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Abstract

This paper proposes new syntactic inference rules which can directly extract information flow

in a given typed process in the π-calculus. In the flow analysis, a flow in a process is captured

as a chain of possible interactions which transform differences in behaviours from one part

of its interface to another part of its interface. Polarity in types plays a fundamental role in

the analysis, which is elucidated via examples. We show that this inductive flow analysis can

be used for giving simple proofs of noninterference in the secrecy analyses for the π-calculus

with linear/affine typing, including its concurrent, stateful extensions.

Capsule Review

Noninterference is one of the main operational properties that can be established in the

framework offered by this paper. The focus is indeed on secure information flow for typed

versions of the pi calculus (a first simple typed version is incrementally extended). The required

information is extracted from the syntax of processes, in the form of syntactic inference rules.

The key idea is the correspondence between polarity in types and information flow. As a

matter of fact, polarities have to do with the directions of information flow: a typed channel

is positive if the channel emits information, while a typed channel is negative if the channel

receives information. If the system does not infer any insecure flow in the process under

analysis, then noninterference is automatically ensured, i.e. no high-level information flows

down to low-level channels. The proof of noninterference is therefore carried in a simple and

elegant way. The paper is well written and is notable the way notions are rearranged to give

new insights.

1 Introduction

This paper introduces new syntactic inference rules which can directly extract

possible flows of information from a given typed process. A flow in a process is,

intuitively speaking, a chain of possible interactions which may transform differences

in behaviour from one part of its interface (which is a set of channels) to another

part of its interface (which is again a set of channels). In other words, the flows in

a process P are the embodiment of the transformation which P would induce when

it is connected with another process at designated channels.
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Types associated with process channels play an essential role in our framework.

The notion of types in which we are particularly interested is the linear/affine type

discipline and its extensions (Berger et al., 2001; Yoshida et al., 2001; Yoshida et al.,

2002; Honda & Yoshida, 2002; Honda et al., 2004), whose origins are traced back

both to the logical traditions including Linear Logic and game semantics (Abramsky

et al., 2000; Hyland & Ong, 2000; Honda & Yoshida, 1997; Girard, 1987) and to

the process-calculi tradition, sorting (Milner, 1992b; Vasconcelos & Honda, 1993)

and its refinement (Honda, 1996; Yoshida, 1996; Kobayashi et al., 1996; Pierce &

Sangiorgi, 1996). A central feature of this type discipline is the use of duality, where

types designate complementary nature of the possible interactions carried out at

channels (for example input and output in the simplest case). Thus types constrain

both a process and its environment. This two-way constraint inductively controls

the ways by which two processes influence each other in a sequence of mutual

interactions, or, in other words, the ways by which information flows between two

parties, without sacrificing essential expressiveness. This articulated form of mutual

effects leads to a tractable way to extract information flows following the syntax of

processes.

As is well-known, the dynamics of diverse language constructs in programming

languages are representable as those in processes via encoding (as Milner showed

in the case of the λ-calculus (Milner, 1992a) and Walker showed in the case of an

object-oriented language (Walker, 1995)). The use of duality-based types is significant

in this context again, since it allows these embeddings semantically accurate in the

sense that they become equationally fully abstract (Berger et al., 2001; Yoshida

et al., 2001; Berger et al., 2003; Honda et al., 2004). This makes it possible to carry

over the flow analysis on processes to that on programs via simple encodings.

The well-organised form of information flow via duality types has a clean

representation in the notion of polarity, one of the basic themes of this paper.

Types, or typed channels, come with essentially two polarities, positive and negative.

Intuitively, a type (or a typed channel) which emits, or generates, information is said

to be positive, while a type which receives, or consumes, information is said to be

negative (these polarities are not directly related to the distinction between input and

output). Whether a given type is positive or not can be easily verified using a simple

behavioural characterisation, which we shall present in section 3.2. The polarity

gives basic insight on information flow in typed processes. For example, in processes

representing pure functional behaviours (including those based on call-by-name

and call-by-value evaluations), types are strongly polarised in the sense that each

type is classified exclusively as either positive or negative; thus information always

flows in one direction, and its analysis is relatively simple. However when processes

contain stateful behaviours, such as those of imperative variables, types can be

simultaneously both positive and negative. As a basic example, when an imperative

variable is read, it surely emits information; whereas, when it is written, it receives

one. Thus an imperative variable has mixed polarities, making the associated flow,

hence its analysis, more complex. This observation sheds new light on the difficulty

of analysing programs with imperative effects, especially in the presence of higher-

order references. The polarities in the present work are closely related with those
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in Polarised Linear Logic (Laurent, 2002a; Laurent, 2002b; Laurent & Regnier,

2003); Yoshida et al. (2002) first discussed this notion in the context of the linear

π-calculus.

