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Abstract. We consider transversally harmonic foliated maps between two
Riemannian manifolds equipped with Riemannian foliations. We give various
characterisations of such maps and we study the relation between the properties
“harmonic” and “transversally harmonic” for a given map. We also consider these
problems for particular classes of manifolds: manifolds with transversally almost
Hermitian foliations and Riemannian flows.
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Introduction. In his very influential thesis R. T. Smith characterised equivariant
harmonic mappings between G-manifolds, G being a compact Lie group. Riemannian
manifolds with Riemannian foliations, which we call foliated Riemannian manifolds,
are natural generalisations of G-manifolds. Smith’s characterisation has inspired us
to define a new class of ‘transversally harmonic’ foliated mappings between regular
foliated Riemannian manifolds (i.e., the foliation is regular) whose study we have
initiated in [24]. We extend R. T. Smith’s result to foliated mappings between
foliated Riemannian manifolds. Moreover, we do not restrict our attention to regular
Riemannian foliations – we study foliated mappings between manifolds with singular
Riemannian foliations (SRFs). The leaf space of a singular Riemannian foliation can
be a very complicated topological space. Even in a very simple case when all leaves
of the foliation are compact, the leaf space is a singular stratified space; cf. [14]. The
closures of leaves of a regular Riemannian foliation of a compact manifold form an
SRF with all leaves compact. Its leaf space is homeomorphic to the orbit space of
an action of a compact Lie group on a compact manifold (cf. [29]), and thus it is an
algebraic set and a Riemannian polyhedron; cf. [9]. Its smooth structure can be defined
equivalently by smooth functions on the manifold that are constant along the leaves
or, as is standard in algebraic geometry, via an embedding into a suitable �k, cf. [3].
Therefore the foliated manifold (M,F) can be considered to be a desingularisation
of its leaf space M/F . A foliated mapping defines a smooth mapping between the
leaf spaces. Thus any transversally harmonic mapping can be considered a harmonic
mapping between the leaf spaces. In certain particular cases our approach coincides
with that proposed by J. Eells and B. Fuglede in [9].

In the first section we recall basic results on SRFs as well as some results on
harmonic and transversally harmonic maps. The second section is dedicated to the
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2 JERZY J. KONDERAK AND ROBERT WOLAK

characterisation of foliated harmonic and transversally harmonic mappings between
manifolds with Riemannian foliations. At the end of the section we present a theorem
on transversally harmonic maps between manifolds foliated by isometric flows. In the
subsequent section we study transversally harmonic mappings between Riemannian
manifolds foliated by transversally almost Hermitian foliations. Particular attention is
paid to taut foliations and the role played by the star operators defined on basic forms.
At the end we present some examples.

The authors would like to express their deep gratitude to the referee whose remarks
helped improve considerably the paper and in particular, for the remarks concerning
the formulation and proof of Proposition 2.1.

1. Preliminaries.

1.1. Singular Riemannian foliations. First we recall some useful basic properties
of SRFs; cf. [29].

Let F be an SRF on a compact manifold M. The manifold M is stratified by
the dimension of leaves; i.e., for any x ∈ M let us denote by Lx the leaf of F passing
through x. Then for r = 0, . . . , n = dim M, let Mr = {x ∈ M : dim Lx = r}. Obviously,
there exist rmin and rmax such that Mr = ∅ for r < imin or r > rmax; rmin is the smallest
dimension of leaves of the foliation F and rmax is the greatest dimension of leaves of
this foliation. The set M∗ = Mrmax is open and dense in M. The set � = M − M∗ is a
closed subset of M of measure 0.

In each stratum the foliation F induces a regular Riemannian foliation, so that
F∗ = F |M∗ is a Riemannian foliation of the manifold M∗.

If the leaves of F are compact, we can refine our stratification taking into account
the holonomy, [37, 19], and so on each stratum we have a Riemannian foliation without
holonomy. Therefore the foliationF∗ on the principal stratum is a Riemannian foliation
without holonomy. Hence the natural projection M∗ → M∗/F∗ is a locally trivial fibre
bundle. Using the considerations on basic functions of [37], one easily deduces that
any two leaves can be separated by basic functions. Therefore the following lemma is
true.

LEMMA 1.1. Let (M1, g1,F1) and (M2, g2,F2) be two foliated Riemannian manifolds
with all leaves compact. Then a mapping f : M1 → M2 is a foliated mapping from
(M1, g1,F1) to (M2, g2,F2) if and only if for any basic function h on (M2, g2,F2),
hf is a basic function on (M1, g1,F1).

On a foliated Riemannian manifold (M, g,F) the g-gradient Xh of a basic function
h is a foliated vector field. Moreover, this vector field is orthogonal to the closures of
leaves of F ; cf. [37]; also if all leaves are compact, these vector fields span the subbundle
orthogonal to the leaves of F in the principal stratum.

