V may be 1 or 2-dimensional and R is a QLS over some sub-

group ÿ0 of ÿ.
4. If ÿ � Cp � Cp, then V is 2-dimensional (and then R is a twisting of a Nichols

algebra of type A2) or V is 3-dimensional (and R is a QLS).
5. If ÿ � Cp2 , then V is 2-dimensional (and in this case R is a QLS or a twisting

of a Nichols algebra of type A2) or V is 3-dimensional (and R is a QLS).
6. If ÿ � Cp, then either V is 2-dimensional, R is of type B2 and necessarily

p � 1 mod 4, or V is 3-dimensional, R is of type A2 � A1 and p � 3.

Proof. We prove that B�V� is of the form claimed.
1. This is immediate.
2. By Remark 2.9 we have dimV � 1, V � �x� �M�g; ��, g 2 Z�ÿ�. Further-

more, ��g� � q is such that qp � 1 (and q 6� 1 since A is ®nite dimensional), whence
the structure of R is given by

xp � 0; "�x� � 0;

��xr� �
Xr
i�0

r

i

� �
q
xi 
 xrÿi;
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��x� � g
 x; h* x � ��h�x:

Let a � x#1 2 A. Then A is generated by ÿ and a, with the structure given by

ap � 0; "�a� � 0; hahÿ1 � ��h�a 8h 2 ÿ;

��ar� �
Xr
i�0

r

i

� �
q
�aigrÿi� 
 arÿi:

3. The bound dimV � 2 is a consequence of 4.3 below. If V is 1-dimensional,
then V �M�g; �� and A is given exactly as in the case jÿj � p4 with the only excep-
tion being that q has order p2 and the relation on a is ap

2 � 0. If V is 2-dimensional,
[1, Proposition 3.1.11] applies and V comes from the abelian case; i.e. V has a basis
fx1; x2g with �xi� �M�gi; �i� (gi and �i are respectively central elements and char-
acters of a certain subgroup ÿ0 of ÿ). Let Ni be the order of �i�gi�. Then, by 2.2, we
have p2 � N1N2, whence N1 � N2 � p; (�i�gi� 6� 1 since A is ®nite dimensional).
Again by Proposition 2.2 we have that B�V� is a QLS over ÿ0. Let b12 � �2�g1�, and
for each h 2 ÿ let the matrix ��h�ij be de®ned by h* xj �

P2
i�1 ��h�ijxi. Then A is

generated by ÿ, a1; a2 with structure and relations given by

a
p
i � 0; "�ai� � 0; hajh

ÿ1 �
X2
i�1

��h�ijai; 8h 2 ÿ;

��ai� � gi 
 ai � 1
 ai;

a1a2 � b12a2a1:

4. The bounds 2 � dimV � 3 are immediate consequences of Proposition 2.2. If
dimV � 2, then by Lemma 4.10 below it is a twisting of an algebra of type A2. If
dimV � 3, then by Proposition 2.2 it is a QLS.

5. As in the case ÿ � Cp � Cp, the bounds 2 � dimV � 3 are consequences of
Proposition 2.2. Suppose that dimV � 2, V has basis fx1; x2g and c is given in this
basis by the matrix �bij�. If b11 (resp. b22) has order p

2, then by Proposition 2.2 b22
(resp. b11) has order p and B�V� is a QLS. If both b11 and b22 have order p then, by
Lemmas 4.9 and 4.10 below, B�V� is a twisting of an algebra of type A2. If
dimV � 3, then by Proposition 2.2 it is a QLS.

6. This is proved in [3, Theorem 1.3]. &

In Section 5 we prove that if ÿ is a group of order pj and R � �iR�i� 2 kÿ
kÿYD is a

coradically graded braided Hopf algebra of dimension p5ÿj with R�1� ' k, then R is
generated by R�1�. With this and the previous lemma we can prove the following
result.

