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Abstract

The linear stability properties are examined of long wavelength vortex modes in two time-
periodic flows. These flows are the motion which is induced by a torsionally oscillating
cylinder within a viscous fluid and, second, the flow which results from the sinusoidal
heating of an infinite layer of fluid. Previous studies concerning these particular config-
urations have shown that they are susceptible to vortex motions and linear neutral curves
have been computed for wavenumbers near their critical value. These computations be-
come increasingly difficult for long wavelength motions and here we consider such modes
using asymptotic methods. These yield simple results which are formally valid for smatl
wavenumbers and we show that the agreement between these asymptotes and numerical
solutions is good for surprisingly large wavenumbers. The two problems studied share a
number of common features but also have important differences and, between them, our
methods and results provide a basis which can be extended for use with other time-periodic
flows.

1. Introduction

Temporally periodic flows occur in numerous important contexts and have applica-
tions in a diverse range of fields including engineering, geophysical dynamics and
physiology. Two relatively simple examples, on which we shall concentrate here, are
the Stokes layer which is induced by an infinitely long, torsionally oscillating cylinder
within an otherwise quiescent viscous fluid of infinite extent, and a thermal analogue
which arises from the oscillatory heating of a horizontal boundary of a semi-infinite
region of fluid. In the case of the oscillating cylinder, fluid motion is confined to a
thin layer adjacent to the cylinder with the velocity field being exponentially small
at large distances form the cylinder. Similarly, the temperature field far from the
heated boundary is uniform, with significant temperature variation being confined to
a thin region close to the boundary. The stability of practically relevant flows must
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always be a topic of concern and the objective of the current study is to examine the
stability properties of temporally periodic flows when subjected to small amplitude,
long wavelength vortex-like disturbances.

The curved Stokes layer and the sinusoidally heated semi—infinite layer are known
to be susceptible to vortex instabilities. (For the sake of brevity we shall hereafter
refer to these problems as the ‘cylinder’ and ‘plane layer’ problems respectively.) In
the former case the instability appears as a structure which is periodic in the direction
of the cylinder axis and which is confined to a relatively thin zone on the surface of the
cylinder. For the plane layer problem the instability is periodic across the plate and
varies in the direction normal to the bounding surface. Computations by Seminara
and Hall [4] and Hall [2] have yielded linear neutral stability curves for the respective
cases. Under the periodicity constraints mentioned above, it is a straightforward task
to show that the requisite stability equations take the forms of partial differential
systems involving one space variable and time (details of these systems are given
below). Solutions were obtained by writing the dependent variables as Fourier series
in time with coefficients functions of the space co-ordinate. By substituting these
expressions into the governing system, and then comparing the coefficients of the
individual harmonics, each problem can be re-cast as an infinity of coupled ordinary
differential equations for the coefficients in the assumed Fourier series solution.

Seminara and Hall [4] solved the curved Stokes layer problem by approximating the
solution by finite Fourier-like series and thereby reducing the formally infinite family
of ordinary differential equations to a finite set. These were then tackled using shooting
methods coupled to Newton iteration. For vortex wavenumbers around critical this
procedure works well but it becomes increasingly sensitive and inconvenient to use
as the wavenumber becomes large. The principal reason for this is that at this
wavenumber extreme the level at which truncation should be applied in order to
produce reliable results rapidly becomes excessive. Then one is left with a very large
system of equations and, even with modern computing resources, accurate solutions
are not easily obtained.