On a manifold M with a foliation F , we can introduce another topology and
smooth structure. We take as open subsets of the set M open subsets of leaves. Then
the leaves of F are connected components in this topology and the set M carries a
differentiable structure compatible with this topology; we denote this manifold by MF .
Moreover, a smooth map f : (M1,F1) → (M2,F2) is foliated if and only if it induces a
smooth map f̂ : MF1 → MF2 ; cf. [31].
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1.2. Harmonic and transversally harmonic maps. If f : M1 → M2 is a
differentiable map between Riemannian manifolds (M1, g1) and (M2, g2), then the
differential df is a section of the bundle T∗M1 ⊗ f −1TM2 → M1, where f −1TM2

denotes the pull-back bundle of TM2 by the map f . The bundle T∗M1 ⊗ f −1TM2 →
M1 carries the connection ∇ induced by the Levi-Civita connections on M1 and M2.
Then the map f is said to be harmonic if and only if trace∇df = 0; the trace is calculated
with respect to the Riemannian metric on M1. On the other hand, harmonic maps may
be defined as critical points of the energy functional. In fact, let e(f ) = 1

2‖df ‖2 be
the smooth function on M1 which to any point x of M1 assigns one half the square
of the Hilbert-Schmidt norm of the differential dxf of f at that point. The function
e(f ) is called the energy density and it is a Lagrangian which arises naturally in the
Riemannian geometry; cf. [23]. If M1 is compact, then the energy E(f ) of f is defined
as

E(f ) :=
∫

M1

e(f )dνg1 ,

where dνg1 is the measure determined by the Riemannian metric g1 on M1. Then f
is harmonic if and only if it is a critical point of the energy functional. If M1 is not
compact, then a harmonic map is a critical point of the energy with respect to the
compactly supported variations. The map trace∇df is called the tension field of f and
usually is denoted by τ (f ). The equation trace∇df = 0 is the Euler-Lagrange equation
of the variational problem defined by the energy functional. For details about harmonic
maps see [13, 10, 11, 12, 1].

In our paper [24], we generalise the notion of a harmonic map to foliated maps
between manifolds with Riemannian foliations. The definition of a transversally
harmonic map arises naturally in the context of the transverse geometry of foliations.

Let (M1,F1, g1) and (M2,F2, g2) be two Riemannian manifolds with regular
Riemannian foliations. Let ∇ i be the Levi-Civita connections of the respective metrics
and Di the induced transverse partial connections on the orthogonal complement
bundles TF⊥

i → Mi, where i = 1, 2. Suppose that f : M1 → M2 is a smooth foliated
map; it means that df (TF1) ⊂ TF2. Then there are given natural bundle maps

Ui : TF⊥
i → TMi, �i : TMi → TF⊥

i ,

for i = 1, 2, where Ui is the inclusion of TF⊥
i in TMi, and �i is the orthogonal

projection of TMi onto TF⊥
i . The map f defines the pull-back bundle f −1TF⊥

2 → M1.
Take the bundle

(TF⊥
1 )∗ ⊗M1 f −1TF⊥

2 → M1. (1.1)

Since there are partial basic connections D2 and D1 in f −1(TF⊥
2 ) → M1 and (TF⊥

1 ) →
M1, respectively, there is the naturally induced partial basic connection D on the
bundle (1.1). Next, we consider the foliated bundle

(TF⊥
1 )∗ ⊗ (TF⊥

1 )∗ ⊗ f −1TF⊥
2 → M1. (1.2)

We define the transverse second fundamental form of f as D(�2df U1). This is a
section of the bundle (1.2).
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DEFINITION 1.2. A map f is said to be transversally harmonic if and only if the trace
of the transverse second fundamental form vanishes. This trace is called the transverse
tension field of f , and it is denoted by τb(f ).

We suppose that U = {Ui, ϕi, gij}I is a cocycle defining the foliation F1, and let
us denote by V = {Vα, ψα, hαβ}A a cocycle defining the foliation F2 such that, for
any i ∈ I , there exists α(i) ∈ A with f (Ui) ⊂ Vα(i). Let Ūi = ϕi(Ui) and V̄α = ψα(Vα).
Then the manifold N1 = ∐

Ūi is a transverse manifold of the foliation F1, and
N2 = ∐

V̄α is a transverse manifold of the foliation F2; cf. [35, 36]. Both transverse
manifolds are Riemannian with the induced metrics. The transformations gij generate
a pseudogroup H1, which is called the holonomy pseudogroup of F1 associated with the
cocycle U . The transformations hαβ generate a pseudogroup H2, which is called the
holonomy pseudogroup of F2 associated with the cocycle V . Both holonomy groups are
pseudogroups of local isometries.

On the level of transverse manifolds, the map f induces a smooth map f̄ as, for
any i ∈ I , the following diagram is commutative.

Ui
f |Ui−−−−→ Vα(i)

ϕi

⏐⏐� ⏐⏐�ψα(i)

Ui
f α(i)i−−−−→ Vα(i)

(1.3)

The map f̄ : N1 → N2 is defined as:

f̄ |Ūi = f̄α(i)i.

In [24] we have demonstrated that the mapping f is transversally harmonic if and only
if the mapping f̄ is harmonic; cf. Theorem 3.1.

A smooth foliated map f : (M1,F1) → (M2,F2) induces a smooth map f̂ : MF1 →
MF2 . Let τ (f̂ ) be the tension field of the map f̂ of the manifolds MF1 and MF2 with
their naturally induced Riemannian metrics. We say that the mapping f is leaf-wise
harmonic if τ (f̂ ) = 0; i.e. the mapping f̂ : MF1 → MF2 is harmonic.

Now suppose that F1 and F2 are Riemannian foliations which are singular and
that f (M∗

1 ) ⊂ M∗
2 . Then f is said to be transversally harmonic if the restricted map

f |M∗
1
: M∗

1 → M∗
2 is transversally harmonic.

2. Riemannian foliations. The local geometry of Riemannian foliations is closely
related to the geometry of Riemannian submersions. Hence it is natural to expect that
results about harmonic maps between the total spaces of Riemannian submersions can
be extended to foliated maps between Riemannian foliated manifolds. In this section,
we apply the results of Xin on Riemannian submersions, cf. [39], to obtain various
characterisations of transversally harmonic maps.