Polarities directly suggest how the flow inference rules can be derived following

the syntactic structure of typed processes. Since polarities represent directions of

information flow, they indicate how we can incrementally extract a flow from a

typed process starting from flows of its subterms. This is so even with types of

mixed polarities (as in types for stateful behaviours). Viewing a type of mixed

polarities with a specific polarity determines how we may position a typed channel

in a flow, guiding the construction of flow inference rules. The chosen polarity also

indicates how we measure secrecy levels of typed channels. The resulting analysis

yields, in its most informative form, a sequence of typed channels through which

information is transmitted within a process; or, in a simpler case (on which we focus

in this paper), the source and the target of a flow of a process. In either way, the flow

inference traces a sequence of primitive name passing interactions in its derivation,

so that the analysis can transparently be related to the operational behaviour of a

process.

We use this transparency in the application of the flow analysis in the present

paper, where we demonstrate how the flow analysis can be used for giving simple

proofs of noninterference (Denning & Denning, 1977; Goguen & Meseguer, 1982)

for the type-based secrecy analysis introduced in Honda & Yoshida (2002). In

a type-based secrecy analysis, we use typing rules for statically ensuring safety in

information flow, so that no high-level information flows down to low-level channels.

In contrast, a flow analysis extracts information flow from a given process. Thus,

all we need to do for justifying a secrecy analysis via a flow analysis, is to show

securely typed processes never own an insecure flow (i.e. a flow from high-level

channels to a low-level one). Since we can translate the lack of insecure flow into

the noninterference property (i.e. that there is no influence from the high-level

behaviour to the low-level behaviour) in an organised way, we can conclude that

the secrecy analysis is sound.

Summary of the technical contributions. The main technical contributions of the

present work may be summarised as follows:

• The elucidation of the correspondence between polarity in types and flows of

information in processes in the duality-based type discipline.

• The inductive flow inference rules for the linear/affine π-calculus πLA and

its stateful extension πLAR, and the establishment of operational properties of

flow-secure processes, among others noninterference.

• The application of the flow inference system to the noninterference results in

the secrecy type discipline of Honda & Yoshida (2002).

The key concepts are illustrated with examples to offer intuition as far as possible.

Structure of the paper. The remainder of the paper is organised as follows. Section 2

gives a brief summary of the syntax and reduction of the π-calculus, the linear/affine

type discipline, and its secrecy enhancement. Section 3 introduces basic ideas of the
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flow analysis through examples, and discusses their connection to the notion of

polarity. Section 4 introduces the flow analysis for the unary linear/affine π-calculus,

πLA. Section 5 proves noninterference for the basic secrecy typing for πLA. Section 6

discusses extensions to inflation (which allows relaxing of the secrecy typing as far as

global flows remain safe) and branching/selection constructs. Section 7 extends the

flow analysis to state, concurrency and non-determinism. Finally, section 8 concludes

the paper with discussions on related works and further issues. Appendices present

supplementary materials omitted in the main sections.

2 Preliminaries

This section briefly summarises the linear/affine π-calculus and its secrecy enhance-

ment, first introduced in Honda & Yoshida (2002). Although this summary is

technically self-contained, the reader may refer to Honda & Yoshida (2002) for

detailed illustration and more examples.

2.1 Syntax and reduction

The π-calculus used in this paper is the asynchronous π-calculus (Honda & Tokoro,

1991). The following gives the reduction rule of the asynchronous π-calculus:

x(�y).P | x〈�v〉 −→ P {�v/�y} (1)

Here �y denotes a potentially empty vector y1. . .yn of names, | denotes parallel

composition, x(�y).P is input, and x〈�v〉 is asynchronous output. Operationally, this

reduction represents the consumption of an asynchronous message by a receptor.

The idea extends to a receptor with a replication, ! x(�y).P :

! x(�y).P | x〈�v〉 −→ ! x(�y).P | P {�v/�y}, (2)

where the replicated process remains in the configuration after reduction.