Theorem 3.2. Let A � �iA�i� be a coradically graded pointed Hopf algebra
of dimension p5. Let ÿ � G�A� be the group of group-likes of A. Let R � �iR�i� �
AcoA�0� 2 kÿ

kÿYD and let V � R�1�. Then R is generated by V (i.e. A � B�V�#kÿ)
and B�V� is one in the list below. By B��� we denote the group of order p4 in [5,
p. 145].
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ÿ dim B�V� Type Conditions

�Cp�4 1 QLS
�Cp�2 � Cp2 1 QLS
Cp2 � Cp2 1 QLS
Cp � Cp3 1 QLS
Cp4 1 QLS
B�vi� 1 QLS
B�vii� 1 QLS
B�viii� 1 QLS
B�ix� 1 QLS
B�x� 1 QLS
B�xiv� 1 QLS
�Cp�3 2 QLS
Cp2 � Cp 1 QLS

2 QLS
Cp3 1 QLS

2 QLS
�Cp�2 2 A2

3 QLS
Cp2 2 A2 p � 3 or p � 1 mod 3
Cp 2 B2 p � 1 mod 4

3 A2 � A1 p � 3

Proof. For the groups of order p4, the only condition for the existence of a QLS
is the existence of a central element g 2 ÿ and a character � 2 ÿ̂ such that ��g� has
order p. This is possible if and only if g 62 �ÿ;ÿ� where �ÿ;ÿ� is the commutator
subgroup of ÿ. It follows by inspection of each case that the groups in the table are
those ÿ such that Z�ÿ� 6� �ÿ;ÿ�.

We go now to jÿj � p3. It is clear that QLS of rank one exist for ÿ � Cp2 � Cp

and ÿ � Cp3 , but not for ÿ � �Cp�3. The two non-abelian groups of order p3 have
centers included in their commutator subgroups, whence the 1-dimensional Yetter±
Drinfeld modules give rise to in®nite dimensional Nichols algebras. We prove now
that for the three abelian groups there exist QLS of rank 2: let q1; q2; q3 denote
respectively (®xed) roots of unity of orders p; p2; p3. We denote the generators of

�Cp�3 by fg1; g2; g3g and the generators of
d�Cp�3 by fĝ1; ĝ2; ĝ3g, where ĝi�gj� � q

�ij
1 . We

denote the generators of Cp2 � Cp by fg1; g2g and the generators of dCp2�Cp by
fĝ1; ĝ2g, where ĝi�gj� � q

�ij
3ÿi. We denote the generator of Cp3 by fgg and the generator

ofdCp3 by fĝg, where ĝ�g� � q3. It is straightforward that the following Yetter±Drinfeld
modules give QLS of dimension p2:

ÿ � �Cp�3; V �M�g1; ĝ1� �M�g2; ĝ2�;

ÿ � Cp2 � Cp; V �M�gp1; ĝ1� �M�gÿp1 ; ĝ1�;

ÿ � Cp3 ; V �M�gp2 ; ĝ� �M�gÿp2 ; ĝ�:
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For the two non-abelian groups we should have V a Yetter±Drinfeld module of
dimension 2. There are three possibilities.

1. V �M�h1; �1� �M�h2; �2�, where hi are central and �i are characters; but by
the same reason as in the rank one case, this would give in®nite dimensional
Nichols algebras.

2. V �M�g; ��, where � is a character and �ÿ : ÿg� � 2; but this is impossible
since p 6� 2 (this case arises when p � 2; see [10]).

3. V �M�g; ��, where g is central and � is an irreducible representation of ÿ
with deg � � 2. Since p 6� 2, by the Frobenius theorem we ®nd that this is
impossible; (this case arises when p � 2; see [10]).