Throughout this section we suppose that there are given two Riemannian foliated
manifolds (Mi, gi,Fi), i = 1, 2. We allow foliations to be singular; hence we denote by
M∗

i , i = 1, 2, the union of the leaves of the maximal dimension; cf. Section 1.1. Let
f : M1 → M2 be a smooth foliated map such that f (M∗

1 ) ⊂ M∗
2 . If X is a vector on a

foliated manifold, then we denote its components the orthogonal to, and tangent to,
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the leaves by H(X) and V(X), respectively. By Bi we denote the second fundamental
form and by Hi the mean curvature vector field of leaves of Fi in (M∗

i , gi), respectively.
The map f is said to be essentially horizontal if df |TM∗

1
sends TF⊥

1 into TF⊥
2 . The

following theorem is a foliated version of Theorem 6.3 of [39]; cf. also [38].

THEOREM 2.1. Let f : M1 → M2 be a smooth foliated mapping between foliated
Riemannian manifolds (M1, g1,F1) and (M2, g2,F2). If f (M∗

1 ) ⊂ M∗
2 and f is an

essentially horizontal map, then f is transversally harmonic if and only if

H(τ (f )) − traceTF1 f ∗B2 + f∗H1 = 0. (2.1)

Proof. Let Ui be open subsets in M∗
i and πi : Ui → Ūi the submersions defining

the foliations (i = 1, 2) such that f (U1) ⊂ U2. Then there exists a map f̄ : Ū1 → Ū2

such that the following diagram

(U1, g1)
f−−−−→ (U2, g2)

π1

⏐⏐� ⏐⏐�π2

(Ū1, ḡ1)
f̄−−−−→ (Ū2, g2)

(2.2)

commutes. Here the vertical maps are Riemannian submersions. From
[39, equation (6.10)] we have that

τ (f ) = τ (f̄ )H + traceTF1 f ∗B2 − f∗H1 + τ (f̂ ). (2.3)

Since f is horizontal, f ∗B2 and f∗H1 are orthogonal to the leaves of F2. Moreover, τ (f̂ )
is tangent to the leaves. Hence by taking the horizontal part of both sides of (2.3), we
get that τ (f̄ )H = H(τ (f )) − traceTF1 f ∗B2 + f∗H1 and hence our assertion follows. �

Since there are no minimal SRFs, (cf. [28]), in the following corollary we have to
assume that both foliations are regular.

COROLLARY 2.1. If both foliations are regular, the foliation F1 is minimal, and F2

totally geodesic, then the map f is harmonic if and only if f is transversally harmonic and
leaf-wise harmonic.

Proof. From (2.3) and the assumptions we obtain τ (f )V = τ (f̂ ), and so Corol-
lary 2.1 follows. �

The theorem below is the foliated version of Theorem 6.4 of [39]; cf. also [38].

THEOREM 2.2. Let f : M1 → M2 be a smooth foliated mapping between regular
foliated Riemannian manifolds (M1, g1,F1) and (M2, g2,F2). If the foliations F1 and F2

are totally geodesic and the horizontal distribution of F2 is integrable, then the map f
is transversally harmonic if and only if H(τ (f )) = 0. In particular, the harmonicity of f
implies its transverse harmonicity.

Proof. We consider again local submersions πi : Ui → Ūi (i = 1, 2), as in the proof
of Theorem 2.1. Let e1, . . . , eq be an orthonormal frame on H(TU1) that is projectable
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via π1 on TŪ1. We apply [39, equation (6.13)] and we get that

τ (f ) = τ (f̄ )H + τ (f̂ ) + V
q∑

k=1

∇V(f∗ek)V(f∗ek) +
q∑

k=1

V [H(f∗ek),V(f∗ek)]

− V(f∗∇ek ek) + 2H
q∑

k=1

∇V(f∗ek)H(f∗ek).

Hence, by taking the horizontal part of the left and right hand sides of the equation
above, we get that τ (f̄ )H = H(τ (f )) − 2H

∑q
k=1 ∇V(f∗ek)H(f∗ek). SinceH(∇V(f∗X)H(f∗Y ))

vanishes for any X, Y horizontal projectable vector fields on U1, the orthogonal
distributions being integrable, (cf. [39, p. 155]), then f is transversally harmonic if
and only if H(τ (f )) = 0. �

We observe that, under the assumptions of Theorem 2.2, the transverse
harmonicity does not imply the harmonicity of f ; cf. [24, Example 4.1].

Apply the Ishihara theorem; cf. [18] and [12, 2.13b]. We get the following
characterisation of the transversally harmonic maps.

PROPOSITION 2.1. Suppose that Fi (i = 1, 2) are minimal foliations and local
submersions defining F2 are totally geodesic maps. Then f is transversally harmonic
if and only if it sends germs of basic convex functions on M2 into the germs of basic
subharmonic functions on M1.