Types for processes prescribe usage of names. To be able to do this with precision,

it is important to control dynamic sharing of names. For this purpose, it is useful

to restrict name passing to bound (private) name passing, where only bound names

are passed in interaction. This allows tighter control of sharing without losing

essential expressiveness, making it easier to administer name usage in more stringent

ways. The resulting calculus is sometimes called the asynchronous πI-calculus in the

literature (Sangiorgi, 1996) and has the equivalent expressive power with free name

passing (as proved in section 6 of Yoshida et al. (2001) in the typed case). Although

we can easily treat free name passing directly, in the present study, using bound

name passing leads to a simple and precise flow analysis, as well as to a clean fully

abstract translation of the functional calculi into the π-calculus. Syntactically, we

restrict outputs to the form (ν�y)(x〈�y〉|P ) (where names in �y are pairwise distinct),

which we henceforth write x(�y)P . For dynamics, we have the following forms

of reduction by the restriction to the bound output. The reduction relation −→
is generated from the following rules, closed under output prefix, restriction and
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parallel composition (taking processes modulo the standard structural congruence).

x(�y).P | x(�y)Q −→ (ν�y)(P | Q)

!x(�y).P | x(�y)Q −→ !x(�y).P | (ν�y)(P | Q)

“x(�y)Q” indicates that x(�y) is an asynchronous output exporting �y which are

originally local to Q. After communication, �y are shared between P and Q.

The formal grammar of the calculus is defined below. Below and henceforth

x, y, . . . range over a countable set of names.

P ::= x(�y).P | x(�y)P | P | Q | (ν x)P | 0 | !x(�y).P

x(�y).P (resp. x(�y)P ) is an input (resp. output). P | Q is a parallel composition,

(ν x)P is a restriction and !x(�y).P is a replicated input. We omit the empty vector:

for example, a stands for a() and a.P stands for a().P . The bound/free names are

defined as usual. fn(P ) denotes the set of free names in P . We assume that names

in a vector �y are pairwise distinct. The definitions of structural equality ≡, given in

Appendix A, is standard (Berger et al., 2001; Yoshida et al., 2002; Yoshida et al.,

2001).

The following simple examples of processes are used throughout the rest of the

paper.

Example 2.1 (processes)

1. A unit process, defined as [[()]]x
def
=!x(w).w, immediately emits a signal to the

received channel w.

2. A copycat, [x → y]
def
=!x(c).y(c′)c′.c, is a link between two locations x and y;

when asked at x, it asks back at y, then, on receiving the answer at c′ from

y, forwards it back at c as an answer to the initial name invocation. Inserting

this agent between two processes does not change their original behaviour.

For example:

[[()]]y|[x→ y]|x(c)P −→ [[()]]y|[x→ y]|(ν c)(y(c′)c′.c | P )

−→ [[()]]y|[x→ y]|(ν c′)(c′|c′.c | P ) −→ [[()]]y|[x→ y]|(ν c)(c | P )

which is the same as [[()]]y|y(c)P −→ [[()]]y|(ν c)(c | P ) save some internal

reductions. Using the copycat, we can translate free name passing into bound

name passing as: x〈v〉 def
= x(v′)[v′ → v]. For example, assuming c, e �∈ fn(P ),

we have, in free name passing:

x(e)e(c)c.P | x〈v〉 −→ v(c)c.P

This reduction can be simulated using the copycat as follows:

x(e)e(c)c.P | x(e)[e→ v] −→ (ν e)(e(c)c.P | [e→ v])

−→ (ν c)(v(c′)c′.c | c.P ) | (ν e)[e→ v] ≈ v(c′)c′.P

where ≈ is the standard weak bisimilarity (Milner et al., 1992; Honda &

Tokoro, 1991). See Section 6 in (Yoshida et al., 2001) for the formal embedding

result between free and bound name passing based on the copycat encoding.
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3. An omega agent, Ωu
def
= (ν y)([u → y]|[y → u]), immediately diverges after

the initial invocation at u; we can check Ωu|u(c)P −→−→ Ωu|u(c)P −→−→
Ωu|u(c)P −→−→ . . . .

2.2 Basic idea of types and typings

In this subsection, we review the basic idea of the linear/affine type discipline

(Honda & Yoshida, 2002). This type discipline allows a precise embedding of

functional computation in the π-calculus by restricting process behaviour to be a

confluent one. To realise confluence, we use the following idea:

(A) for each replicated name there is a unique stateless replicated input with zero

or more dual outputs; or

(B) for each linear (resp. affine) name there are a unique input and a unique (resp.

at most one) output

As an example of the first constraint, let us consider the following two processes.

P1
def
= ! b.a | ! b.c P2

def
= ! b.a | b | ! c.b (3)

P1 is untypable because b is associated with two replicators: but P2 is typable since,

while output at b appears twice, a replicated input at b appears only once. As an

example for the second condition, let us consider:

P3
def
= b.a | c.a | a.0 P4

def
= b.a | c.b | a.(c | e) (4)

Then P3 is not typable as a appears twice as output, while P4 is typable since each

channel appears at most once as input and output. We can also further ensure the

terminating behaviour by introducing the following constraint.

