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Let A and C be m x m matrices and let B and D be nx n matrices, all with elements in a
field F. Let AT denote the transpose of 4. A well-known theorem states that, if every mxm
matrix X for which 4AX = XA also satisfies CX = XC, then C = ¢(A4) for some polynomial
¢(4). In this note we establish the following simple generalizations.

THEOREM 1. Let A and B have the same minimal polynomial m(). If each m xn matrix
X over F for which AX = XB also satisfies CX = XD, then C = ¢(A) and D = ¢(B) for a poly-
nomial ¢(2) over F.

THEOREM 2. Let n=m. If each symmetric mx m matrix X over F for which AX = XAT
also satisfies CX = XD, then D" = C = ¢(A) for a polynomial ¢ (1) over F.

These results may be proved as easily as the classical result. It is possible to base the
proofs on the Jordan canonical form under similarity by first extending F to a field K in which
m(4) splits, next showing that the hypotheses will still be valid if X is permitted to have
elements in K, then transforming 4 and B to their Jordan forms and hence establishing the
existence of ¢ (1) over K, and finally showing that ¢ (1) may be taken to have coefficients in F.
We give proofs based on the rational canonical form under similarity.

Letf(A) =f,A"+ ... +f,andg(}) =g A"+ ... +g, be two monic (f, = g, = 1) nonconstant
polynomials. Let C(f(2)) denote the companion matrix of f(4); it is defined in [1, p. 148].
A persymmetric matrix is one constant along each diagonal perpendicular to the main diagonal.
Let C be a matrix with r columns and let D be a matrix with s rows.

LemMMA. Each r x s matrix X satisfying
C(fM)X = XC(g()T ¢y
is persymmetric. If f(2) divides g(1) and if the first column of CX is zero Jor each X over F
satisfying (1), then C = 0. If g(2) divides f(A) and if the first row of XD is zero for each X over
F satisfying (1), then D = 0.

Proof. Let X = (x;;). Comparing the (i, j) elements of the two sides of (1) fori<rand j<s,
we have x;,, ;=x; ;4+,. Hence X is persymmetric and we may set x;; = x;4 ;- forl Sisr
and 1 £j<s. Let g(W)/f(D)=h(A)=hi+ ... +hy. For (1) to hold it is necessary and
sufficient that
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If r = 1 there are no equations (2b). Equation (2c¢) is an identity if r = s. The polynomial
identity g(2) = f(1) h(2) implies relations among the g,, f;, A; which in turn imply that

5 t r :
Y GeXarp= 2 hu(z fax““,,) for all f=0and £ r-2.
a=0 =0 a=0

Hence each equation (2b) is a linear combination of some of equations (2a). Since f(4) also
divides g(1)—A*~"f(A), equation (2¢) is, in a like manner, a linear combination of some of
equations (2a). Hence (1) will hold if and only if (2q) is satisfied. From the form of (2a) it
follows that x4, x4, ..., x,_, are independent variables with x,, ..., x,. ., determined in terms
of these independent variables. Then, if C; is column i of C, the first column of CX is
Cixo+ ... +C.x,_, which can be zero for all choices of x,, ..., x,_; in Fonlyif C=0. The
proof of the other case is similar.

We now give together the proofs of Theorems 1 and 2. Let f, (), f2(4), ..., f,(4) denote the
nontrivial invariant factors of 1I,—A and let g,(4), g,(4), ..., g,(4) denote the nontrivial
invariant factors of A/,— B. Eachf;(1) and each g;(4) divides the common minimal polynomial
m(2) = f,(2) = g,(1) of 4 and B.

In Theorem 2 we have B = A7, b = a, and g;(1) =f,(4) for all i £ a. Nonsingular matrices
S and T exist over F such that

SAS™H = C(f )+ CHINT .. +CULR) = 4y, say,
and

TBT ™ = C(gi (@) +Clg2 @)+ ... +C(g,(A)" = By, say.