Proof. The problem is local. Hence we consider open subsets Ui ⊂ Mi (i = 1, 2),
as in the proof of Theorem 2.1. We can assume that the submersion π1 has minimal
fibres and π2 is totally geodesic. Let h : Ū2 → � be a smooth map. Then h is convex
if and only if hπ2 is basic and convex; cf. [18, Theorem 3.2]; next let k: Ū1 → � be
a smooth map. Then k is subharmonic if and only if kπ1 is basic and subharmonic,
since the laplacian commutes with Riemannian submersions of minimal fibres; e.g.
cf. [17]. Then f sends germs of basic convex functions on M2 into the germs of basic
subharmonic functions on M1 if and only if f̄ sends germs of convex functions into
the germs of subharmonic functions. Thus f̄ is harmonic according to Theorem 3.4 of
[18], which is equivalent to f being transversally harmonic. �

Let us assume that both foliations are compact; i.e., all their leaves are compact.
Then the leaf spaces M1/F1 and M2/F2 are orbifolds; cf. [29]. The foliations of both
principal strata, M∗

1 and M∗
2 , are simple, and the leaf spaces M∗

1/F1 and M∗
2/F2 are

smooth manifolds that are the principal strata of the corresponding orbifolds M1/F1

and M2/F2, respectively. If f maps M∗
1 into M∗

2 , then it induces a smooth mapping f̄
of the leaf space M∗

1/F1 into the leaf space M∗
2/F2. In this case Theorem 2.1 permits

us to formulate the following proposition.

PROPOSITION 2.2. Let f : (M1, g1,F1) → (M2, g2,F2) be a foliated map between two
regular foliated Riemannian manifolds that maps M∗

1 into M∗
2 . If

(1) the leaves of F1 are compact,
(2) f maps vectors orthogonal to F1 into vectors orthogonal to F2,
(3) the foliation F1 is minimal and the foliation F2 is totally geodesic,
(4) the induced map f̂ : MF1 → MF2 is harmonic,

then f is harmonic if and only if f̄ harmonic.
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Proof. Since the set M∗
1 is open and dense in M1, the map f is harmonic if and

only if its restriction to M∗
1 is. Therefore the theorem is a simple consequence of

Theorem 2.1, in particular formula (2.3), as f |M∗
1 is transversally harmonic if and only

if the map f̄ is harmonic – the foliation F1 on M∗
1 is defined by a global submersion

p1: M∗
1 → M∗

1/F1. �
Taking into account some results of Section 1.1 we can formulate the following

corollary.

COROLLARY 2.2. Let f : (M1, g1,F1) → (M2, g2,F2) be a foliated diffeomorphism
between two foliated Riemannian manifolds. If

(1) the leaves of Fi, i = 1, 2, are compact,
(2) f maps the gradient Xh of any basic function h on (M1, g1,F1) into the gradient

Xhf −1 ,
(3) the foliation F1 is minimal and the foliation F2 is totally geodesic,
(4) the induced map f̂ : MF1 → MF2 is harmonic,

then f is harmonic if and only if f̄ harmonic.

Proof. As the map f is a foliated diffeomorphism it maps M∗
1 onto M∗

2 . The
condition (1) coupled with (2) ensures that f maps vectors orthogonal to leaves
of F1 on M∗

1 to vectors orthogonal to F2. Hence, the corollary follows from
Theorem 2.2. �

Let V : M∗
1 → [0,+∞] be the map which to any x ∈ M∗

1 assigns the volume of
the leaf passing through x. Then transversally harmonic maps of Riemannian foliated
manifolds with compact leaves may be characterised in a variational way as follows.

THEOREM 2.3. Suppose that F1|M∗
1

has only compact leaves. Then f is transversally
harmonic if and only if f is a critical point of the functional

Ẽ(f ) :=
∫

M∗
〈d̃f , d̃f 〉 1

V (x)
dνg, (2.4)

where, in formula (2.4), νg is the density on M1 defined by the metric g1, d̃xf = prf (x) ◦
df ◦ ux, ux : TxF⊥

1 → TM1 is the canonical inclusion, prf (x) : Tf (x)M2 → Tf (x)F⊥
2 is the

canonical projection.

Proof. According to [8, Proposition 4.1] the function V : M∗
1 → � is continuous

on an open and dense subset of M∗
1 .

Hence we have∫
B∗

1

〈df̄ , df̄ 〉dνḡ =
∫

B∗
1

〈df̄ , df̄ 〉V (x)
1

V (x)
dνḡ

=
∫

B∗
1

(
〈df̄ , df̄ 〉 1

V (x)

∫
Lx

dµx

)
dνḡ

=
∫

M∗
1

〈d̃f , d̃f 〉 1
V (x)

dνg,

where Lx denotes the leaf of F1 passing through x, M∗
1/F1 = B∗

1, and dµx, dµg and
dµḡ are the measures on the leaf Lx, M∗

1 and B∗
1 induced by the metric tensors g1|Lx,

g1 and ḡ1, respectively.
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Let now f̄t be a variation of f̄ . Then f̄t may be lifted to the smooth variation
ft : M∗

1 → M∗
2 . Therefore f is transversally harmonic if and only if f̄ is a critical point

of the energy functional on B̄∗
1. Hence from the equation above we get that

d
dt

∫
B∗

1

〈df̄t, df̄t〉dµ1|t=0 = d
dt

∫
M∗

1

〈d̃ft, d̃ft〉 1
V (x)

dνg|t=0.

Hence our theorem follows. �

2.1. Flows. Let F1 be a Riemannian flow on a compact Riemannian manifold
(M1, g1) andF2 a Riemannian flow on a compact Riemannian manifold (M2, g2). If the
foliations are tangentially oriented, then they are defined by vector fields X̂i, i = 1, 2,

respectively. Let f : (M1, g1) → (M2, g2) be a smooth mapping such that df (X̂1) = X̂2.

If the top-dimensional basic cohomology group H∗(M2,F2) is non-trivial, the
flow F2 is isometric, or equivalently geodesible; cf. [34, Chapter 6]. Therefore one can
normalize X̂2 getting a non-singular vector field X2 such that there exits a 1-form χ2 for
which χ2(X2) = 1 and iX2 dχ2 = 0; cf. [34, Propositions 6.7 and 6.8]. Let χ1 = f ∗χ2, is a
1-form on M1. Let X1 be the unique vector field tangent to F1 for which df (X1) = X2.