Let now ÿ � �Cp�2. It is immediate that there are no QLS of rank 1 nor 2, since
otherwise there would be a character with a p2-th root of unity in the image. The
existence of a QLS of rank 3 is a consequence of [2, Lemma 4.1]. An explicit con-
struction is as follows: let ÿ have generators fg1; g2g and ÿ̂ have generators fĝ1; ĝ2g
where ĝi�gj� � q

�ij
1 (as before q1 is a ®xed p-th root of unity). Let V �M�g1; ĝ1��

M�g1; ĝ1ÿ1� �M�g2; ĝ2�. It is straightforward to see that V generates a QLS. For a
construction of a Nichols algebra of type A2, let r � 1

2 2 Z=p (the construction for
p � 2 is slightly di�erent; see [10]). Set V �M�g1; ĝ1ĝ2ÿr�� M�g2; ĝ1ÿrĝ2�. It is clear
then that V has the matrix

�bij� � q1 qÿr1

qÿr1 q1

� �
; whence bijbji � b

aij
ii with �aij� � 2 ÿ1

ÿ1 2

� �
:

Let ÿ � Cp2 . The non-existence of a p3-dimensional QLS is a consequence of
Lemma 4.1 below. Let g; ĝ be respectively generators of ÿ, ÿ̂, and let q � ĝ�g�.
Suppose that V 2 kÿ

kÿYD generates an algebra of type A2. Let V �M�ge1 ; ĝ f1 ��
M�ge2 ; ĝ f2 �. SinceV has amatrix bij � qei fj and b11; b22 must have order p, then p divides
e1 and e2, or p divides f1 and f2. Then the same arguments as in [3, Theorem 1.3] give the
condition p � 3 or p � 1 mod 3. Furthermore, let b be such that b2 � b� 1 � 0 mod p
(the condition on p is equivalent to the existence of such a b) and take e1 � p, f1 � 1,
e2 � ÿp�b� 1�, f2 � b. It is straightforward to see that this gives a Cartan matrix of
type A2.

For ÿ � Cp it is proved in [3, Theorem 1.3] that there exists an algebra of type
B2 if and only if p � 1 mod 4, and of type A2 � A1 if and only if p � 3. &

4. Subsidiary results. The following lemma may be considered as an addendum
to [2, Lemma 4.2].

Lemma 4.1. Let ÿ � Cpn and V 2 kÿ
kÿYD generate a ®nite dimensional QLS. Then

V may be 1-dimensional (and hence dim B�V� � pv with 1 � v � n) or it may be 2-
dimensional (and hence dim B�V� � p2v with 1 � v � n).

Proof. The bound dimV � 2 is the content of [2, Lemma 4.2]. Let ÿ have a
generator g and ÿ̂ have a generator ĝ. Let q � ĝ�g�, which is a primitive pn-th root of
unity. If V is 1-dimensional, the result is an easy consequence of Proposition 2.2.

Suppose that V �M�ge0
1 ; ĝ f 0

1 � �M�ge0
2 ; ĝ f 0

2 �. Let e0i � prei such that e1; e2 are not
both divisible by p, f 0i � psfi such that f1; f2 are not both divisible by p. Then V has a
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matrix given by bij � qe
0
i f
0
j � qei fjp

r�s
. Since B�V� is ®nite dimensional, r� s < n (for if

not b11 � b22 � 1). Let u � nÿ rÿ s. Suppose that p6 j e1 (if p6 j e2 it is analogous).
Suppose ®rst that p6 j f2; then b12 has order pu. Since V generates a QLS, b21b

ÿ1
12 also

has order pu and thus p6 j e2, p6 j f1. This implies the result with v � u. Suppose next
that pj f2. Then p6 j f1. Let f2 � ptb, e2 � pya with p6 j b, p6 j a. We prove that t � y: we
have t < u since if not b22 � 1. Now, b12 has order puÿt, whence b21 has order puÿt.
Since p6 j f1 we have ptje2, whence y � t. By similar considerations y � t. This implies
the result with v � uÿ t. &

We shall make use of the following important tool for Nichols algebras.