A recent study by Blennerhassett er al. [1) has shown that in the high wavenumber
(or, equivalently, the short wavelength) limit the impractical Fourier decomposition
method of solution is superseded by a WKB-like approach to the analysis of the
-problems. This technique, although formally only justifiable for asymptotically short
wavelengths, turns out to yield useful information about the neutral stability curve
for a surprisingly large band of wavenumbers. Even for the most straightforward
'time-periodic flows this WKB approach is technically involved in detail but, having
appreciated its general properties, the application of its results to practically relevant
flows is not difficult. This was illustrated in [1] where, although the general theory
was developed by appealing to a simplified model, it was shown that it may easily be
applied to the oscillating cylinder and heated plane layer problems. The purpose of
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the present study is to complete the investigation of the linear vortex stability of time
periodic flows by turning attention to the small wavenumber limit. It is found that this
is somewhat simpler to analyse than the corresponding large wavenumber case but,
nonetheless, it contains a number of interesting features. As in [1], we shall illustrate
our methods by applying them to the two particular instances already described and,
whilst the basic solution philosophy is the same in each case, the respective solutions
have a number of contrasting features. Given this additional analysis, it is then
theoretically possible to examine the vortex stability of a large class of temporally
periodic flows across the entire wavenumber spectrum. For O(1) wavenumbers a
numerical solution of the Fourier decomposed equations is necessary whilst for large
or small wavelengths the asymptotic arguments given herein or by [1] are required.

The remainder of the paper is organised as follows. In Section 2 we outline the
formulation of the linear stability equations for the curved Stokes flow, discuss their
numerical solution dand analyse the long wavelength limit. A similar pattern is taken
in Section 3 for the sinusoidally heated infinite layer of fluid and we conclude in
Section 4 with some discussion and comparison of the two problems.

2. The curved Stokes flow

Consider the flow which is induced by a torsionally oscillating cylinder of radius R
and infinite length in an incompressible fluid of density p and kinematic viscosity v.
Relative to the usual cylindrical polar co-ordinates (r, 8, z) aligned so that the z-axis
coincides with the axis of the cylinder, it is well known that for high frequencies
of oscillation w the induced fluid motion is confined to the region where » — R is
O (/v/w). Accordingly, it is convenient to define dimensionless co-ordinates n and

Z by
w w
7= Z(r—R), 7= /Ez Q.1

and suppose that the fluid velocities in the r—, 6 — and z— directions are written

u= (mu, Awv, Mw). 2.2)

Here A denotes the amplitude of the oscillation of the cylinder and, in the limit when
R~'\/v/w is small, the relative importance of the centripetal forces tends to vanish,
so that at the lowest order of approximation the basic flow is the classical Stokes layer

u=w=20, v = vg = exp(—n)cos(t — 1), 2.3)

where ¢ is a dimensionless time based on the oscillation frequency. If this flow is
disturbed by infinitesimal amplitude vortices of axial wavenumber a then the velocity
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components may be written
(u, v, w) = (0, vg, 0)

+4 [(L? (n,1), 0(n, ), w(y, t)) exp(iaz) + complex conjugate] ,
s« 1.

2.4

By substituting (2.4) into the continuity and Navier-Stokes equations and linearising,
one derives the usual disturbance equations

92 9 92
(a—,,z s 25) (a‘n“ - >‘7 ~ T =0 e
3 9
(anz e a,) v_fﬂa —0, (2.5b)

which need to be solved subjectto t = 0 = du/dn = 0at n = 0 and as n — oo.
In these equations T is the Taylor number based on the Stokes layer thickness and is
defined by T = 2A%/w/(R/V).

Equations (2.5) with the associated boundary conditions are precisely the forms
which were solved numerically by Seminara and Hall [4]. For O(l) values of the
wavenumber, the natural way to isolate neutral modes is to decompose & and ¥ into
Fourier time series and thereby reduce (2.5) to an infinite set of coupled ordinary
differential equations. If we write

o0

(@.9)= > W), Vam)) ™,

n=-00

the governing equations become

(D* —a* =2in) (D* = a®) U, = @’T [TV, + 7'V, ,] =0,
(2.6a)

(D* —a® =2in) V, + 25 [(L +De™™ U, + (1 = De U, 1] =0, (2.6b)

U, =DU,=V,=0 at n=0 and as n— oo, (2.6¢)

where D denotes d/dn. Seminara and Hall [4] derived formal infinite double-series
solutions for each harmonic U, and V,, which show that the solution components decay
exponentially as n — 00.

