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1. Introduction. If X is any set and L c [ - o o , oo]x, the class $&L of L-Baire functions
is defined to be the smallest subclass of [—oo, oo]x which contains L and is closed under the
formation of monotone, pointwise, sequential limits, so that SSLsfn/f or &Lsfn \f=>

Segal and Kunze [7], following Loomis [4], used this idea as the basis for a very efficient,
elementary presentation of the theory of measure spaces (X, S, n) and their associated integral
spaces (X, H?(S, n), \-dfi). Maron [5] then used it to study (not necessarily constructed)
abstract integral spaces (X, £C, /) in the absence of any structure on X.

In [7], measurable functions and constructed integrals are presented in an "integral
oriented" way to illuminate the role of L-Baire functions. In this article we show how to use
.L-Baire functions to give quick, informative proofs of the basic properties of measures and
their associated integrals (on the class of summable, measurable functions) using the "measure
oriented" definitions of Halmos [2]. The idea is to show that the objects defined in the "mea-
sure oriented" way coincide with an "integral oriented" counterpart, hence a fortiori have
the desired properties (see (2.5), (2.6) and (5.5)).

Having done this, it is easy to obtain a very sharp and general Riesz-Markov type theorem
(6.3) which describes the 1-1 correspondence between the collection of all (not necessarily
complete) a-finite measure spaces (X, S, n) and the collection of all integral spaces (X, SP, I)
for which £C satisfies the hypothesis of Stone [8] : / e £C =>f A 1 e £C. To obtain this general-
ity, we use the definition of an integral space (X, £?, I) given in [5] which avoids null sets by
allowingi? «= [-oo, oo]*.

A discussion of the results obtained and their proofs is given in § 7.

2. Preliminaries on collections of sets and functions. The symbols R and [—oo, oo] denote
respectively the set of real and extended real numbers. We take 0-(±oo) = 0 and leave
±(oo — oo) undefined. The order and algebraic operations, and limits of sequences in [ — oo,
oo]* are defined in the natural (pointwise) way. A function lattice (on X) is a nonempty
class JS? <=• [— oo, oo]x which is closed under (real) scalar multiplication and under the lattice
operations (i.e./ v g = max{/, g) a n d / A g = min{/, g} are in & whenever/, g e£f), and
which is conditionally closed under addition in the sense that/+# is in if whenever/, g e i ?
and/+0 is defined (at each point of X); if it happens that £C <= RX then S£ is called a Riesz
space or real function lattice. Since / + g is defined for any/, g e Rx, a Riesz space is simply
a vector space of functions in Rx which is closed under the lattice operations.

The most important result about L-Baire functions for our purposes is Theorem 9 of
[5] which we now restate for reference.
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(2.1) MONOTONE CLASS LEMMA FOR FUNCTIONS. IfL is a Riesz space then 3SL is a function
lattice.

Throughout, R will denote a ring and S a tr-ring of subsets of X, S(R) will denote the
c-ring generated by R, and %A will denote the characteristic function of A <=• X. Then the
following result is immediate from (2.1).

(2.2) LEMMA. IfL is a Riesz space then the class {A <=• X: XA
 e

 &L} ™ a 0-ring.

Recall that/e[—oo, oo]x is called S-measurable if

(2.3) f-\c,«i\sS and / ^ [ - o o , - c ) e S for all ce(0,oo).

We denote by Ms the class of S-measurable functions. Another important class of functions
is the Riesz space £[R], which consists of the R-simple functions, i.e. those s e Rx which can be
represented (not uniquely) as a finite sum

(2.4) s = £ atxAi, where at e R and At e R.
ii

(2.5) PROPOSITION. Iff e[0,<x>y, the following are equivalent:

( i ) / e ^S(R)> i-e.fisS(R)-measurable.

(ii) There exist sn e L[S(R)] such that 0 ^ sn / f, i.e. 0 ^ st ^ s2 ^ . . . andf = supnsn =
limn5n.

(iii)/e î.[S(R)]> i-e.fis anL[S(Ry\-Bairefunction.

( iv) /e x̂.[R]> i-e.fis an L[EL]-Baire function.