Definition 4.2. Let V 2 H
HYD and c � cV;V. For i� j � n, we denote by

�i;j : Bn�V� ! Bi�V� 
Bj�V� the �i; j�-component of the comultiplication of B�V�.
It is proved in [14] (or see [1, De®nition 3.2.10]) that �i;j is injective, 8i; j. Let

fx1; . . . ; x�g be a basis of V and let fx�1; . . . ; x�� g be its dual basis. We denote by @xi the
di�erential operator on B�V� given by

@xi �z� � �id
 x�i ��nÿ1;1�z�; if z 2 Bn�V�; n > 0; and @xi�1� � 0:

By the injectivity of �i;j it is immediate that for z 2 Bn�V� (n > 0) we have z � 0 if
and only if @xi�z� � 0, for all i � 1; . . . ; �. Suppose now that V 2 kÿ

kÿYD and @xi is such
that there exists g 2 ÿ with @xi�v� � 0 if ��v� � h
 v and h 6� g; (this happens for
instance if ��xj� � gj 
 xj; j � 1; . . . ; � and g � gi). Then it is easy to see that @xi
satis®es the Leibniz rule

@xi�z1z2� � @xi �z1��g* z2� � z1@xi �z2�:

The following theorem is proved in [2, Theorem 0.2] in the case in which ÿ is an
abelian group.

Theorem 4.3. Let ÿ be a ®nite group. Let V 2 kÿ
kÿYD be such that dim B�V� � p2,

where p is the smallest prime number dividing jÿj. Then dimV � 2 and B�V� is a QLS
over some subgroup ÿ0 � ÿ. Furthermore, if p > 2 then V �M�g; �� with g central, �
is a character such that ��g� has order p2 and hence B�V� is a QL over ÿ, or
V �M�g1; �1� �M�g2; �2� where gi is central, �i is a character (i � 1; 2) such that
�i�gi� has order p and hence B�V� is a QP over ÿ.

Proof. Let V � ��i�1M�gi; �i�. It can be shown that dim B�V� � dim B�M�gi; �i��,
8i. Let I � �ÿ : ÿg1 � and d � deg��1�. We have dimM�g1; �1� � dI. We have d � 1 or
d � p, and I � 1 or I � p. Since dim B�V� � 1� dimV we have dimV < p2.

Suppose ®rst that d � p. This implies that I � 1, whence g1 is central in ÿ. By
2.6 we have p2 � dim B�V� � dim B�M�g1; �1�� � Nd with N the order of q, where
qid � �1�g1�. Since B�V� is ®nite dimensional, we have q 6� 1 and hence N � p.
If p > 2 we have a contradiction. If p � 2 we must have � � 1, d � 2, N � 2.
The condition d � 2 implies that V comes from the abelian case, as explained
after De®nition 2.4. The condition on N tells us that q � ÿ1. Furthermore, by
Proposition 2.2, B�V� is a QLS, and it is shown in [1] that the matrix of c is
ÿ1 ÿ1
ÿ1 ÿ1

� �
.
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Suppose then that I � p. This implies that d � 1, whence �1 is a character of ÿg1 .
Let q � �1�g1� and let N be the order of q. Let x be a generator of the space a�ord-
ing �1, and let fh1 � 1; h2; . . . ; hIg be a set of representatives of the cosets of ÿ=ÿg1 .
Then M�g1; �1� has as basis the elements fh1 * x; . . . ; hI * xg and we have

c�hi * x
 hi * x� � hig1h
ÿ1
i hi * x
 hi * x

� hig1 * x
 hi * x � q�hi * x
 hi * x�: �4:4�

It is straightforward to see using derivations that the elements

f1; �hi * x�r j 1 < r < N; i � 1; . . . ; Ig
are linearly independent, whence

p2 � dim B�V� � 1� I�Nÿ 1�: �4:5�
Thus, N � p. On the other hand, q 6� 1 for if not it is easy to see using derivations
that the elements fxr j r � 0g would be linearly independent and B�V� would be
in®nite dimensional; (note that we have not proved at present that kx is a sub-YD-
module nor that M�g1; �1� comes from the abelian case, and hence Proposition 2.2
cannot be used.) We have thus proved that N � p. Suppose for a moment that I > p.
It is clear that if p > 2 then I � p� 2, but then �4:5� tells us that this is a contra-
diction. If p � 2, then I � 3 but, by [1, Proposition 3.2.2], dim B�M�g1; �1�� � 5, also
a contradiction. Hence, we have that I � p and then ÿg, having index the smallest
prime dividing jÿj, is invariant in ÿ. As stated after De®nition 2.4, this implies that
B�M�g1; �1�� comes from the abelian case, but then Proposition 2.2 applies and (4.4)
tells us that dim B�M�g1; �1�� � pp. This is a contradiction if p > 2. If p � 2, then
� � 1, q � ÿ1 and it is proved in [1] that the matrix of c is

