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1. Introduction. If X is any set and L < [~ oo, 0]*, the class &, of L-Baire functions
is defined to be the smallest subclass of [— o0, c0]* which contains L and is closed under the
formation of monotone, pointwise, sequential limits, so that #,3f, /' for &,.> f, \ f=
fe%,.

Segal and Kunze [7], following Loomis [4], used this idea as the basis for a very efficient,
elementary presentation of the theory of measure spaces (X, S, 1) and their associated integral
spaces (X, £(S, u), {-du). Maron [5] then used it to study (not necessarily constructed)
abstract integral spaces (X, 2, I)in the absence of any structure on X.

In [7], measurable functions and constructed integrals are presented in an “integral
oriented” way to illuminate the role of L-Baire functions. In this article we show how to use
L-Baire functions to give quick, informative proofs of the basic properties of measures and
their associated integrals (on the class of summable, measurable functions) using the “measure
oriented” definitions of Halmos [2]. The idea is to show that the objects defined in the “mea-
sure oriented” way coincide with an “integral oriented” counterpart, hence a fortiori have
the desired properties (see (2.5), (2.6) and (5.5)).

Having done this, it is easy to obtain a very sharp and general Riesz-Markov type theorem
(6.3) which describes the 1-1 correspondence between the collection of all (not necessarily
complete) o-finite measure spaces (X, S, 1) and the collection of all integral spaces (X, £, I)
for which & satisfies the hypothesis of Stone[8]: fe &£ = f A 1 € £. To obtain this general-
ity, we use the definition of an integral space (X, &, I) given in [5] which avoids null sets by
allowing & < [— o0, 0]

A discussion of the results obtained and their proofs is given in § 7.

2. Preliminaries on collections of sets and functions. The symbols R and[ — oo, c0] denote
respectively the set of real and extended real numbers. We take 0-(+00) = 0 and leave
+(o0 — o) undefined. The order and algebraic operations, and limits of sequences in [ — oo,
]* are defined in the natural (pointwise) way. A function lattice (on X) is a nonempty
class & < [— o0, ] which is closed under (real) scalar multiplication and under the lattice
operations (i.e. f v g = max{f, g} and f A g = min{f, g} are in ¥ whenever f, g € £), and
which is conditionally closed under addition in the sense that f+g is in £ whenever f,ge %
and f+g is defined (at each point of X); if it happens that & < R* then & is called a Riesz
space or real function lattice. Since f+g is defined for any f, g € R, a Riesz space is simply
a vector space of functions in RX which is closed under the lattice operations.

The most important result about L-Baire functions for our purposes is Theorem 9 of
[5] which we now restate for reference.
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(2.1)  MonoTonE CLASs LEMMA FOR FUNCTIONS.  If L is a Riesz space then 8, is a function
lattice.

Throughout, R will denote a ring and S a o-ring of subsets of X, S(R) will denote the
o-ring generated by R, and y, will denote the characteristic function of 4 < X. Then the
following result is immediate from (2.1).

(22)  Lemma. IfLisa Rieszspacethentheclass{A < X: y € %B,}isao-ring.

Recall that fe[—oo, 00]* is called S-measurable if
(2:3) f'(c,0]eS and f[-c0, —c)eS forall ce(0, ).

We denote by . the class of S-measurable functions. Another important class of functions
is the Riesz space L[R], which consists of the R-simple functions, i.e. those s € R* which can be
represented (not uniquely) as a finite sum

(2.4) s =) a4 where a;eR and A4;eR.

(2.5)  ProposiTioN. Iff€[0, o0o}*, the following are equivalent:
(i) fe Mgy i.e.fis S(R)-measurable.
(ii) There exist s, € L[S(R)] such that0 £ s, /' f,i.e.0 £ 5, £ 5, £ ...andf = sup,s, =
lim,s,,.
(iii) f € By i-€-fis an L[S(R)]-Baire function.
(iv) f € Bygy, i.e. fis an L[R]-Baire function.