Proof, (i) => (ii) is standard (see [2] Theorem 29B p. 85), and (ii) => (iii) is true by the
definition of ^ L

(iii)=> (iv). Since {A <= X: %A e^t [ R ]} is a er-ring (Lemma (2.2)) which contains R,
it contains S(R). But ^.[R] is a function lattice, by the Monotone Class Lemma (2.1); so it
follows from (2.4) that every s e L[S(R)] is an £[R]-Baire function. But ̂ t [ R ] is, by definition,
closed under the formation of monotone sequential limits; so it must contain every L[S(R)]-
Baire function.

(iv)=>(i). Observe that for any ce(0, oo), {/e[-oo, oo]x :/"*(<:, oo]eS(R)} is a
monotone class that contains L[R] (see [7], Theorem 3.1 p. 52).

For any class & <= [-oo, oo]x, define^"1" = {fe&:f£ 0}.
I f / e [ -oo , oo]*thenby(2.3),/e^sifandonlyifboth/+ = / v Oand/" = ( - / ) v 0

are in M$. The following elementary properties of the class Jt% are therefore immediate
from (2.5) and (2.1):

(2.6) COROLLARY. J/S = ^L[S], hence Jls is a function lattice. Moreover, Jts is the
smallest class in [— oo, oo]x which contains %A for each AeS and which is closed under the
formation of monotone sequential limits.
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3. Relevant facts about integrals. An elementary integral space is a triple (X, L, I),
where Lisa Riesz space of functions on X and / is an elementary integral on L, i.e. a positive
linear functional on L such that L sfn \ 0 => Ifn \ 0. An integral is a functional / : :Sf -»• R,
(where if is a function lattice on X), which is monotone and conditionally linear in the sense
that if/, g e £C and a,beR and af+ bg is defined (on X), then I(af+ bg) = alf+ big; and which
satisfies the Monotone Convergence Theorem, namely

(3.1) SB afH /fand lim. //„ < oo =»/e if and / / = limn //„.

In this case the triple (X, S£, /) is called an integral space.
The notation (X, if, I) ^ (X, &, I), (read (X, &, 1) extends (X, £?, /)), means if c i>

and / extends /. Uniqueness of integral extensions is assured by the following important
result (Theorem 8 of [5]):

(3.2) UNIQUENESS THEOREM. Suppose that (X, if, /) and (X, <£, 1) are integral spaces
and that L is a function lattice contained in £? n & such that the restrictions of I and I to L
coincide. Then for any fe &?£, either / e SC n & and If = If or there exist fn &<£ n <£ such
thatO £fm/fand\\mjfn = limn//n = oo.

If the integral / is defined on the function lattice £^, it will be convenient to extend / t o all
of &B% by taking If = oo whenever/e SS^\X\ we are then assured by (3.1) and (3.2) that
for any/, g, fn e38%,

(3-3) f£g=>If£Ig, and

Integral extensions are assured by the following result:

(3.4) EXISTENCE THEOREM. Let (X, L, I) be an elementary integral space, (a) Using the
Daniell extension procedure {see § 3.3 of [7] for details) one can construct an integral space
(X, SCj, I) which extends (X, L, / ) . (b) The restriction of the integral I of (a) to the function
lattice 08L n t£1 is clearly an integral. The resulting integral space (X, $IL n &t, I), called the
Baire extension pf{X,L, I), is minimal in the sense that for any integral space (X, 3?, 1) we
may take & = S£1 in (3.2) to conclude that

{X, L, 1) g (X, &, 1) => {X, @L n &u I) ^ (X, &, I).

4. The integral space associated with an elementary measure. The map n: R ->• [0, oo]
is called an elementary measure on R, and the triple (X, R, ft) is called an elementary measure
space if ^(0) = 0 and fi is countably additive, i.e. if An e R (n = 1,2,.. .) are pairwise disjoint
and if \J An e R, then /.i(\J An) = £ n(An). Both n and (X, R, y) are called a-finite if every

n n n

A G R is of cr-finite ^-measure. Evidently, an elementary measure is a measure if and only if
it is defined on a a-ring.