ÿ1 1
1 ÿ1

� �
or

ÿ1 ÿ1
ÿ1 ÿ1

� �
:

Suppose ®nally that I � d � 1. Then g1 is central and �1 is a character. Let
q � �1�g1� and let N be its order. Then dim B�V� � dim B�M�g1; �1�� � N implies
that N � p2. If N � p2, then � � 1 and the result follows at once. If N < p2, then
N � p and N is prime. Since dim B�M�g1; �1�� � N, we have � > 1. Since
dim B�M�g2; �2�� � p2 ÿ 1 (because if x is a generator of M�g1; �1� then x does not
belong to B�M�g2; �2��) by the same arguments as above applied to M�g2; �2� we
have necessarily that g2 is central and �2 is a character. Let N2 be the order of �2�g2�.
Thus N2 < p2, and since g1; g2 are both central, M�g1; �1� �M�g2; �2� comes from
the abelian case, whence by Proposition 2.2, B�M�g1; �1� �M�g2; �2�� has dimen-
sion at least NN2. This implies that N � N2 � p, � � 2 and B�V� is a QLS over ÿ.

Remark 4.6. It is proved in [8] in a di�erent way that if dim B�V� � p, where p
is the smallest prime number dividing ÿ, then dimV � 1 and B�V� is a QLS. It is
proved also, with the same ideas as here, in [3, Proposition 7.5].

Remark 4.7. We note that the proof of Theorem 4.3 above says that there are
no V in kÿ

kÿYD such that dim B�V� � �2 if � is a prime number smaller than every
prime dividing jÿj.
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The previous theorem implies the following result.

Corollary 4.8. Let A be a pointed Hopf algebra of dimension m whose coradical
has dimension m=p2, where p is the smallest prime number dividing m. Then p3 divides
m and dimA1 � �r� 1�m=p2, where r � 1 or 2.

Proof. Consider the coradical ®ltration of A and let H � �iH�i� be the asso-
ciated graded algebra. Then H is pointed and H�0� ' kÿ, where ÿ is the group of
group-likes of A that has order m=p2. Let R � HcoH�0� 2 kÿ

kÿYD and let R0 � R be the
algebra generated by R�1�; (R0 � R if and only if R is a Nichols algebra). Thus
dimR � p2 and by the Nichols±Zoeller theorem, dimR0 � pj with 0 � j � 2. The
case j � 0 would imply that dimR�1� � 0, which is impossible. The case j � 1 is also
impossible, for in that case Remark 4.6 says that dimR�1� � dimR0�1� � 1, and [2,
Theorem 3.2] says that R is a Nichols algebra. Then R0 � R. Remark 4.7 says that p
divides jÿj (whence p3 divides m) and Theorem 4.3 says that r � dimR�1� may be 1
or 2, whence dimH�1� � rjÿj and

dimA1 � dimH�0� � dimH�1� � �r� 1�jÿj � �r� 1�m=p2:
&

Lemma 4.9. Let ÿ be a p-group and V a 2-dimensional module in kÿ
kÿYD such that

dim B�V� � p3. Recall that under this assumption c has a matrix �bij� with respect to
some basis fx; yg. Let q be a primitive p2-th root of unity, and suppose that bij � qcij . If
p divides c11 and c22, then p divides c12 � c21.