Proof. (i)=> (ii) is standard (see [2] Theorem 29B p. 85), and (ii) = (iii) is true by the
definition of &g p);-

(iii) = (iv). Since {4 < X: x, € B g} is a o-ring (Lemma (2.2)) which contains R,
it contains S(R). But &y, is a function lattice, by the Monotone Class Lemma (2.1); so it
follows from (2.4) that every s € L[S(R)] is an L[R]-Baire function. But %/, is, by definition,
closed under the formation of monotone sequential limits; so it must contain every L[S(R)]-
Baire function.

(iv)=>(i). Observe that for any ce(0, ), {fe[—o0, 0]*:f}(c, 0]eS(R)} is a
monotone class that contains L[R] (see[7], Theorem 3.1 p. 52).

Foranyclass # < [— o0, «0]*,define F* = {fe F:f 2 0}.

Iffe[~ o0, ]* then by (2.3), fe Mg if and only if both f* = f v Oandf~ = (=f) v 0
are in g. The following elementary properties of the class .4 are therefore immediate
from (2.5)and (2.1):

(2.6)  COROLLARY. Mg = %), hence Mg is a function lattice. Moreover, M is the
smallest class in [— o0, 0]* which contains y, for each A €S and which is closed under the
formation of monotone sequential limits. '
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3. Relevant facts about integrals. An elementary integral space is a triple (X, L, I),
where L is a Riesz space of functions on X and 7 is an elementary integral on L, i.e. a positive
linear functional on L such that L3 f, \, 0= If, \\ 0. An integral is a functional /: & — R,
(where £ is a function lattice on X ), which is monotone and conditionally linear in the sense
thatif f, g € & and a, b € R and af + bg is defined (on X), then I(af+ bg) = alf+blg; and which
satisfies the Monotone Convergence Theorem, namely

(3.1) #sf,/ fandlim, If, < o0 = fe & and If = lim, If,.

In this case the triple (X, &, I)is called an integral space.

The notation (X, %, 1) < (X, 2, I), (read (X, 2, I) extends (X, &, 1)), means & < @
and [ extends 7. Uniqueness of integral extensions is assured by the following important
result (Theorem 8 of [5]):

(32)  UniQuENess THEOREM. Suppose that (X, Z,1) and (X, 2, 1) are integral spaces
and that L is a function lattice contained in & n 2 such that the restrictions of I and I to L
coincide. Then for any fe B, either fe £ N 2 and If = If or there exist f,e ¥ N 2 such
that0 £ f, / fandlim,If, = lim,[f, = .

If the integral I is defined on the function lattice &, it will be convenient to extend 7 to all
of B by taking If = co whenever fe #\.%; we are then assured by (3.1) and (3.2) that
foranyf, g,f, € %,

(33) f£g=If<Ig, and I(Zf.,) = Ifn
Integral extensions are assured by the following result:

(34) ExiSTENCE THEOREM. Let (X, L, I) be an elementary integral space. (a) Using the
Daniell extension procedure (see § 3.3 of [7] for details) one can construct an integral space
(X, &1, I) which extends (X, L, I). (b) The restriction of the integral I of (a) to the function
lattice B, ~ &, is clearly an integral. The resulting integral space (X, &1, &L}, I), called the
Baire extension of (X L, I) is minimal in the sense that for any integral space (X S,P f) we
may take & = ¥,in(3.2) to conclude that

(X, LD (X, 2, D= X,8.n 2, 1)< (X, 2.

4. The integral space associated with an elementary measure. The map p: R — [0, o0]
is called an elementary measure on R, and the triple (X, R, ) is called an elementary measure
space if u(0) = 0 and p is countably additive, i.e. if 4,e R (n = 1, 2, .. .) are pairwise disjoint
and if U A, €R, then /.l(U 4,) = Z u(A,). Both p and (X, R, p) are called o-finite if every

A e R is of o-finite u-measure Ev1dently, an elementary measure is a measure if and only if
it is defined on a ¢-ring.
Let (X, R, p) be an elementary measure space. Then the class

4.1) R, = {4 eR: p(4) < o}
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is also a ring, and the real number /s, given by
4.2) Is =Y au(4;) for seL[R,]

as in (2.4), unambiguously defines an elementary integral 7, on the Riesz space L[R,] ([9]
Theorem 1, p. 75), so (X, L[R,], I,) is an elementary integral space. Its Baire extension
(3.4(b)) is denoted by (X, £ ,[R], 1,) and will be called the minimal integral space associated
with (X, R, p). Note that by (3.4(b) and (2.5)

(4.3) Zu[R] = Bur,y =5,

The familiar extension theorem for measures ([2] Theorem 13A, p. 54) can now be deduced
from the existence of (X, Z,[R], 1,).