(C) channels have no circular dependency.

For example,

P5
def
= ! b.a | ! a.b (5)

is untypable under this constraint. We can easily observe that if we compose message

a to the above process, then the computation does not terminate. P4 is also untypable

under this constraint.

The typing discipline which ensures (A) and (B) is called affine, while one which

ensures (A,B,C) is called linear. We make the meaning of these terms more precise

below:

• Affinity. This denotes possibly diverging behaviour in which a question is given

an answer at most once.

• Linearity. This denotes terminating behaviour in which a question is always given

an answer precisely once.

As a theoretical underpinning, Berger et al. (2001) and Yoshida et al. (2001) have

shown that PCF and strongly normalising λ-calculi are fully abstractly embeddable

in the affine and linear π-calculus, respectively. As illustrated above, “linearity”
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means more than terminating behaviour: it indicates a process always returns an

answer at a linear channel. In replicated channels, linearity means convergence while

affinity means potential divergence. For example, P4 and P5 are typable by the

affine typing system, while they are not so by the linear one. We can further mix

these two type disciplines. This mixture of nontermination (affinity) and termination

(linearity) is fine-grained: even inside a process engaged in a linear interaction,

nonterminating computation may take place, and linear interactions themselves can

invoke nonterminating computation. For example, take the following process:

!b(xc).(x | c) | b(ac)(!a.a | c.P )

This process has first an interaction at b, then does an infinite series of actions at a

while having a linear answer at c: in the above terminology, it is affine at a, while

it is linear at c. This fine-grained mixture is vital for flexible embeddings of various

programming constructs and plays an essential role in applications, including secure

information analysis (Honda & Yoshida, 2002).

2.3 The linear/affine typing system

This subsection summarises the linear/affine typing system in Honda & Yoshida

(2002), introducing the minimum notations and definitions needed for the flow ana-

lysis. While we leave some of the technical details to Appendix (further discussions

and examples are also found in Honda & Yoshida (2002)), the knowledge in this

subsection suffices to read the rest of the paper.

Action modes. We use the following action modes (Berger et al., 2001; Yoshida et al.,

2001), which prescribe different modes of interaction at each channel. The L-modes

correspond to linear modes in Yoshida et al. (2001) while the A-modes to affine

modes in Berger et al. (2001).

↓
L

Linear input ↑
L

Linear output

↓
A

Affine input ↑
A

Affine output

!
L

Linear server ?
L

Client request to !
L

!
A

Affine server ?
A

Client request to !
A

We also use the mode � which indicates that a channel is no longer available for

further composition with the outside; for example, if x.0 has a ↓
L
-mode and x has

a ↑
L
-mode, then x.0 | x has �-mode at x. The �-mode at x indicates that the process

cannot be composed with any process that has x as a free name (e.g. x.0 |x). p, p′, . . .

range over action modes. The modes in the left column are input modes while those

in the right are output modes. The pair of modes in each row are dual to each other,

writing p for the dual of p. We set M↓ = {↓
L
, ↓

A
} etc. and often write ? to denote

either ?
L

or ?
A
. Similarly for !

L
, ↑

L
, ↓

L
.

Types. Let (L,,�, �) be a complete lattice of secrecy levels (higher means more

secret), ranged over by s, s′, . . .. Then the set of channel types annotated with secrecy
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levels, ranged over by τ, ρ, σ, . . . , are generated from the following grammar.

τ ::= τ
I
| τ

O
| � τ

I
::= (�τ?)↓L | (�τ? )↓A

s | (�τ?τ↑)!L | (�τ?τ↑A )!A

τ
O

::= (�τ! )↑L | (�τ! )↑A

s | (�τ!τ↓)?L | (�τ!τ↓A )?A

�τ is a vector of types and τp indicates the (outermost) mode of τ (we assume � has

the mode �). Since non-trivial information flow occurs only at affine output/input

channels, we only annotate them with a secrecy level (Honda & Yoshida, 2002).

We also often omit the secrecy level if it is unnecessary. Note that an input only

carries an output (and dually), and that only a replicated linear input can carry

a (unique) linear output (and dually). The former condition comes from game

semantics (Hyland & Ong, 2000; Abramsky et al., 2000; Honda & Yoshida, 1997)

(which is an important constraint to embed higher-order functions fully abstractly

(Berger et al., 2001; Berger et al., 2003; Honda et al., 2004; Yoshida et al., 2001)),

while the latter condition ensures an invocation at linear replication will eventually

terminate, firing an associated linear output. We write sec(τ)/md(τ) for the outermost

secrecy level/mode of τ. The dual of τ, written τ, is the result of dualising all action

modes.