Proof. We have xp � yp � 0. Let z � Adx�y� � xyÿ b12yx and � � 1ÿ b12b21.
We have

@x�z� � b12yÿ b12y � 0; @y�z� � xÿ b12b21x � �x) @x@y�z� � �:

Furthermore,

@x�xryszt� � �r�b11bt11bs�t12 xrÿ1yszt;

@y�yszt� � �s�b22bt21bt22ysÿ1zt �
Xtÿ1
i�0

�bi21b
i
22y

sztÿ1ÿixzi;

@x@y�yszt� � ��t��b11b12b21b22�ysztÿ1:

Thus, if p6 j c12 � c21, the order of �b11b12b21b22� is p2, whence the set fzt j 0 � t < p2g
is linearly independent. This implies inductively that the set fyszt j 0 � s < p;
0 � t < p2g is linearly independent, and then that the set fxryszt j 0 � r; s < p;
0 � t < p2g is linearly independent, so that dim B�V� � p4. &

The following result is a consequence of [3, Corollary 1.2]. We give a direct
proof here.

Lemma 4.10. Let V � �x; y� be a 2-dimensional module in kÿ
kÿYD such that

dim B�V� � p3. Let V have a matrix �bij� and suppose that b
p
ij � 1, for all i; j. Then bij

is a Cartan matrix of type A2.
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Proof. Let q � b11 and cij be given by bij � qcij . We may suppose as above that
b12 � b21. Let b12 � qa, b22 � qc. Take z � Adx�y� � xyÿ qayx, and let � � 1ÿ q2a;
thus � 6� 0, since otherwise B�V� would be a QLS and dim B�V� would be p2. As
before

@x�z� � 0; @y�z� � �x) @x@y�z� � �;

whence

@x�xryszt� � �r�qqt�a�s�t�xrÿ1yszt;

@y�yszt� � �s�qcqas�ctysÿ1zt �
Xtÿ1
i�0

�q�a�c�iysztÿ1ÿixzi;

@x@y�yszt� � ��t�q1�2a�cysztÿ1:

As before, the set fxryszt j 0 � r; s; t < pg is linearly independent; (as a remark,
note that we must have 1� 2a� c 6� 0 (mod p) since if not B�V� would be in®nite
dimensional). Now let w � Adx�z� � xzÿ q1�azx. We have

@x�w� � 0; @y�w� � �x2 ÿ �q1�aqax2 � ��1ÿ q2a�1�x2:

The �x; y�-bidegree of w is �2; 1�, whence the set fx2y; xz;wg must be linearly depen-
dent in order for B�V� to be p3-dimensional. This implies 2a� 1 � 0, which means
that b12b21 � bÿ111 .

With the same reasoning, we must have b12b21 � bÿ122 , and thus bijbji � b
cij
ii with

cij � 2 ÿ1
ÿ1 2

� �
mod p;

and bij is a Cartan matrix of type A2. As a remark, note that b11 � b22. &

5. The classi®cation is complete. We have to prove that Theorem 3.2 lists all the
coradically graded pointed Hopf algebras of dimension p5. This amounts to proving
that a coradically graded pointed Hopf algebra is generated by its homogeneous
component of degree 1, which in turn is equivalent to proving that if A � �iA�i� is a
coradically graded pointed Hopf algebra and R � AcoA0 is its algebra of coinvariants
then R is a Nichols algebra. As in [3, §8], let S � R� be its dual. Then S is a graded
braided Hopf algebra in kÿ

kÿYD, S � �iS�i� and is generated by S�0� � S�1�.
Furthermore, we have a surjection S!! S0, S0 � B�S�1��. We have to prove that S is
coradically graded; i.e. that P�S� � S�1�. This is the same as saying that S0 � S.
Now, [2, Theorem 3.2] plus Remark 4.6 solve the problem for the cases in which ÿ
has order p4 or p3, and [3, Theorem 8.2] and [3, Lemma 8.5] solve the problem for
the case in which ÿ has order p or ÿ � Cp � Cp. The following theorem solves the
pending case.

Theorem 5.1. Let ÿ be a ®nite group and p the smallest prime number dividing
jÿj. Let S � �iS�i� in kÿ

kÿYD be a graded braided Hopf algebra of dimension p3 such
that S�0� � k and S is generated by S�1�. Suppose that S�1� comes from the abelian
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case; i.e. there exists an abelian subgroup ÿ0 � ÿ such that S�1� is a YD-module over
ÿ0. Then S is a Nichols algebra.