Here + denotes direct sum. For Theorem 2 take T™! = ST, Let C; = SCS™!, X, = SXT™!,
D, =TDT™!. InTheorem2, X, is symmetricif and onlyif Xis. Then AX = XB, AX = XA",
CX = XD will hold if and only if, respectively, 4,X, = X,B,, A, X, = X;4], C;X, = X,D,.
Partition the matrices C,, X;, D, into the forms C; = (C,p), X; = (X,p), D; = (D,4), where
C,g is (degree £, (2)) x (degree f3(2)), X,z is (degree f,(4)) x (degree g5(2)), Dyg is (degree g,(4)) X
(degree g4(4)).

For Theorem 1 set all X,; equal to zero except for X;, for one fixed i <a. Then
A, X, = X, B, wiltholdif C(f;(D))X; = X,C(g,(A)". From C, X, = X, D, follows C;;X;, =0
if j#i. Hence C;; =0. Next set all X, equal to zero except for X,; for one fixed j < b.
Then A4, X, = X, B, will hold if C(f,(A)X,; = X,;C(g;(A)". From C,X, = X, D, follows
X,jD;;=0fori# j. Hence D;; =0.

For Theorem 2 set all X,, equal to zero except for Xj; for one fixed j <a. Then
A X, = X, AT willhold if C(f;(A) X;; = X;;,C(f;()". So X;; and therefore X, is symmetric.
Then C, X, = X, D, implies that C;;X;; = 0 and X;;D;; = 0 for i # j. Therefore C;; = 0 and
D;; =0. Thus, in both Theorems, C, and D, are block diagonal.

For the moment suppose that the first row of the last diagonal block C,, of C, is zero.
Set all X,, equal to zero except for X,,. Then 4,X; = X,B; or 4,X, = X, 47 will hold if
C(f,(N)X,, = X,,C(g,(1)T. Thus X, is symmetric in the case B=A". From C,X, = X, D,
we get C,, X, = X, D, Since the first row of C,, X, is zero, the first row of X, Dy, is zero
also; hence D,, =0, and then C,, = 0. Next set all X,,; equal to zero except for X, for one
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fixed i < a and X,; for one fixed j <b. For Theorem 2 take i =j and X, =X/, so as to
make X, symmetric. Then A4,X, = X, AT will hold if C(f;(A))X; = X;,C(g,(2))T and
A; X, = X B, will hold if also C(f,(A))X,;= XajC(gj(,l))T. Then C,X, = X, D, yields
CuXyp=0and X,;D;; = 0 (because C,, = 0 and D,, =0). Thus C;; =0 and D;; =0 and so
both C, and D, are zero.

Now, for a fixed i with 0 < i < degree m(4), the first row of [C(f,(4))]' is entirely zero
except for a single 1 at column i+ 1. Thus it is possible to find a polynomial ¢ (1) over F such
that the first row of C,,—¢(C(f,(1)) is entirely zero. It follows from A,X,; = X,B, that
AXX, = X,B*fork=0,1,2,...; hence ¢(4,)X, = X,¢(B,), and therefore (C,—¢(4,)X;
= X,(D,—¢(B,)). Since the first row of the last diagonal block of C,—¢(4,) is zero, it
now follows that C;—¢(4,) =0 and D,—¢(B,)=0. Thus C=¢(A) and D = ¢(B) as
required.

COROLLARY. If each X over F for which AX = XA also satisfies CX = XD then
C=D=¢(A). If A is symmetric and each symmetric X over F for which AX = XA also
satisfies CX = XD, then C = D = ¢(A) and so C = D is symmetric.

The last statement follows because if 4 = AT then AX = XA is the same as 4X = XAT
so C = ¢(4) and D = ¢(47) = ¢(4) = C.

REFERENCE
1. S. Perlis, The theory of matrices (Cambridge, Mass., 1952).

THE UNIVERSITY OF BRiTISH COLUMBIA
(Now at the University of California, Santa Barbara)

https://doi.org/10.1017/52040618500035127 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500035127