The system (2.6) is solved by choosing U, = V,, = Oforall |n| > N atsome level of
truncation N and the remaining finite-dimensional system treated as an eigenproblem
for T = T (a). Seminara and Hall [4] found that the lowest value of T occurred at
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the critical wavenumber a. = 0.8585 with corresponding Taylor number 7, = 164.41
and that T — oo as ¢ — 0 or co. Severe numerical problems were encountered
at wavenumbers greater than about 2a. for then the level of truncation demanded by
system (2.6) in order to achieve reliable results is so great as to make the computation
infeasible.

Numerical difficulties also arise as the wavenumber becomes much smaller than
a.. An examination of the goveming system shows that the U, velocity components
decay like e~ for large n and so, for a small, the size of the computational domain
must be increased to accommodate the slowly decaying components of the solution.
This computational difficulty can be overcome by the use of projection conditions,
as described by Lentini and Keller [3], at the far-field boundary, rather than directly
imposing the conditions as stated in (2.6c). These projection conditions allow a much
smaller computational domain to be used, but its size is still weakly dependent on the
wavenumber a. The results presented in Figures 2 and 4 below and described as the
solutions of the full eigenvalue problems were obtained using the above techniques,
as well as the inefficient method of simply using (0, 10/a) as the computational
domain. The main drawback of the numerical solution is that it completely ignores
the structure of the perturbations as the wavenumber a tends to zero. In this limit the
solution develops a two-layer structure, where the appropriate O (1) co-ordinates are
n, for the layer on the cylinder, and ¥ = an for the far field. The solution in the far
field can be obtained analytically (as the Stokes layer velocity has decayed to zero),
and matching this to the wall layer provides boundary conditions for a computational
problem for which the size of the n domain is no longer dependent on the wavenumber.
The details of this process are given below.

For the small ¢ limit we begin by expanding each variable U,, V, as power series
in a. Following Seminara and Hall [4], we exploit the fact that (2.6) can be decoupled
into two systems; one involving even indexed U components and odd indexed V terms
and the other vice-versa. It is well established that the more dangerous system (in
the sense that for given wavenumber it becomes unstable at the lower Taylor number)
is the first of these so we set Uy, = V5. = 0 for all integers r. (In addition, the
harmonics of the solution satisfy U, = U*,, V, = V*, where the asterisk denotes
complex conjugation.) The unknowns are now expanded as

U2n = U3, + a¢2n + cieg v2n+l = v2n+| + a¢2n+l + L] (27a1b)

with

T=Ta 3 +Ta'+..., (2.7¢)
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so that the governing equations for the leading order terms become

(D* —4in)DPuy, — To[e 7" P vgyy + €7y ] = 0, (2.82)
(D* = 2i@2n 4+ 1) vapgy + [+ D™ uy, + (1 — D)™ uy,ys] /V2 =0,(2.8b)
with the O(a) correction terms governed by

(D2 - 4in)D2¢2n_T0 [e_n(lﬁ)‘//Zn—l + e—n(l—i)¢2"+]]

—=n(1+i —n(t—i
= Tl [€ ! I)v2n—l +e ! |)v2n+l]v

(D? = 2i@n + 1)) Yangr + [(1+0)e ™0y, + (1 —)e ™' by,,5] /v/2 = 0.(2.80)

(2.8¢c)

The leading order equations (2.8a,b) need to be solved subject to the boundary
conditions

Uy = Dupy = 034, =0 at n=0, (2.9a)

ug— Con — Ao, Uz = Cy, V2 >0 as n— oo, (2.9b)

for some constants Ay, C,,. We note that the conditions (2.9b) do not force the
disturbance velocities to vanish as n — oo, and yet neither do they allow the most
general behaviour of u,, consistent with the governing equations. Clearly equation
(2.8a) allows u;,, to depend linearly on n for all n, but it was found that only solutions
satisfying (2.9b) could be matched to solutions in the outer region where Y = an is
O (1). Thus, in this outer region, the solution takes the form

U=a'ig(Y)+... and Uy =i (Y)+... for n#0, (2.10a,b)

with all the V,,;, components being exponentially small; in fact they are of size
exp (—O(a™")). The substitution of (2.10) into the goveming equations (2.6a,b) and
the matching of the resulting outer solutions to the inner forms as Y — 0 gives the
results

120 = COY€_y, 122,, = Cz,,e_y (I’l # O) (21 1)

It is now clear that this outer zone ensures that the solutions in the region where
n ~ O(1) are brought smoothly to zero in the far field.