Then χ1(X1) = 1 and iX1 dχ1 = 0. The subbundles Q1 = kerχ1 and Q2 = kerχ2 are
supplementary to F1 and F2, respectively. Next, we modify the Riemannian metric g1

putting ḡ1(X1, X1) = 1, ḡ1(X1, Y ) = 0 ∀Y ∈ Q1, and ḡ1(X, Y ) = g1(X, Y ) ∀X, Y ∈
Q1. The Riemannian metric ḡ1 is bundle-like forF1 and X1 is a Killing vector field whose
orbits are geodesics; cf. [34, Proposition 6.7]. We make a similar modification ḡ2. The
mapping f is a foliated horizontal mapping of (M1, g1,F1) into (M2, g2,F2), and both
foliations are totally geodesic. Moreover, the induced mapping f̂ : MF1 → MF2 is an
isometry. Therefore the following theorem is a simple consequence of the considerations
above and the formula (2.3).

THEOREM 2.4. Let F1 be a tangentially oriented Riemannian flow on a compact
Riemannian manifold (M1, g1) of dimension m + 1 and F2 a tangentially oriented
Riemannian flow on a compact Riemannian manifold (M2, g2) of dimension n + 1. If
the top-dimensional basic cohomology groups Hm(M1,F1) and Hn(M2,F2) are non-
trivial and f maps a non-vanishing vector field tangent to F1 to a non-vanishing vector
field tangent to F2, then one can modify the Riemannian metrics along the leaves of
foliations F1 and F2 in such a way that the mapping f is transversally harmonic if and
only if it is harmonic.

COROLLARY 2.3. Let F1 be a tangentially oriented Riemannian flow on a compact
Riemannian manifold (M1, g1) of dimension m + 1 and F2 a tangentially oriented
Riemannian flow on a compact Riemannian manifold (M2, g2) of dimension n + 1 such
that the top-dimensional basic cohomology groups Hm(M1,F1) and Hn(M2,F2) are
non-trivial. If there exists a transversally harmonic map which maps a non-vanishing
vector field tangent to F1 to a non-vanishing vector field tangent to F2, then there exists
a harmonic map between (M1, ḡ1) and (M2, ḡ2) where the Riemannian metrics ḡi are
obtained from gi by modifications along the leaves of the flows Fi, i=1,2, respectively.

3. Transversally almost Hermitian foliations. In this section we are particularly
interested in foliations modelled on some classes of almost Hermitian manifolds that
appear in the Gray–Hervella classification; cf. [16].
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3.1. Transversally almost Hermitian foliations. Let (M, g,F , J) be a Riemannian
manifold (M, g) with foliation F and an almost complex structure J on the orthogonal
subbundle Q = TF⊥. We suppose that J is compatible with g; i.e., g(J(s1), J(s2)) =
g(s1, s2) for any s1, s2 ∈ �(Q). Equivalently, being transversally almost Hermitian
means that for any point x ∈ M there is given a foliation defining submersion
π : Ux → Ū of an open neighbourhood Ux of x in M on a 2q–dimensional almost
Hermitian manifold (Ū, ḡ, J̄) such that dπ restricted to the normal bundle is an
holomorphic isometry; i.e., it preserves the scalar products and commutes with the
almost complex structures. Therefore for any cocycle U defining the foliation F the
transverse manifold NU has an almost Hermitian structure for which the holonomy
pseudogroup HU is a pseudogroup of automorphisms; i.e. isometries of the almost
Hermitian metric. Likewise any foliation which admits a defining cocycle U such
that the transverse manifold NU is an almost Hermitian manifold and the holonomy
pseudogroup HU is a pseudogroup of isometries of this almost Hermitian structure, is
transversally almost Hermitian, as then the normal bundle N(M,F) admits a foliated
almost Hermitian structure; cf. [35, 36]. The transverse Kähler form on (M,F) is
defined in the following way: F(X, Y ) := g⊥(X⊥, J(Y⊥)) for any X, Y vector fields on
M, where X⊥, Y⊥ are their projections on the subbundle orthogonal to the foliation.
If the foliation is transversally almost Hermitian, then the form F is basic. This may be
easily seen observing that, locally, with respect to the submersion πU : U → Ū we have
that F = π∗

U F̄, where F̄ is the Kähler form of the induced almost Hermitian structure
(Ū, ḡ, J̄) on Ū .

Let g be any bundle-like metric on the foliated manifold (M,F). Now it induces
the volume form χF on the tangent bundle TF and a basic transverse volume form
volF . The form volF induces a holonomy invariant volume form ωF on the transverse
manifold N.

Let us also denote by κ the mean curvature form of the foliation F . We can modify
κ without changing the transverse part of the metric so that the 1-form κ is basic; cf.
[6]. Using the Masa theorem, (cf. [27]), one proves the following result.

THEOREM 3.1. Let (M,F) be a transversally Hermitian foliation of codimension q.
If Hq(M,F) �= 0, then there exists a bundle-like metric on (M,F) compatible with the
transverse Hermitian structure making all leaves of F minimal submanifolds; i.e. κ = 0
for that Riemannian metric.

We stress that the modifications to the Riemannian metric do not change the
transverse part, so that the foliation remains transversally (almost) Hermitian; see
[34, Ch. 7], and [6, p. 260].