We define the least commutative partial operation, �, which control the compos-

ition of channels as:

(1) τ? � τ? = τ? and τ! � τ? = τ! (2) τ↑ � τ↓ = �

(1) and (2) ensure the two constraints (A) and (B) in section 2.2.

An action type is a finite map from names to channel types together with directed

edges between names, where edges represent causality among linear (resp. linear

replicated) channels. Formally an action type, denoted A,B, . . . , is a finite directed

graph with nodes of the form x : τ, such that no names occur twice; and causality

edge x : τ → y : τ′ is of the form: (1) from a linear input ↓
L

to a linear output ↑
L

or (2) from a linear replication !
L

to linear client output ?
L
. A dualises all types in

A. We write A(x) for the channel type assigned to x occurring in A. The partial

operator A � B is defined iff channel types with common names compose and the

adjoined graph does not have a cycle. This avoids divergence on linear channels.

For example, a :τ1→b :τ2 and b :τ2→a :τ1 are not composable, hence a process such

as P5
def
=!a.b | !b.a is untypable. We write A1 � A2 when such composition is possible,

while the result of composition is written A1 � A2 (see Appendix B for formal

definitions). By this operation, we can guarantee the condition (C) in section 2.2 for

linear channels. Non-circular causality between linear channels guarantees liveness

at linear output channels, resulting in a distinct treatment of information flow at

linear channels.

Tamper Level. In the secrecy typing, we use a function which maps an action type

to a secrecy level, called tamper level (in the sense that it is the level at which a

process may affect, or tamper, the environment). It is first defined on channel types,

and then extended to action types.
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Definition 2.2 We say τ is immediately tampering if md(τ) = ↑
A
, while τ is innocuous

if md(τ) ∈ {?
L
, ?

A
, �}. Then the tamper level of τ, denoted tamp(τ), is inductively given

by:

tamp(τ) = sec(τ) if τ is immediately tampering.

tamp(τ) = � if τ is innocuous.

tamp((�τ)p) = �{tamp(τi)} if p ∈M! ,↓ ∪ {↑L
}.

We set tamp(A)
def
= �{tamp(τ) | x :τ∈A}.

Intuitively, a channel type is immediately tampering if it emits non-trivial in-

formation at the time of interaction. Even if a type is not immediately tampering,

an action of that type can have a non-trivial effect on the environment via an

immediately tampering type inside. However an innocuous type does not even have

such a latent effect: for example, ?
L
-actions just create a new copy of a resource,

leaving the environment as it originally was. Thus the tampering level of ?
L
-types is

�. Note this discussion relies on the stateless nature of recursive behaviour at types

!
L

and !
A

and are refined later in section 7 when we incorporate stateful behaviours.

Typing System. The secrecy linear/affine typing uses the judgement of the form:

�sec P � A

The typing rules are given in Appendix B. We also use the standard linear/affine

typing (which does not care about secrecy), whose typable processes are the target

of the flow analysis. The typing rules are also presented in Appendix B. Typed

processes in the linear/affine type discipline are written:

� P � A

The key modification of the linear/affine typing for the secrecy typing, is that, when

we infer an affine input process x(�y).P , we ensure that the tampering level of P is

the same as, or higher than, the secrecy level of channel x. This is because an affine

input directly receives information. If the information is received at s, its effects may

only be safely shown to the outside at s or above.

We briefly illustrate the idea of tampering levels and secure typing by examples.

The types in these examples will be used throughout the remaining sections.

Example 2.3 (tampering and secure typing) Let � and � be the lowest and the

highest secrecy levels, respectively.

1. ()↑A

s is immediately tampering with level s; it transmits information by having

two possibilities: either outputting at that channel, or not doing so at all.

On the other hand, ()↑L is not immediately tampering: in fact, its tamper

level is � (note no secrecy level is attached). This is because this type

represents a behaviour which necessarily sends an empty output precisely

once: its behaviour is completely determined by its type, so no information is

transmitted by interaction.
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2. Let �s = (()↑A

s )!A . Then we have tamp(�s) = s. �s is not immediately tampering,

but it affects the environment latently. To see this, take Ωx and [[()]]x. Then

both are assigned the same type x :�s. As these inhabitants show, the type �s
does contain information of divergence/termination at level s. Note that we

can assign τ′ = (()↑L )!L to [[()]]x, but not to Ωx, where tamp(τ′) = �. In fact,

a(n essentially unique) process inhabiting x : τ′ is always ready to receive at

x; then it necessarily outputs an empty message via that name precisely once.