Equations (2.8a,b), subject to (2.9a,b), were solved on the finite domain (0, n,)
using the boundary value routines of the AUTO package. As  — oo the governing
equations decouple completely, and the boundary conditions at infinity (2.9b) could
be implemented as conditions prohibiting exponential growth of the solutions at 7.
The usual checks were made that the numerical solution had converged adequately
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FIGURE 1. The eigenfunctions v,(5) and u,(n) of the leading order eigenproblem (2.8a,b), (2.9).
The real and imaginary parts of v, are denoted by the solid and dashed lines respectively whilst the
corresponding components of u, are shown by the dotted and dot-dash lines.

and that the level of truncation of both the Fourier series and the flow domain was
sufficiently high that the predicted value of T; was independent of the truncation
points. In practice taking components up to v; was more than sufficient and a value
of e = 12 worked well. The value of T;, was found to be

Ty ~ 12.284 (2.12)

and Figure 1 shows the real and imaginary parts of the harmonics v, and u,. We
note that u, has attained its asymptotic value well before 5., and that v; has just
decayed to zero at the end of the computational domain. This figure represents the
worst case for the decay of the v,,,; components, as higher harmonics in v decay
with increasing speed, as can be seen by examining the governing equations at large
n. Similarly, higher harmonics in u reach their large n asymptote faster than u,. By
way of comparison, the constant Cg in (2.9b) is approximately 0.046, so that at 7,
the mean u velocity is some 400 times larger than u, so, in fact, uy, dominates the
solution.

In order to derive an expression for the correction term 7, in the Taylor number
expansion (2.7¢) the system (2.8¢,d) for the functions ¢,,, ¥»,,; is considered. The
conditions which must be met on the surface of the cylinder n = 0 and those enforced
by matching with the outer solution necessitate that

2 = D¢ppy = ¥2,,1 =0  on n=0; (2.13a)
D’¢y > —2Co, D¢y — —Cpy, Y21 >0 as 1 — co. (2.13b)
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The value of T, is determined by the standard procedure of examination of adjoint
functions. The system which is adjoint to (2.8a,b), (2.9a,b) is given by

(D? — 4in) Dy, + [(1 + D)™ Byuy + (1 — e85, ] /V2 =0, (2.14a)
(D* = 2i@2n + 1)) Borsr — To[e " Patzpa + €7 Pty | = 0, (2.14b)

subject to

oy = Doy = By =0 at n =0, (2.14¢)

DaO i &67 Oy —> &Zns ﬁ2n+l — 0 as n— 00, (214d)

for some constants a»,, ;. If equation (2.8c) is multiplied by a,,(n), (2.8d) by
Bau+1(n), the results added and summed over #, then one integration over 0 < n < 0o
proves that (2.8c,d) subject to (2.13a,b) only admit a solution if 7, satisfies the
condition

T, - ® =(1+i)n —(1-i)y
1 Z (6 Vap—1 + e v2n+l) oy d’)
n=-—=00 0
=4i ( > n&z,,cz,,) + 2&},C,. (2.15)

n=—00

System (2.14) for the adjoint functions was solved using a procedure identical in spirit
to that used for tackling (2.8a,b). A consistency check on the numerical solutions
involved and, on the derivation of the adjoint system, was provided by the condition
that the eigenvalue for T coming from the adjoint system (2.14) must be the same
as that coming from the direct problem, equations (2.8a,b) with boundary conditions
(2.9a,b). Using terms up to B; gave values for Ty from the adjoint problem which
agreed to eight figures with the previously calculated values. Having determined the
leading order eigenfunctions, the adjoint functions and the constants C,,, &; and &2,
elementary manipulation leads to the estimate 7, = 41.19,

