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Let A and C b e m x m matrices and let B and D b e n x n matrices, all with elements in a
field F. Let AT denote the transpose of A. A well-known theorem states that, if every m x m
matrix X for which AX = XA also satisfies CX = XC, then C = 4>(A) for some polynomial
$(A). In this note we establish the following simple generalizations.

THEOREM 1. Let A and B have the same minimal polynomial m(k). If each mxn matrix
X over Ffor which AX = XB also satisfies CX = XD, then C = cf>(A) and D = 4>{B) for a poly-
nomial <j>(k) over F.

THEOREM 2. Let n = m. If each symmetric mxm matrix X over Ffor which AX = XAT

also satisfies CX = XD, then DT = C = (j)(A)for a polynomial ${X) over F.

These results may be proved as easily as the classical result. It is possible to base the
proofs on the Jordan canonical form under similarity by first extending F to a field K in which
m(A) splits, next showing that the hypotheses will still be valid if X is permitted to have
elements in K, then transforming A and B to their Jordan forms and hence establishing the
existence of 4>(X) over K, and finally showing that <£(A) may be taken to have coefficients in F.
We give proofs based on the rational canonical form under similarity.

Let/(A) =/ rA
r+ ... +/o andg(A) = gsk

s+ ... +gf0betwomonic(/r = gs = 1) nonconstant
polynomials. Let C(/(A)) denote the companion matrix of/(A); it is defined in [1, p. 148].
A persymmetric matrix is one constant along each diagonal perpendicular to the main diagonal.
Let C be a matrix with r columns and let S be a matrix with s rows.

LEMMA. Each rxs matrix X satisfying

C(f(X))X=XC(g(X))T _ (1)

is persymmetric. If f(X) divides g (X) and if the first column of CX is zero for each X over F
satisfying (1), then ~C = 0. Ifg(X) divides f(X) and if the first row of XD is zero for each X over
F satisfying (1), then D = 0.

Proof. LetA"= (xlV). Comparing the (r,y) elements of thetwosides of(l)for i<randj<s,
we have xi+l> j = *,- J+1. Hence A'is persymmetric and we may set xtJ = x,+j-2 for 1 ̂  j ^ r
and 1 <;y g s. Let g(X)lf(X) = h(X) = h,X'+ ... +h0. For (1) to hold it is necessary and
sufficient that

t te*+t = 0 for all p £ 0 and ^ s - 2, (2a)
a = O

t gjc.+, = 0 for all p £ 0 and ^ r -2 , (2b)

a = 0

a=0 a=0
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If r — 1 there are no equations (2b). Equation (2c) is an identity if r = s. The polynomial
identity g(X) — f(X) h(X) implies relations among the #,-,/;, ht which in turn imply that

t 9S.+, = t h ( t /«*«+*+/») ^r all 0 £ 0 and Z r -2 .
O 0 O y

Hence each equation (2b) is a linear combination of some of equations (2a). Since f(X) also
divides g(X)—Xs~rf(X), equation (2c) is, in a like manner, a linear combination of some of
equations (2a). Hence (1) will hold if and only if (2a) is satisfied. From the form of (2a) it
follows that x0, xu ..., *,._! are independent variables with xr, ..., x r + s_2 determined in terms
of these independent variables. Then, if Q is column i of C, the first column of CX is
CiX0+ ... +Crxr-l, which can be zero for all choices of x0> ..., xr-i in Fonly if C = 0. The
proof of the other case is similar.

Wenowgive together the proofs of Theorems 1 and 2. Letfl(X),f2(X), ...,/„(!) denote the
nontrivial invariant factors of XIm — A and let gx(X), g2(X), ...,gb(X) denote the nontrivial
invariant factors of XI„—B. Each/- (X) and each g, (X) divides the common minimal polynomial
™W> =/.(<*) = 0bW °{A a n d B-

In Theorem 2 we have B = AT,b = a, and gt(X) =/f(A) for all i ^ a. Nonsingular matrices
S and T exist over F such that

... +C(fa(X)) = AU say,
and

TBT-1 = C(dl(X))T+C(g2(X))T+ ... +C(gb(X))T = 5 l s say.