3.2. Star operators. The bundle-like metric defines two Hodge star operators:
(i) ∗: �k(M) → �n−k(M),

(ii) the transverse part of the Riemannian metric determines the second Hodge
star operator �: �k(M,F) → �q−k(M,F) acting on basic forms.

This operator corresponds to the Hodge star ∗̄ on holonomy invariant forms on
the transverse manifold N. The differential operator d restricted to �∗(M,F) is denote
by dB. On the other hand, it is easy to observe that �α := (−1)p(q−r) ∗ (α ∧ χF ) for any
α ∈ �r(M,F).
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If M is compact, then on the vector space of basic forms �k(M,F) we have the
following natural scalar product: for α, β ∈ �k(M,F), k = 0, . . . , q define

〈α, β〉B =
∫

M
α ∧ �β ∧ χF .

One can prove the following result; cf. [20, 21, 34].

THEOREM 3.2. The formal adjoint of dB in �∗(M,F) with respect to the scalar
product 〈 , 〉B is the operator

δB = (dB − κ∧)�: �k(M,F) → �k−1(M,F),

where (dB − κ∧)�β = (−1)q(r+1)+1 � (dB − κ∧)�β, for any β ∈ �r(M,F).

We can compare δB with the standard mapping δ = ∗d∗ : �r(M) → �r−1(M). We
cannot assume that δ maps basic forms into basic forms. However, it is not difficult to
see that for any α ∈ �r(M,F), (cf. [34, 7.25],

δα = δBα + ∗γ (α)

where ∗γ (α) is an (r − 1)-form orthogonal to �∗(M,F) with respect to the standard
scalar product in �(M). Therefore, if a basic form α is coclosed on the foliated
Riemannian manifold (M, g,F), (i.e. δα = 0), then it is coclosed in the complex of
basic forms (i.e. δBα = 0). Therefore

δBα = �dB � α − �(κ ∧ �α) = 0.

If the bundle-like metric is minimal (i.e. κ = 0), δBα = �dB � α, and so δBα is the
lift to �∗(M,F) of the formal adjoint δ̄ of the differential d̄ in �∗(N).

In particular, if Hq(M,F) �= 0, by changing the Riemannian metric along leaves
we get that for a coclosed form α in this metric

δBα = �dB � α = 0.

Therefore the corresponding form ᾱ on the transverse manifold N is coclosed; i.e.
∗̄d̄∗̄ᾱ = 0.

3.3. Special structures. Let (M, g,F , J) be a foliated transversally almost
Hermitian manifold with oriented leaves. Let F be the associated transverse Kähler
form. We shall call this foliated manifold transversally cosymplectic if δF = 0.

In the Gray–Hervella classification of almost Hermitian manifolds there is a class
of the so called (1, 2)–symplectic manifolds. These manifolds are described by the
property that the (1, 2) component of the differential of the Kähler form vanishes;
cf. [16]. In the foliated case, the vanishing of the (1, 2) component of the differential
of the transverse Kähler form dF, considered as a form on N(M,F)c, is equivalent
to the vanishing of the (1, 2) component of the differential of the Kähler form F̄
on the transverse manifold. It is so because the pull–back of F̄ via the submersions
defining the foliated almost Hermitian structures is just the transverse Kähler form F .
Hence (M, g,F , J) is transversally (1, 2)–symplectic if and only if the model manifold
is (1, 2)–symplectic.
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Let f : M1 → M2 be a map between two transversally almost Hermitian manifolds.
Then the map f is said to be ± transversally holomorphic if df (J1(X)) = ±J2df (X), for
all X ∈ TF⊥. Then as a simple application of the theorem of Lichnerowicz, (see
[26, 12, 32]), we obtain the following results.

THEOREM 3.3. Let (Mk, gk,Fk, Jk), (k = 1, 2), be two foliated transversally almost
Hermitian manifolds, the foliation F1 being minimal. Suppose that (M1, g1,F1, J1)
is transversally cosymplectic and (M2, g2,F2, J2) is transversally (1, 2)–symplectic.
Then any foliated map f : M1 → M2 that is transversally (anti) holomorphic is also
transversally harmonic.

Proof. The transverse Kähler form F1 of (M1, g1,F1, J1) is basic and coclosed.
According to the considerations of Section 3.2, δBF = 0 as well. Thus the
corresponding Kähler form of the transverse manifold is coclosed. Hence the induced
mapping between the transverse manifolds is (anti)holomorphic, the domain is
cosymplectic, and the target manifold is (1, 2)-symplectic, so that this mapping is
harmonic and therefore the foliated map f : M1 → M2 is transversally harmonic; cf.
[24]. �

REMARK. The Kähler version of the theorem above was proved by E. Barletta
and S. Dragomir; cf. [2].

Combining Theorem 3.1 and Theorem 3.3 we obtain the following result.

COROLLARY 3.1. Let (M1, g1,F1, J1) and (M2, g2,F2, J2) be two foliated
transversally Hermitian manifolds. Suppose that Hq1 (M1,F1) �= 0, codimF1 = q1, and
the associated transverse Kähler form F1 on (M1,F1) is coclosed in the bundle-like metric
making the foliation F1 minimal and F2 is transversally (1,2) symplectic. Then any
foliated map, which is transversally (anti) holomorphic, is transversally harmonic.