Figure 2 shows the comparison between the asymptotic prediction (2.7¢c) for long
wavelength neutrally stable vortices and the numerical values determined by a full
solution of the governing stability equations (2.6). It is noteworthy that as ¢ — 0
so the discrepancy between the asymptotic and numerical values diminish but it is
also evident that the two-term asymptotic series T ~ 12.284a72 +41.19a7" + ...
is significantly more accurate than the one-term prediction. Indeed, the agreement
between the two-term asymptote and the numerical results is so good that for a wide
range of long wavelengths the former may be used with a high degree of precision.
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FIGURE 2. Comparison between numerically determined and asymptotic behaviour of the linear
neutral stability curve for the Stokes layer on an oscillating cylinder. Plotted is the neutral Taylor
number T as a function of vortex wavenumber a. The solid line denotes this dependence according to
a numerical solution of the full system (2.6) whilst the dashed and dotted lines illustrate the one and
two-term asymptotic solutions as given by (2.7¢).

3. The sinusoidally heated flat plate problem

In order to accentuate the analogy between this thermal flow and the curved Stokes
flow described above we deduce the relevant equations for this second problem using
a non-standard co-ordinate configuration. Consider a horizontal flat plate = 0 which
is heated so that it has temperature T, 4+ T, cos wr. Suppose that above the plate lies
an infinite fluid of thermal diffusivity « and kinematic viscosity v and that lengths,
velocities, pressure, time and temperature T — T, are made dimensionless by scaling
by 2k /w, v 2k w, 2k wpes, w and T, respectively. With the Prandtl number o given
by o0 = v/k and the Rayleigh number R defined by

agT; (2«
R=28L (),
2kv \ w
where « is the coefficient of volume expansion and g the gravitational constant, the

basic conduction solution is given by u = v =w = 0, T = Ty = vg where vg(n, t)
is given by (2.3). If this basic flow is perturbed by solutions periodic in z so that

[N

(wu,v,w,p, T)=1(0,0,0,0, Tp)
+ 5{U(n, tycosaz,0, W(n, t)sinaz, P(n, tycosaz, ©(n, ) cosaz], G.n
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then the disturbance equations can be reduced, under the standard Boussinesq approx-

imation, to
3 (3 32 2
E (a—n2 - az) U+ %UGZRQ = %O’ (8_7’2 - az) U, (323)
10 T, | a2 )
—_ — =z - O, 3.2b
ar TU%y T2 (anz a (3.20)

subject to the boundary conditions U = @ =22 =0onn =0and as n — oo.

Similarities clearly exist between the sets of equations (2.5) and (3.2) and the
analysis of this thermal problem is started by imposing a Fourier decomposition of
the velocity and temperature fields,

au
an

(U, 8) = Y (Ua(n), Ou(m) ™.

n=—0o0

With this form, (3.2) reduces to the infinite set of ordinary differential equations

.
(02 —a’ - ﬁ) (D?—a’) U, —a®RO, =0,  (33a)

g
(D*—a*=2in)®, + 1 +)e ™" PU,,, + (1 —)e™U,_, =0, (3.3b)
U =DU,=0,=0 on =0 and as n— oo. (3.3¢)

Hall [2] considered this system, in slightly different scalings, and calculated the
critical conditions for linear stability. Blennerhassett et al. [1] attempted to extend
these calculations to larger and smaller wavenumbers, but again encountered numer-
ical difficulties. In this paper we consider only the resolution of the small wavenumber
situation. As with the oscillating cylinder problem, the computational difficulties arise
due to the slow decay of the velocity and temperature perturbations as the wave num-
ber tends to zero, and the emergence of a two layer structure to the perturbation fields.
Before proceeding with the small wavenumber limit, we note that the system (3.3)
exhibits the conjugation property that U_, = Uy, ©_, = O}, following from the
requirement that U/ and © are real functions, but the form of the terms coming from
the interaction of the basic temperature field and the velocity perturbation prevents
the occurrence of two decoupled solutions as in the oscillating cylinder case. Thus,
in general, it must be expected that the solution of (3.2) contains all the harmonics of
both U and ©.