(44)  THEOREM. Let yi be a o-finite elementary measure on the ring R. Then by taking
A(4) = I,(x4)for A € S(R) we get the unique measure i on S(R) extending u; fLis a-finite.

Proof. See Corollary 3.5.1 of [7].

5. The minimal integral space as a constructed integral. The integral space (X, £,[R],
1,) associated with the elementary measure space (X, R, p) in § 4 was obtained quickly because
we used the rather elaborate, general Baire extension. If we are given a (not necessarily
o-finite) measure space (X, S, 1), a more direct construction of an integral proceeds as follows:

DerFINITION.  For any s € L[S]™ represented as in (2.4), take (5.1)

(5.1) js du = ; aiu(Ai).

(Bear in mind our convention that Oco = 0.) Then jsdu €[0, 0] and, as in § 4, is independent
of the representation (2.4) for s € L[S]*. Foranyfe #¢, define | fdu ([0, co]) by

(5.2) [fdu =sup{fsdu:f2seL[S]*}.

Finally, define the family £(S, u) of u-summable functions to consist of those fe /g such that
[f*du < oo and [f~du < oo, and define the functional |- du on £(S, u) by

(53) §fdu=(f*du—[fdu, for fe (S, p).

Observe that, with S, denoting the class of sets of S having finite y-measure as in (4.1),
S(S,) is precisely the class of o-finite subsets of S. Since p extends its restriction to S,, we
have p(4) = I,(x,) for any A € S(S,) (Theorem (4.4)). Hence, by (5.1) and (3.3), we have

(5.4) [sdu=p,s forany seL[S(S,)]*.
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The verification that (X, £(S, p), |- du) is an integral space can now be carried out by
elementary means (see[6] Chapter 11, Section 3) or by the following informative argument.

(5.5)  THEOREM. (X, #(S,n), |-du) coincides with (X, % ,[S),1,) of §4; it is thus the
(unique) minimal integral space which extends the elementary integral space (X, L[S ], §- du).

Proof. 1t suffices to consider nonnegative functions. Suppose first that fe £(S, p)*.
Then fe ¢ by definition, so there exist s, € L[S]* such that s, 7 f (Proposition (2.5)). In
view of definition (5.2), we have [s,du = [fdu < oo, and this (by (5.1)) implies that we actually
have s5,e L[S,]*. Thus, applying (5.4) and the Monotone Convergence Theorem (3.1) to
the integral J, yields

(*) feLS, )t =>re2,[S]* and If=1lim,ls, =lim,Ls, = lim, { s, du < | fdu.

On the other hand, if fe % ,[S]*, then fe M4, by (4.3); so f is certainly S-measurable.
Suppose that f 2 s € L[S]*, as in (5.2). Since s £ fe MYs,), we see that s7*(c, 0] = s7'(c,
0] A f (e, ©0], which is a o-finite subset of S; so we actually have s € L[S(S,)]*. Applying
(5.4) and the monotonicity of the integral 7, yields

(**) feZ[S]* =>fe2(S,w)* and ([fdu =sup{ls:fzseL[S(S,)]} £ LS

The desired conclusion obtains upon combining (*) with (**).

6. Integrals that can be associated with measures. We now reverse the roles of measure
and integral, and assume that we are given an integral space (X, &, I). For (X, %, ) to be
associated with a measure, it is clearly necessary that

(6.1) fe&L=>fAleck.