Let (X, R, n) be an elementary measure space. Then the class

(4.1) RM = {A<=R:n(A) < oo}
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is also a ring, and the real number I^s, given by

(4.2) V-EM4) for *
as in (2.4), unambiguously defines an elementary integral /„ on the Riesz space £[RM] ([9]
Theorem 1, p. 75), so {X, L[R J , / J is an elementary integral space. Its Baire extension
(3.4(b)) is denoted by (X, J?M[R], /„) and will be called the minimal integral space associated
with (X, R, n). Note that by (3.4(b) and (2.5)

(4.3) if.LR] c 3SL[Rfi} =JtS(K,y

The familiar extension theorem for measures ([2] Theorem 13A, p. 54) can now be deduced
from the existence of (X, JSP^R], /,,).

(4.4) THEOREM. Let n be a a-finite elementary measure on the ring R. Then by taking
(l(A) = lJ(X.A)for A e S(R) we get the unique measure (i on S(R) extending mflis a-finite.

Proof. See Corollary 3.5.1 of [7].

5. The minimal integral space as a constructed integral. The integral space (X, jSf^R],
/„) associated with the elementary measure space (X, R, /i) in § 4 was obtained quickly because
we used the rather elaborate, general Baire extension. If we are given a (not necessarily
(j-finite) measure space (X, S, (i), a more direct construction of an integral proceeds as follows:

DEFINITION. For any s e L[S] + represented as in (2.4), take (5.1)

(5.1) [sdli=Ydaiti{A^.

(Bear in mind our convention that Ooo = 0.) Then \sdn e [0, oo] and, as in § 4, is independent
of the representation (2.4) for s e L[S]+. For any/e Jt$, define \fd\L (e [0, oo]) by

(5.2) J / ^ = s u p { J S ^ : / ^ s e L [ S ] + } .

Finally, define the family i?(S, \i) of (i-summable functions to consist of those/e Jis such that
| / + dp < oo and \f~d\i < oo, and define the functional J • dfi on £C(S, /i) by

(5.3) \fdli=\rdn-\f-dii, for /eJ5f(S,/0.

Observe that, with SM denoting the class of sets of S having finite ^-measure as in (4.1),
S(S,,) is precisely the class of a-finite subsets of S. Since n extends its restriction to SM, we
have n(A) = I^XA) f ° r a n v A e S ( S J (Theorem (4.4)). Hence, by (5.1) and (3.3), we have

(5.4) Jsd/i=/^s for any se L[S(S,)]+.
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The verification that (X, if(S, /x), J • dfi) is an integral space can now be carried out by
elementary means (see [6] Chapter 11, Section 3) or by the following informative argument.

(5.5) THEOREM. (X, if (S,/*), \-dn) coincides with (X, if,,[S], /„) of §4; it is thus the
(unique) minimal integral space which extends the elementary integral space (X, L p J , J- dp).

Proof. It suffices to consider nonnegative functions. Suppose first that /e i f (S, ;u)+.
Then/e J/g by definition, so there exist j n e ! [ S ] + such that sn/ f (Proposition (2.5)). In
view of definition (5.2), we have \snd\i ^ \fd\i < oo, and this (by (5.1)) implies that we actually
have 5neZ.[SJ+. Thus, applying (5.4) and the Monotone Convergence Theorem (3.1) to
the integral /„ yields

(*) / e i f ( S , ^ ) + ^ / 6 i ? , [ S ] + and IJ = limn l,sn = lim. I,sn = limn f sjfi < \fdpi.

On the other hand, if /eif^S]"1", thenfeJ^g(Sti) by (4.3); s o / i s certainly S-measurable.
Suppose that / ^ s e L[S]+, as in (5.2). Since s ^ / e J^s(s^ w e s e e t n a t •y~1(c> °°] = s~\c>
oo] nf~\c, oo], which is a <7-finite subset of S; so we actually have s G L [ S ( S J ] + . Applying
(5.4) and the monotonicity of the integral /„ yields

(**) / e i f , [ S ] + ^ / e i f ( S , ^ ) + and J/d/z = sup {/,s:/ ^ s sL[S(S,)]} ^ / , / .

The desired conclusion obtains upon combining (*) with (**).

6. Integrals that can be associated with measures. We now reverse the roles of measure
and integral, and assume that we are given an integral space (X, if, /). For (X, if, /) to be
associated with a measure, it is clearly necessary that

(6.1) feSe = > / A leJ2 \

Stone ([8] II, pp. 452-454) showed how the integral resulting from a Daniell extension (3.4(a))
of an elementary integral space (A", L, I) can be obtained from a (necessarily complete) measure
provided feL=>f A l e i . We now show how an arbitrary (not necessarily constructed)
integral / on if determines a minimal (not necessarily complete) measure space from which it
can be retrieved by means of § 5 whenever (6.1) holds.