Following the procedure applied to the oscillating cylinder problem, the velocity
and temperature perturbation fields are expanded as

Un = un.O(n) + aun.l(n) +... s G)n =Uno + (10,,_| (n) + ... ’ (34a,b)
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in the region where 7 is O (1), whilst the neutral Rayleigh number becomes
R=a?Ry+a 'R +.... (3.4¢)

The substitution of these expansions into (3.3) leads to the systems

, 2in )
D — T D Upo— Ro@n‘o = 0, (353)
(DZ —2in) 6,0+ (1 +1D)e ™ *ug 10+ (1 —)e ™™ Pugyy0 =0, (3.5b)

for the leading order terms, whilst the correction terms satisfy the equations

o)

).
(02 - ﬂ) D%upi — Robpt = Ribpo,  (3.5¢)
(D = 2in) 0,y + (1 + D™ ug_yyy + (1 — D)™™ Dy, = 0. (3.5d)

The leading order problem (3.5a,b) must be solved subject to conditions requiring
the perturbations to vanish on the plate, viz

Upo=Du,0=6,0=0 at n=0, (3.6a)

and matching conditions as 7 tends to co. Here the equations (3.5a,b) do not com-
pletely decouple as n becomes large and, in the mean flow components, a linear growth
with 7 in 6y and an n* behaviour for u is allowed by the equations. For n # 0 the
temperature must decay exponentially as 7 tends to infinity, while, at most, u, o can
grow linearly with n. Despite these possibilities, it was found that consistent matching
between the wall and far field region could only be obtained if the perturbations satisfy
the conditions

(uoo — Eon’) /> > 0, w0~ E, (n#0), 6,—>0 Vn as n— oo
(3.6b)

for some constants E,. The quadratic growth in the mean component of the velocity
field as n — oo is arrested in the zone where n = O(a™').
In this outer layer where Y = an is O(1), the solution has the form

Up=a2iigo(Y) + ..., U, =buo(¥)+... (n £0), Oy =aGpo(Y)+...,
3.7

with ©, exponentially small for n # 0. Elementary manipulation reveals that in order
to match with the large 5 solutions (3.6b),

. " N 8E
ligo = EoY?e™", o= E,e™” (n#0), 6boo= Toe_;’. (3.8)
()
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These outer solutions now enable us to specify the requisite boundary conditions for
the first order system (3.5¢,d). In addition to the usual vanishing of perturbations on
the plate, i.e. u,; = Du,, = 6,, = 0onn = 0, it is necessary that

(wos + Eon®) /n* — const., u,,+ E,n— const. (n#0), 6,,—>0 Vn,
3.9

asn — oo.

The eigenproblem (3.5a,b, 3.6a,b) was solved numerically, on a finite domain
(0, ns), using a similar AUTO routine to that implemented for the oscillating cylinder
system (2.8a,b). The growth in the mean flow component meant that the boundary
conditions had to be imposed with some care. The condition Dugo = 0 at n, allowed
the required quadratic growth in ug g, but left no room to apply other conditions on
ug.o, despite the fact that D*uq is present in the governing equations. The required
two constraints at 7., for the mean terms were provided by overspecifying the mean
temperature 6;: the conditions

Oho=Dbo=0 at n=1n4

were used in the calculations. For the higher harmonics the boundary conditions used
at 1, were asymptotic boundary conditions, derived using the projection techniques
presented by Lentini and Keller [3]). Figure 3 shows the forms of the first few
harmonics of the solution of this leading order eigenproblem for the choice of Prandtl
number o = 1. It is noted that the sizes of the velocity harmonics are typically much
greater than the corresponding temperature ones but that the mean velocity component
is a dominant feature; for large 7 it is found that ugy ~ 81.53n% + O ().

The leading order term in the Rayleigh number expansion was found to be Ry ~
209.91, based on calculations including up to 89 and u,g0. It was also found that
the convergence of R, as the number of terms in the Fourier series grows was much
slower in this thermal problem than in the previous example.