Thus neither interaction at x nor that at c contains (emits) information.

3. �sec y.x � y : ()↓A

� , x : ()↑A

� is well-typed, but �sec y.x � y : ()↓A

� , x : ()↑A

� is not. Similarly

�sec [x→ y] � x :�s′ , y :�s is well-typed iff s  s′. Then �sec Ωx � x :�s is always

well-typed.

These examples clarify the close connection between the secrecy typing and the

linear/affine type discipline. If a channel x has the linear type (()↑L )!L , then we do

not have to consider its secrecy level because no flow of information at x arises as

it surely will terminate. On the other hand, if x is typed by �s, we cannot predict

whether interaction at x terminates or not (as both [[()]]x and Ωx are typable by �s),

hence the secrecy level should be considered.

3 Basic ideas of flow analysis

3.1 Definition of flow

In the flow analysis we shall present in this section, we use a typed name, which is a

pair of a port name and its type, written x : τ, and a typed process, which is a pair

of a typable process and its action type, written PA. The flow analysis formally uses

the sequent of the following shape.

� PA � F,

which we often write � P � F, leaving A implicit. In this sequent, F is a flow set,

which is simply a finite set of flows. Each flow in F relates a finite set of typed names

with distinct channels, say Γ, which are called sources, to a typed name, say x : τ,

which is called target. In a flow set, we always assume two flows never own distinct

target channels. A flow is written using the following syntax.

Γ � x :τ

Note yi : τi ∈ Γ with i = 1, 2 implies y1 �= y2. A flow Γ � x : τ intuitively says

interaction at channels in Γ is needed to produce information that is emitted at x.

For clarity of the notation, we fix the following grammar for flows and flow sets.

F ::= ∅ | F, Γ � x :τ Γ ::= ∅ | Γ · x :τ

where we assume “�” associates stronger than “,” while “·” does so stronger than

“�”. For example,

y1 :τ1 · y2 :τ2 � x :τ, y3 :τ3 � x′ :τ′ means ((y1 :τ1 · y2 :τ2) � x :τ), (y3 :τ3 � x′ :τ′)
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Further we shall implicitly assume commutativity, associativity and idempotence of

the operations “,” and “·” so that they define sets rather than sequences. We also

use the operations on sets such as
⋃

i Fi when it is convenient.

3.2 Polarities and flows

As we briefly discussed in the Introduction, the types which embody gener-

ation/emittance of information are called positive, while types which embody

consumption/reception of information are called negative. This informal idea can

be made precise by the following simple operational characterisation. Below “Q ⇓w”

means there exist Q −→∗ (ν�c)(w(�b)P |R) for some w �∈ {�c}, �b, P and R. “Q ⇑” means

not Q ⇓w for any w.

Definition 3.1 τ is behaviourally positive (or, dually, τ is behaviourally negative) iff

P1|R ⇓w and P2|R ⇑ for some � P1,2 � x :τ and � R � x :τ, w : ()↑A

s .

In Definition 3.1, P1,2 are the processes which produce information, or difference

in behaviour, at channel x; whereas R is the opponent process which receives

information, or gets affected by the difference in behaviour, via x. Then information

at x is transformed to an ultimate convergence behaviour at w in R. Here the use

of ()↑A is because it is the type for the basic observable in the maximally consistent

reduction-based equality in the linear/affine π-calculus (Berger et al., 2001; Berger

et al., 2003; Honda & Yoshida, 2002). This equality, ∼=, is defined as the maximum

typed congruence which satisfies, whenever PA
1
∼= PA

2 such that A = x : ()↑A

s , we have:

P1 ⇓x ⇔ P2 ⇓x .

The relation ∼= is maximally consistent in the sense that the congruent closure of

adding even a single equation is the universal relation.

Thus Definition 3.1 says that, for a given type τ, if there exist processes which can

make a semantic difference via a channel of type τ when composed with a suitable

receiver-transmitter to the standard observable type, then we call the type τ positive

and τ negative.

We illustrate the idea of behavioural polarities through a couple of concrete

examples.

Example 3.2 (behavioural polarities)

1. All types of mode ↑
A

are behaviourally positive. As an example, take:

Q1
def
= c and Q2

def
= (ν ab)(a.b | b.(a | c)) with τ1 = ()↑A

and define R
def
= c.w. Then � Q1,2 � c : τ1 and � R � c : τ1, w : ()↑A

s . Now we

can check Q1 | R ⇓w but Q2 | R ⇑. Hence τ1 is behaviourally positive. This also

shows types of the mode ↓
A

are behaviourally negative.