Proof. We prove the statement for p > 2, the case p � 2 being treated in [10]. Let
S0 � B�S�1��, and consider the canonical projection S!! S0. We must prove that
this is an isomorphism. If dimS�1� � 3 then, by Proposition 2.2, we have
dimS0 � p3; but this implies that S0 � S and S is a Nichols algebra. If dimS�1� � 1,
then [2, Theorem 3.2] shows that S is a Nichols algebra. Hence we are led to con-
sider the case dimS�1� � 2. We have dimS0 � p3, and we suppose that dimS0 < p3.
Then by Proposition 2.2 we have dimS0 � p2, whence dimS0 � p2. Now Theorem
4.3 says that S0 is a QLS over ÿ0, S0�1� has a basis fx; yg and the braiding c has a
matrix �bij� in this basis, where bii are primitive p-th roots of unity and b12b21 � 1.
Furthermore, the linear spans kx and ky are sub-YD-modules over ÿ0. Let
z � x1x2 ÿ b12x2x1 2 S. If we prove that z � 0 in S, then dimS � p2, but this would
be a contradiction and we would be done.

Suppose that z 6� 0. Now, it is immediate that z is primitive in S. Consider the
coradical ®ltration of S and let T � �iT�i� be the associated graded algebra. We
have x; y; z 2 S1. Consider �x; �y; �z 2 T�1�. It is easy to see that these elements are
linearly independent. We compute the matrix of c for f �x; �y; �zg. It is given by

�b0ij� �
b11 b12 b11b12
b21 b22 b21b22

b11b21 b12b22 b11b12b21b22

0@ 1A � b11 b12 b11b12
b21 b22 b21b22

b11b21 b12b22 b11b22

0@ 1A:
Consider now the canonical projection T!! T 0 � B�T�1��. Since kx, ky and kz are
sub-YD-modules of S over ÿ0, then k �x, k �y and k �z are sub-YD-modules of T over ÿ0.
Thus, if W � � �x; �y; �z� we have dim B�W� � dimT 0 � dimT � p3. Now Proposition
2.2 applies; (notice that b0ii has order p, 8i, since b11b22 � 1 would imply that
dim B�W� � 1). Hence B�W� is a QLS, but this implies that 1 � b211b12b21 � b211,
which is impossible since p 6� 2. Hence, z � 0 in S and the theorem is proved. &

6. Final remarks. In order to give a complete classi®cation of the pointed Hopf
algebras of dimension p5, the following steps should be taken.

1. For each Nichols algebra R in Theorem 3.2, give all the modules M in kÿ
kÿYD

such that B�M� ' R.
2. Classify the isomorphism classes of the bosonizations of the Nichols algebras

in the previous step; (note that there exist non isomorphic Nichols algebras
which give isomorphic algebras after bosonization).

3. For each coradically graded p5-dimensional Hopf algebra in the previous
step, classify all the liftings.

These steps are highly non trivial. For instance let ÿ � Cpn , where n > 0 and
p 6� 2, and let 0 � s � n. The number of QLS of rank 1 over ÿ with dimension ps is
given by X

i�jÿn�s
i;j�n

��i; j�;
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while the number of isomorphisms classes of these QLS after bosonization is given
by X

i�jÿn�s
i; j�n

��i; j�
I�i; j� ;

where

��i� � piÿ1�pÿ 1�;
��i; j� � ��i���j�;

I�k1; . . . ; kr� � ��maxfk1; . . . ; krg�:

Furthermore, the number of QLS of rank 2 over ÿ with dimension ps, (where s is
even, by Lemma 4.1), is given by

1

2

X
i1;j1;i2;j2

��i1; j1���i2; j2�
Ln�i1; j2� ;

while the number of isomorphism classes of these QLS after bosonization is given by

1

2

X
i1;j1;i2;j2

��i1; j1���i2; j2�
Ln�i1; j2�I�i1; i2; j1; j2� ;

where

Ln�i; j� � ��i� jÿ n�;

and the sum is over the tuples such that

i1 � j1 ÿ n � s1 � 1; i2 � j2 ÿ n � s2 � 1;

s1 � s2 � s; i1; j1; i2; j2 � n; i1 � j2 � i2 � j1:

As a result of this, the number of coradically graded non isomorphic Hopf
algebras of dimension p5 with coradical Cp4 , Cp3 is, respectively, 2�p2 ÿ 1� and
p�pÿ 1��2� p�pÿ1��p�2�

2 �.
See also the discussion in [3, §9] for the ®rst step, [3, §6] for the second. In par-

ticular, a necessary and su�cient condition for two YD-modules to give isomorphic
algebras after bosonization is given in [3, Proposition 6.3].

As an example of the last step, let A be a pointed Hopf algebra of dimension p5

with coradical ÿ of order p4. Let H be the associated graded Hopf algebra and R its
invariants as in (2.1). Then H � R#kÿ, where R � B�V�. We have then V �M�h; ��
where h is central and � is a character such that ��h� has order p. Let x be a gen-
erator of V. Then, by [10, Proposition 2.0.17], x can be lifted to a 2 A such that
��a� � h
 a� a
 1 and gagÿ1 � ��g�a 8g 2 ÿ. Since the elements fxi#g j 0 � i < p;
g 2 ÿg are a basis of H, the elements faig j 0 � i < p; g 2 ÿg are a basis of A. The
lifting A is then determined by the element ap, the case ap � 0 being the bosonization
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A � R#kÿ. It is easy to see that ap is a skew-primitive and ��ap� � hp 
 ap � ap 
 1.
Looking at the space of skew-primitives, this implies that

ap � ��hp ÿ 1�; � 2 k:

Taking a suitable scalar multiple of a we may suppose that � 2 f0; 1g. Hence there
are no more than 2 liftings. In some of the cases we must have ap � 0. These cases
are given by the diamond lemma

gap � g��hp ÿ 1� � ��hp ÿ 1�g;
gap � ��g�agapÿ1 � . . . � �p�g�apg � �p�g���hp ÿ 1�g;

whence ���p ÿ 1� � 0 for A to be p5-dimensional. This tells us that over the group
B�vi� any pointed Hopf algebra of dimension p5 is coradically graded.

On the other hand, it is clear that if hp � 1 then ap � 0. This tells us that over
the groups B�viii�; B�ix�; B�x� and B�xiv� any pointed Hopf algebra of dimension p5

is coradically graded.
As a corollary we note that a pointed Hopf algebra of dimension p5 and non

abelian coradical is coradically graded, unless its coradical is isomorphic to kB�vii�.
We classify all the liftings in this case: B�vii� can be presented with generators
X;Y;Z and relations

Xp2 � Yp � Zp � 1; �Z;Y� � Xp; �X;Y� � �X;Z� � 1:

Hence Z�B�vii�� � �X� while �B�vii�;B�vii�� � �Xp�. Let q be a (®xed) p-th root of
unity. The Yetter±Drinfeld modules generating Nichols algebras of dimension p are
then

V �M�Xi; �� such that p6 j i; ��X� � qa �p6 j a�; ��Y� � qb; ��Z� � qc:

However, it can be shown that most of them give isomorphic algebras after bosoni-
zation. We are led to consider two modules:

Vi �M�X; �i� �i � 1; 2�; �1�X� � q; �1�Y� � �1�Z� � 1;

�2�X� � �2�Y� � q; �2�Z� � 1:

Hence we have two pointed Hopf algebras of dimension p5 with non abelian co-
radical that are not coradically graded:

A�1� generated by a;X;Y;Z and the relations of B�vii� together with

Xa � qaX;Ya � aY;Za � aZ; ap � Xp ÿ 1;��a� � X
 a� a
 1;

A�2� generated by a;X;Y;Z and the relations of B�vii� together with

Xa � qaX;Ya � qaY;Za � aZ; ap � Xp ÿ 1;��a� � X
 a� a
 1:

A description of the liftings of QLS (respectively of the algebras of type A2 over
groups of exponent p) is made in [2] (respectively [4]).
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