The adjoint system to (3.5a,b), (3.6) may be cast as

(D* —2in)y, — RS, =0, (3.10a)
2i . .
(DZ - ﬂ) D8, + (1 +1)e ™"y, + (1 —i)e ™y, =0, (3.10b)
o
subject to y, = 8, = D8, = 0 on n = 0 for all n together with 8, — 8, as n — o0
for some constants §,. It should be noted that these far-field conditions force y, —
constant for n # 0 (solutions with exponential growth must be excluded) and y, may

grow quadratically for large . If we follow the usual procedure of multiplying (3.5¢)
by y.(n), (3.5d) by §,(n), adding the resulting equations and then summing over n, we
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FIGURE 3. The first few components of the eigenfunctions for the leading order thermal problem
(3.5a,b), (3.6); a) The real (solid line) and imaginary (dashed) parts of the fundamental u, (n) ; b) The
mean temperature ;¢ (solid) and real (dashed) and imaginary (chain) parts of 6y ;.

deduce, on application of the boundary conditions (3.9), that (3.5c,d) admit a suitable
solution only if the Rayleigh number correction term satisfies the equation

Ry Y [ bumamant=2i( Y i) Gan
0

n=-=00 n==00

Solution of the adjoint system (3.10) together with numerical evaluation of the
integrals and constants in (3.11) yields the value R, = 3.77. Figure 4 shows a
comparison between the two term asymptotic form of the neutral Rayleigh number
R =~ 209.91a"% + 3.77a™" and numerical values determined by solution of the full
governing system (3.2). As in the previous example, it is noted that the asymptotic
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result is increasingly useful as @ — 0 and that this approximation is good over an
appreciable range of long vortex wavelengths.

10000

Numerical
solution

1000 |

Two-term
asymptotic
solution

100
0.1 1

FIGURE 4. Comparison between the numerically determined (solid line) and the two-term small-a
asymptote R = 209.91a=2 +3.77a"" to the linear neutral stability curve for the sinusoidally heated plane
layer.

4. Discussion

In this work we have endeavoured to explore the linear neutral stability properties of
vortex modes in two particular time-periodic flows. It has been shown that expansions
in the (assumed small) vortex wavenumber, combined with the method of adjoints,
yields the first two terms in the expression for the neutral curve. A complicating
factor is that in both cases examined the solution structure divides into two distinct
regimes with the slow exponential decay of the disturbances taking place in the outer
of these. It is this feature which is the principal reason that makes direct numerical
solution of the governing linear stability equations difficult using the Fourier series
decomposition procedure. For small wavenumbers the domain over which the full
equations must be integrated in order to capture the correct far-field decay is very
large.

The two problems we have chosen to look at share a number of important common
features but, nevertheless, illustrate a few important differences. The thermal problem
is harder to solve than the centripetal one. This is partly because the leading order sys-
tem does not decouple into two smaller ones and partly because the quadratic growth
in the mean velocity field (see (3.6b)) is more difficult to impose numerically than the
corresponding linear growth required by the centripetal problem. Our solutions show
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that the two-term small a asymptotes provide good agreement with numerical results
over large parameter ranges; in the centripetal problem the two-term asymptote is
significantly more accurate that the one-term result. In contrast, for the thermal case,
the two-term asymptote is graphically indistinguishable from the one-term result, a
feature which can be attributed to the observation that since R, > R, the second
term R,;a~' in the small @ expansion for the neutral Rayleigh number is swamped
by the leading order one. We have seen that in both cases the mean components
of the disturbance functions are huge compared with the harmonics. However, in
the centripetal case the sizes of the scaled radial and azimuthal velocity components
are broadly similar (see Figure 1) whilst for the heated problem the induced velocity
components overwhelm both the mean and fluctuating temperature disturbances.

To conclude, we have successfully described the stability properties of long wave-
length vortices in two related oscillatory flows. Our results suggest that it is relatively
straightforward to obtain useful asymptotic expressions for the behaviour of the neut-
ral curve and our technique, combined with the Fourier decomposition numerical
approach for ¢ = O(1) and the large wavenumber studies of [1], enables us to dis-
cuss rigorously the linear stability of vortex modes across the complete spectrum of
wavenumbers. Moreover, the basis laid here should be easily extendible in order to
describe the stability characteristics of vortices in a large class of time-periodic flows.
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