Stone ([8] II, pp. 452-454) showed how the integral resulting from a Daniell extension (3.4(a))
of an elementary integral space (X, L, I) can be obtained from a (necessarily complete) measure
provided feL=f A 1eL. We now show how an arbitrary (not necessarily constructcd)
integral J on % determines a minimal (not necessarily complete) measure space from which it
can be retrieved by means of § 5 whenever (6.1) holds.

(6.2)  TueoreM. If (X, %,1) is an integral space and & satisfies (6.1), then the class
S{¥} = {4 < X: x,€By} is the smallest a-ring with respect to which every function in &
is measurable, and the set function y; defined on S{£} by

nl4) = I(xy) for AeS{%}

(where I(x,) = o if x, € BHL") is a o-finite measure on S{L}. Call (X, S{L}, ;) the
measure space associated with (X, %, I). Then the minimal integral space associated with
(X, S{£}, py), viz. (X, L(S{L}, i), I+ duy), coincides with the given integral space (x, 2, 1).
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Proof. 1Tt is clear that & n R* is a Riesz space. Since (6.1) holds, a “truncation”
argument shows that &, is precisely the class of ¥ n R*-Baire functions; so S{.#} is a ¢-ring,
by Lemma (2.2). Thatany fe £+ is S{#}-measurable follows from (6.1) and the fact that

Lsn(f—f A AL/ 11, 01€BL, ie., [!(c, 0]eS{L}

for any c € (0, o). But for any o-ring S such that & < #g we have B, < #g by (2.6),
so that S{#} < S, i.e. ’

S{#} is the smallest o-ring S such that & < #g.

Clearly p; is a measure on S{#}. Let R{¥} = {4eS{¥}:x,e€£}. Then (3.2) implies
that for any 4 e S{Z}, either 4 € R{#} or there exist f, € £* such that f, /" y,. In the
latter case, taking A, = f'(3, o] gives 4 = (] 4, and 4,eR{Z} (by (3.2) again, since

Xa. S 2f€%). Hence y, is o-finite and S{.£} = S(R{Z}). But both the given integral I and
the integral - dy, (associated with (X, S{#}, i;) in § 5) agree on the Riesz space L[R{Z}].
Since £+ N L(S{&}, u;) = M§ = Bfir.en bY (2.5), we conclude from Theorem (3.2) that
(X, £, 1) and (X, L(S{£}, ), |- du;) coincide.

Combining this with § 5, we obtain the main result we seek:

(6.3) THEOREM. The map ¢:(X, £, 1) (X, S{L}, ;) described in (6.2) establishes a
1-1 correspondence between the collection of all integral spaces (X, &, I) for which (6.1) holds
and the collection of all o-finite measure spaces (X, S, p). Its inverse is the map (X, S, p) -
(X, (S, n), - du) describedin § 5.

(6.4)  COROLLARY. By restricting ¢ of (6.3), we obtain a 1-1 correspondence between the
collection of all I-complete (3D of [5]) integral spaces (X, &, I satisfying (6.1) and the collection
of all complete 6-finite measure spaces (X, S, 1) .

7. Discussion. Segal and Kunze ([7], § 3.2) define the functions measurable with respect
to R to be By, (cf. (2.5)). Bogdanowicz [1] characterized (X, £(S, ) N R, [-du) as a
minimal integral extension as in (5.5); but his argument assumes that this triple is an integral
space, whereas our argument proves it.

In their lecture notes, which were kindly sent to me by the authors, Kelly and Srinnivasan
[3] obtain a result similar to Theorem (6.2), namely (in the notation of (6.2)) that to each
integral I on the function lattice % (identified with & n R¥) which satisfies (6.1) there is a
measure on a §-ring (namely y, on R{&}, in the notation of (6.2)) from which (X, & n R*, )
can be retrieved. However, they observe that not all measures p on a é-ring (i.e. a ring closed
under countable intersection) can be obtained this way; so their surjective map (X, R, p) —»
(X, £ n RX, I)is not injective. Using the results of Stone[8], Zaanen ([9], Theorems 7 and 9
of §17 and Problem 32.13) in effect obtains Corollary (6.4); but his argument cannot be
modified to give the much sharper result (6.3).
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