4. Examples. First, we construct an interesting example of a transversally
harmonic map.

EXAMPLE 4.1. Let (M, g) be a Riemannian manifold. We consider N = TM, the
tangent bundle to M. Let K : TN → N be the associated connection map; cf. [7]. We
have the canonical projection π : N → M. The manifold N carries the Sasaki metric
h given by

h(A, B) = g(K(A), K(B)) + g(dπ (A), dπ (B)),

for any A, B vectors on N. The details about the Levi-Civita connection and curvature
properties of the manifold (N, h) may be found in [25]. The projection π : (N, h) →
(M, g) is a Riemannian submersion. Hence N is foliated by the fibres of this bundle; the
foliation is clearly Riemannian since it is given by a global Riemannian submersion.
Let (M1, g1), (M2, g2) be two Riemannian manifolds and (N1, h1), (N2, h2) the tangent
bundle manifolds with their Sasaki metrics. Let f : M1 → M2 be a smooth map. Then
if induces the smooth map F : N1 → N2 such that F = df . We have the following
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commutative diagram.

(N1, h1)
F−−−−→ (N2, h2)

π1

⏐⏐� ⏐⏐�π2

(M1, g1)
f−−−−→ (M2, g2)

Then the map f is harmonic if and only if F is transversally harmonic. Clearly the map
F need not be horizontal. Moreover, the map F is rarely harmonic; cf. [33].

Now let us present some general remarks concerning methods of constructing
examples of singular foliations and maps between them.

Let f : (M1, g1, J1,F1) → (M2, g2, J2,F2) be a foliated map between two foliated
almost Hermitian manifolds. Then, if the leaf closures of F1 and F2, J1 and J2,
respectively, are invariant, the almost Hermitian structures are also foliated for the
leaf closure foliations; cf. Proposition 2 of [19]. In particular, if the mapping f sends
the principal stratum M∗

1 into M∗
2 , its restriction to this stratum is transversally

holomorphic for the leaf closure foliation. For example, the condition is satisfied if
the commuting sheaves Ci of the foliations Fi are Ji- invariant, respectively. Now
assume that the foliations are transversally Kähler. Then the leaf closure space is a
singular Kähler space; cf. [19]. Moreover, from the construction of this structure it
is evident that a transversally holomorphic map f that sends the principal stratum
M∗

1 into M∗
2 is transversally holomorphic for the leaf closure foliations. The induced

mapping f̄ on the transverse manifold of the principal stratum is holomorphic for the
induced Kähler structures and so, according to Lichnerowicz’s Theorem, (cf. [26]), it
is harmonic. Thus the mapping f : M∗

1 → M∗
2 is transversally harmonic and hence the

mapping f : M1 → M2 itself is transversally harmonic.
One of the methods of obtaining transversally holomorphic maps is the suspension

construction. The remark above, Theorem 3.3 and the suspension construction can be
used to provide examples of transversally harmonic maps in the singular case. See [24]
for interesting examples.

First we present the construction of a suspension that can be found in [30] and
then use it to construct foliation preserving maps between foliated manifolds.

Let (F, g) be a Riemannian manifold and Isom(F, g) the group of its isometries.
Let us choose any smooth manifold S, let π1(S) = G be its fundamental group, and
h a representation of the group G into Isom(F, g). Let us take the Cartesian product
S̃ × F , where S̃ is the universal covering of S. The group G acts on this product
via the deck transformations on S̃ and the representation h on F in the following
way:

(s, v).γ = (s.γ, h(γ )(v)).

The product S̃ × F is equipped with the Riemannian metric gs × g, where gs is a
Riemannian metric lifted from S to S̃. The action of G on S̃ × F, denoted by the same
letter h, is isometric for this Riemannian metric. It is a totally discontinuous action
and we denote the quotient manifold S̃ × F/h by M(S, F ; h). It is a fibre bundle over S
with the standard fibre F. The projection S̃ × F → F defines a foliation of S̃ × F that
is G-invariant for the action just defined. It projects to a foliation FM on M(S, F ; h)
that is transverse to the fibres. Its leaves are covering spaces of S. In the induced
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Riemannian metric gM , the foliation by the fibres is totally geodesic, and the foliation
FM is Riemannian.

Let (S1, gS1), (S2, gS2), (F1, g1), and (F2, g2) be four Riemannian manifolds. Let
us denote by Gi the fundamental group of the manifold Si, and by hi a representation
of Gi into the group Isom(Fi, gi) of isometries of the Riemannian manifold (Fi, gi),
(i = 1, 2). Let f : S1 → S2 be a smooth map and f̃ : S̃1 → S̃2 its lift to the universal
coverings of these manifolds. Then f̃ is (G1, G2)-equivariant. Let us denote by
π1(f ): G1 → G2 the map induced by f on the fundamental groups, and let hi: Gi →
Isom(Fi, gi) be representations of Gi, (i = 1, 2), respectively. Choose a map φ: F1 → F2

which is (G1, h1; G2, h2)-equivariant; i.e. φ(v.h1(γ )) = φ(v).h2(π1(f )(γ )) for any v ∈ F1

and any γ ∈ G1. The map ψ̃ : S̃1 × F1 → S̃2 × F2 defined by ψ̃ = (f̃ , φ) is (G1, G2)-
equivariant. Therefore it induces a map ψ : M1(S1, F1; h1) → M2 (S2F2; h2). The
induced Riemannian metrics on M1 and M2 we denote by gM1 and gM2, respectively.
The following lemmas are fundamental for constructing transversally harmonic maps;
cf. [24].

LEMMA 4.1. The map φ : F1 → F2 is harmonic if and only if ψ is transversally
harmonic.

LEMMA 4.2. The maps f : S1 → S2, φ : F1 → F2 are harmonic if and only if the
induced suspended map ψ : M1(S1, F1; h1) → M2(S2, F2; h2) is harmonic.