Here + denotes direct sum. For Theorem 2 take T'1 = ST. Let Ct = SCS~\ X^ = SAT"1,
i ) t = TDT~K In Theorem 2, ATt is symmetric if and only if AT is. Then AX = Affi, AX = AT̂ 7",
CAT = ATi) will hold if and only if, respectively, A ^ = XYBU AyXt = X^A\, C^X^ = X^^
Partition the matrices Cu Xu Dx into the forms Cx - (CxP), X^ = (X^), Dx - (Dxl>), where
Cx0 is (degree/, (X)) x (degree/,, (A)), XlP is (degree fa(X)) x (degree gf(Xj), Dals is (degreega(A)) x
(degree gp(X)).

For Theorem 1 set all XtP equal to zero except for Xib for one fixed i ^ a. Then
AiXl = AT^i will hold if C(/,(A))AT,;, = XibC(gb(X))T. From C ^ i = X^D^ foUows C,,^,,, = 0
if ji= i. Hence C^ = 0. Next set all Xaf equal to zero except for XaJ for one fixed j S b.
Then AtXt = AT^! will hold if C(fa(X))Xaj = Xa]C{g}(X))T. From C ^ i = X^D^ follows
Arfl7D7,. = 0 for i * j . Hence Dn = 0.

For Theorem 2 set all Afap equal to zero except for XJJ for one fixed j ^ a. Then
^ ! ATi = XXA\ will hold if C(fj(X))Xjj = XnC(fj(X))T. So AfjV and therefore A^ is symmetric.
Then C^X^ = Z J D J implies that CyXjj = 0 and XjjDJt = 0 for j ̂  ; . Therefore Ci ; = 0 and
Dji = 0. Thus, in both Theorems, Ct and Dx are block diagonal.

For the moment suppose that the first row of the last diagonal block Caa of Cx is zero.
Set all Xafs equal to zero except for Xab. Then A^X^ = XXBX or AxXt = Af^f will hold if
C(fa(X))Xab = XabC(gb(X))T. Thus ATt is symmetric in the case B = AT. From QA^ = ATiDi
we get CaaXab = XabDbb. Since the first row of CaaXab is zero, the first row of XabDbb is zero
also; hence Dbb = 0, and then Coo = 0. Next set all X^ equal to zero except for Xib for one
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fixed i < a and XaJ for one fixed j < b. For Theorem 2 take / —j and Xai—Xja so as to
make Xt symmetric. Then A1X1 = X1A\ will hold if C(f{k))Xib = XibC(gb(X))T and
AXXX = XyB^ will hold if also C(fa(X))XaJ = XaJC{gi{k))T. Then C1X1 = XrDy yields
CHXtb = 0 and XajD}j = 0 (because Caa = 0 and Dbb = 0). Thus CH = 0 and Z)jV = 0 and so
both Ct and Dx are zero.

Now, for a fixed j with 0 ^ / < degree m{X), the first row of [(?(/„(!))]' is entirely zero
except for a single 1 at column j + 1 . Thus it is possible to find a polynomial <j>{X) over Fsuch
that the first row of Caa-<j>(C{fa{Xj) is entirely zero. It follows from AXX^ = XXBX that
A\XX = XVB\ for jfc = 0, 1, 2, ...; hence ^ ( ^ j ) ^ = A^CBi), and therefore ( C i - ^ i M i
= Xl(Dl — (j)(B1)). Since the first row of the last diagonal block of Cl — (j>{A1) is zero, it

now follows that Ci-(t>(A1) = 0 and Dl-4>{Bl) = 0. Thus C = <j)(A) and D = <$){B) as
required.

COROLLARY. If each X over F for which AX = XA also satisfies CX = XD then
C = D = <j)(A). If A is symmetric and each symmetric X over F for which AX = A04

satisfies CX = AT), /Aen C = D = <t>{A) and so C = D is symmetric.

The last statement follows because if A = AT then /4Y = XA is the same as AX =
so C = <j>(A) and D = <j>(AT) = 0(^) = C.
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