2. The types of mode !
L

and !
A

(other than exceptional cases, see 3. below) are

behaviourally positive. Take Q3
def
= !d(c).Q1 and Q4

def
= !d(c).Q3 and τ2 = (()↑A )!L .

Define R′
def
= d(c)c.w. Then � Q3,4 � d :τ2 and � R′ � d :τ2, w : ()↑A

s . Now we can
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check Q3 | R′ ⇓w but Q4 | R′ ⇑. In this way, types of the mode !
L

are generally

positive and those of ?
L

are negative. Q3,4 are also typable by (()↑A )!A , which

suggest types of the mode !
A

are positive and those of ?
A

are negative.

3. The types of mode ↑
L

(again other than exceptional cases) are behaviourally

positive. Take Q5
def
= e(d)Q3 and Q6

def
= e(d)Q4 with τ3 = ((()↑A )!A )↑L . Then define

R′
def
= e(d).d(c)c.w. By the same routine as the above cases, we can check τ3

is behaviourally positive. This example also suggests that ↓
L

is behaviourally

negative. The exceptional cases are ()↑L and those types generated from this

type inductively, such as (�ρ? ()↑L )!L for arbitrary �ρ, which are, as �, neither

behaviourally positive nor behaviourally negative.

The examples above show that polarities are not directly related to the distinction

between input and output: types of mode !
L
, !

A
are positive even though they are

input. Similarly types of mode ?
L
, ?

A
are negative even though they are output.

For syntactic treatment, it is more convenient to neglect the “exceptional cases”

noted in Example 3.2 in (3) above. Thus we set:

Definition 3.3 (syntactic polarities of types) τ is syntactically positive, or simply

positive, iff md(τ) ∈ {↑
A
, ↑

L
, !

L
, !

A
}. Dually τ is syntactically negative, or simply negative,

iff md(τ) ∈ {↓
A
, ↓

L
, ?

L
, ?

A
}.

3.3 Basic idea of flows

We can now illustrate how polarities relate to flows using examples. The first example

is a very simple flow.

y : ()↓A

s � x : ()↑A

s′ (6)

The flow says that information a process receives at y flows down to x. Note that a

negative type ()↓A

s occurs in its source, while a positive type ()↑A

s′ occurs in its target.

This is obeyed in all flows we shall deal with from now on. A simple process which

has this flow is (cf. Example 2.3 (3)):

y.x. (7)

In the process, we can see that information flow indeed goes from a negative channel

(y) to a positive channel (x). From the viewpoint of secrecy, the flow in (6) is secure

iff s′ � s, since, if not, a low-level output depends on a high-level input.

Next we consider a slightly more complex flow.

y : (()↓A

s )?A � x : ()↑A

s′ (8)

Here the source is another output, though its type is again negative. The flow says

that information which comes from a negative output channel y, which asks for

information and receives it, flows down to a positive output channel. As a simplest

process which embodies this flow, we can take (omitting the typing):

y(c)c.x. (9)
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As noted, while being outputs, ?
A
-actions receive information rather than emit it.

The process above intuitively shows this: it asks at y, receives the “real” information

at c, then emits the information at x. Again the flow in (8) is secure iff s′ � s.

The third example is a flow that contains a replicated input.

y : (()↓A

s )?A � x : (()↑A

s′ )!A (10)

A replicated input emits information by its action at a carried affine output channel

when it is asked (this is precisely dual to ?
A

in (8) above). A process which represents

this flow is a copycat, written [x→ y] in Example 2.1 (3):

�sec !x(c).y(e)e.c � x : (()↑A

s′ )!A , y : (()↓A

s )?A . (11)

In this process, each action at y can take place only after there is an input action at

x. So, from an intuitive idea of causality, one may as well consider there is a flow

from x to y, rather than y to x. However, (10) does capture the information flow of

the process precisely: when the process is asked at x with a channel c, it asks back

at y, and the information it receives as a result finally flows down to c. Thus the

flow from y to x in (10) indicates that information which comes from a negative

output channel y goes out when a process is asked at a positive input channel x,

even though the latter action should temporarily precede the former action.

3.4 Examples of flow analysis

Basic Flow Inference. We now turn to the extraction of a flow from a typed process.
Let us take the copycat in (11) and see the main idea of how to extract the flow (10)
from this process (note that this process contains (7) and (9) as its sub-terms; thus
the derivation in fact includes the flow inferences for their flows, (6) and (8)).