Let the manifolds (F1, g1), and (F2, g2) be almost Hermitian (respectively Kähler)
for almost complex structures J1 and J2, respectively, and let the representations hi

take values in Isom(Fi, gi, Ji), the group of holomorphic isometries. It is obvious
that the almost complex structures J1 and J2 induce transverse almost complex
structures denoted by the same letters J1 and J2 on M1 and M2, respectively. Then the
foliations are transversally almost holomorphic, respectively transversally Kählerian,
and φ : (F1, J1) → (F2, J2) is holomorphic if and only if the induced suspended map
ψ : (M1(S1, F1; h1),FM1 ) → (M2(S2, F2; h2),FM2 ) is transversally holomorphic for the
induced transverse almost complex structures.

If the manifold F is compact, the leaf closure foliation is the following. Take the
closure K of H(G) in the group Isom(F, g, J). The natural action of the group K on F
defines an SRF FK . The projection onto M(S, F ; h) of the pull-back of FK to S × F,

is the leaf closure foliation. We have the following result.
The mapping ψ : (M1, gM1 , F̄M1 ) → (M2, gM2 , F̄M2 ) is transversally harmonic,

(respectively holomorphic) if and only if the map φ : (F1,FK1 ) → (F2,FK2 ) is
transversally harmonic (respectively transversally holomorphic).

The right choice of representations in the examples of [24] can provide us with
interesting examples.

Let f : (M1, g1) → (M2, g2) be a smooth map between two Riemannian manifolds.
Assume that there exists a smooth �k isometric action φ on (M1, g1) such that the
vector fields v∗ of the associated infinitesimal action are of constant length; i.e. the
vector fields v∗(x) = d

dtφ(tv, x)|t=0 ∈ TxM1 for any v ∈ �k and x ∈ M1. Additionally,
assume that these vector fields are annihilated by the differential df of the mapping
f. In this case, if the mapping f is harmonic, then it is transversally harmonic. It is a
consequence of Theorem 2.2, as the foliation of M1 is totally geodesic.
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This remark can be applied in several cases.

• Leaf closure foliations of a regular Riemannian foliation F .

The leaf closure foliation F̄ is an SRF whose leaves (the closures of leaves of F) are
the foliated orbits of the commuting sheaf C; cf. [29]. The commuting sheaf is locally
constant. On the principal stratum, both foliations F and F̄ are regular, and so locally,
leaves of F̄ are foliated orbits of a Lie algebra of transverse Killing vector fields; i.e.
locally we have the following property.

Let p: (U, g) → (N, h) be a Riemannian submersion whose fibres are leaves of F .
There exists a Lie algebra K of Killing vector fields of (N, h) defining a regular foliation
on N and such that its inverse image by p is the foliation F̄ .

Putting together the remark above and the holonomy pseudogroup charac-
terization of transversally harmonic maps we can formulate the following theorem.

Let f : (M1, g1,F1) → (M2, g2,F2) be a foliated transversally harmonic map between
two foliated complete Riemannian manifolds. Assume that the commuting sheaf of the first
one is abelian and that the leaves of the second one are closed (compact). Additionally, let
the principal stratum be simply connected; then the commuting sheaf is trivial. Therefore
if the vector fields of the commuting sheaf have constant length, then the induced mapping
f : (M1, g1, F̄1) → (M2, g2,F2) is transversally harmonic.

• The closures of sheets of totally geodesic foliations.

Similar considerations can be applied to the closures of sheets of totally geodesic
foliations. In [4], Cairns demonstrated that they form an SRF. One can find interesting
examples in [15, 5].

Finally, using the suspension construction we are going to construct transversally
Kähler foliations and their transversally holomorphic maps.

EXAMPLE 4.2. Let (F, g, J) be a compact Kähler manifold and X a holomorphic
Killing vector field. Then JX is a holomorphic vector field which is rarely a Killing
vector field; cf. [22]. Let GX be the Abelian subgroup of Isom(F, g, J)–the group
of holomorphic isometries – generated by the flow of the vector field X . Any
diffeomorphism of the flow of JX commutes with the elements of GX as [X, JX ] = 0;
i.e., the elements of GX and GJX commute. In fact, LX J(Y ) = [X, JY ] − J[X, Y ], for
any vector field Y . If we take Y = X, then [X, JX ] = 0.

Let h: �k → GX ⊂ Isom(F, g, J) be a representation of the group �k = π1(�k).
Suspending h we obtain a compact manifold M(�k, F ; h) which is a fibre bundle over
�k with the fibre F equipped with a transversally Kähler foliation F modelled on
(F, g, J) and whose leaves are coverings of �k. Any element of the group GJX defines
a foliated diffeomorphism of (M(�k, F ; h),F), that is transversally holomorphic, as
elements of the group GJX are holomorphic diffeomorphisms of (F, g, J).
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30. C. Moore and C. Schochet, Global analysis on foliated spaces, (Springer-Verlag, 1988).
31. M. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer Math.

Soc. 7 (1976), no. 175.
32. J. H. Rawnsley, f –structures, f –twistor spaces and harmonic maps, in Geometry Seminar

Luigo Bianchi II, 1984, Lecture Notes in Mathematics 1164 (Springer-Verlag, 1985), 85–159
33. A. Sanini, Applicazioni armoniche tra i fibrati tangenti di variet‘a riemanniane, Bol.

U.M.I. 6 (2A), (1983), 55–63.
34. P. Tondeur, Geometry of foliations (Birkhäuser, 1997).
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