(6.2) THEOREM. If (X,&,I) is an integral space and £? satisfies (6.1), then the class
S{if} = {A c X: XA e^s} is ^e smallest a-ring with respect to which every function in ££
is measurable, and the set function fij defined on S{if} by

»I(A)=I(XA) for ^eS{ i f}

(where l(xA) = oo if XA 6 @P\&+) is a a-finite measure on S{i?}. Call (X, S{if}, /i7) the
measure space associated with (X, &, I). Then the minimal integral space associated with
(X, S{if}, /i,), viz. (X, if (S{iP}, fi,), J • d/ij), coincides with the given integral space (X, &, I).
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Proof. It is clear that J5f n Rx is a Riesz space. Since (6.1) holds, a "truncation"
argument shows that 88% is precisely the class of 3! n J?x-Baire functions; so S{if} is a ff-ring,
by Lemma (2.2). That any/e if + is S{if}-measurable follows from (6.1) and the fact that

if B [n(f-f A c)] A 1 / X/-i(e> co] e^L, i.e., /" ' (c , oo] 6 S{L}

for any c e (0, oo). But for any a-ring S such that if <= J(s we have @s c: ^ / s by (2.6),
so that S{if} <= S, i.e.

S{if} is the smallest c-ring S such that 3! <=• Jis.

Clearly /z, is a measure on S{if}. Let R{if} = {A e S{if} : %A e &}. Then (3.2) implies
that for any A e S{iP}, either A e R{if} or there exist fne&+ such that /„ / %A. In the
latter case, taking An = / ~ 1 ( | , oo] gives A = [j An and AneR{SC} (by (3.2) again, since

n

XAn ^ 2/e S£). Hence \it is tr-finite and S{if} = S(R{if}). But both the given integral / and
the integral j-d/i, (associated with (X, S{if}, /.i,) in § 5) agree on the Riesz space Z.[R{if}].
Since .S?+ n :S?(S{JS?}, ni) <= Jt£ = ^^{sn by (2-5)» w e conclude from Theorem (3.2) that
(X, if, /) and (X, if(S{if}, /i,), J- rf^) coincide.

Combining this with § 5, we obtain the main result we seek:

(6.3) THEOREM. The map <j>: (X, <£, I) -> (X, S{if}, n,) described in (6.2) establishes a
1-1 correspondence between the collection of all integral spaces (X, &, I) for which (6.1) holds
and the collection of all a-finite measure spaces (X, S, fi). Its inverse is the map (X, S, /*) -•
(X, if(S, //),/• dn) described in § 5.

(6.4) COROLLARY. By restricting 0 o/(6.3), we obtain a 1-1 correspondence between the
collection of all I-complete (3D of [5]) integral spaces (X, $£, I) satisfying (6.1) and the collection
of all complete a-finite measure spaces (X,S,[i).

7. Discussion. Segal and Kunze ([7], § 3.2) define the functions measurable with respect
to R to be @Lm (cf. (2.5)). Bogdanowicz [1] characterized (X, if(S, /i) n Rx, j-dfi) as a
minimal integral extension as in (5.5); but his argument assumes that this triple is an integral
space, whereas our argument proves it.

In their lecture notes, which were kindly sent to me by the authors, Kelly and Srinnivasan
[3] obtain a result similar to Theorem (6.2), namely (in the notation of (6.2)) that to each
integral / on the function lattice £C (identified with ^£ n Rx) which satisfies (6.1) there is a
measure on a <5-ring (namely HJ on R{i?}, in the notation of (6.2)) from which (X, & n Rx, I)
can be retrieved. However, they observe that not all measures ^iona 5-ring (i.e. a ring closed
under countable intersection) can be obtained this way; so their surjective map (X, R, /i) -•
(X, S£ n Rx, I) is not injective. Using the results of Stone [8], Zaanen ([9], Theorems 7 and 9
of § 17 and Problem 32.13) in effect obtains Corollary (6.4); but his argument cannot be
modified to give the much sharper result (6.3).
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