−
(Out↑A )

� c � ∅� c : ()
↑A
s′

(In↓A )
� e.c � e : ()↓As � c : ()

↑A
s′

(Out?)
� y(e)e.c � y : (()↓As )?A � c : ()

↑A
s′

(In!A )
�!x(c).y(e)e.c � y : (()↓As )?A � x : (()

↑A
s′ )!A

In the inference above, the names in the left-hand side (such as (Out↑A )) correspond

to those of the inference rules given in section 4, Figure 1 later. In the first step, the

affine output at c is given without any depending actions, hence the flow contains

no sources. When we prefix this output with an affine input e, we record a flow from

e to c, as expected (this gives the flow in (6) modulo renaming). In the third step,

the prefixing action is the output at y, abstracting e: since a question at y indirectly

receives information, y is placed in the source part of the flow set, abstracting e

(giving the flow in (8) modulo renaming). In the final line, we prefix the process with

the replicated input at x, abstracting c. Again x is the channel via which the “real”

information, which exists at c, indirectly comes out, so we put x in the target part,

simultaneously abstracting c, reaching the flow (10).
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Composition of Flows. The following simple example shows how we can extract

information flow from a parallel composition of processes. We already know we can

extract the following flow (by exchanging x and e with y and w, respectively, from

the third step of the above analysis). We write �s for (()↑A

s )!A .

� x(c)c.w � x :�s′ � w : ()↑A

s′′

If we compose this process with the copycat in (11), we obtain a typed process:

�sec [x→ y] | x(c)c.w � x :�s′ , y :�s, w : ()↑A

s′′ (12)

We now show how we can extract a flow of this composed process from the flows
of the two constituent processes.

� [x→ y] � y :�s � x :�s′ � x(c)c.w � x :�s′ � w : ()
↑A
s′′(Par)

� [x→ y] | x(c)c.w � y :�s � x :�s′ , y :�s � w : ()
↑A
s′′

In the inference above, the occurrence of x : �s′ in the source part of the flow of

the second sequent in the antecedent is replaced by y : �s in the conclusion. This

is because the replicated input complementing an output at x is already supplied,

and because we know, by the first part of the antecedent, that this replicated input

depends on y. Note that the resulting typed names conform to the resulting action

type: x is now a replicated input (is positive), typed as �s′ , hence it can only occur

in the target part of the resulting flow set.

Treatment of Unused Types. So far, typed names occurring in a flow extracted from

a typed process always use the same types as occurring in the action type of that

process. Channel types, however, can contain unused parts with respect to the given

target, so that their use can lead to inaccuracy. Let us illustrate this point by a

simple example.

�sec x(y1y2).y1(e)e.f � x : (�� ��)↓L , f : ()↑A

� (13)

This process is secure: to output a low-level f, it is prefixed by e carried by y1, but

this e is again a low-level, so no insecure flow takes place. If the process also asked

at y2 (via which it should receive a high-level datum) before outputting via f, the

process would not have been secure. Thus we should not extract the following flow:

x : (�� ��)↓L � f : ()↑A

� (14)

(14) indicates an insecure flow, saying a high-level input is used to produce a low-

level output, which does not reflect the behaviour of (13). This observation leads to

the extraction of a flow from (13) which has the following form:

x : (�� ∗ )↓L � f : ()↑A

�

Here ∗ is a place-holder for a type corresponding to an unused action. By using ∗,
the type in the source now captures that the process only asks at the first argument
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y1, not the second one y2. The extraction of this flow is done as follows.

−
(Out↑A )

� f � ∅� f : ()
↑A
�(In↓A )

� e.f � e : ()
↓A
� � f : ()

↑A
�(Out?)

� y1(e)e.f � y1 :�� � f : ()
↑A
�(Weak)

� y1(e)e.f � y1 :�� · y2 :∗� f : ()
↑A
�(In↓L )

� x(y1y2).y1(e)e.f � x : (�� ∗ )↓L � f : ()
↑A
�

In the final line, the type of x does not contain the type of the channel which is not

used (here y2), but instead records its absence by ∗, so that more precise calculation

of the effective level of inputting action becomes possible. On the other hand, if we

replace y1 in (13) by y2, we derive an insecure flow x : (∗ ��)↓L � f : ()↑A

� .

4 Flow analysis

4.1 Preliminary definitions

Extended Channel Types. As we discussed in section 3.4, a flow needs to use the

“wild card” symbol ∗. For uniformity, we annotate the symbol ∗ with action modes

{!
L
, !

A
, ?

L
, ?

A
}.1 We extend the grammar of channel types with these types:

τ
I

::= . . . | ∗!L | ∗!A τ
O

::= . . . | ∗?L | ∗?A

We usually omit action mode p from ∗p, writing simply ∗. We call the resulting set

of types, extended channel types, or just types for simplicity. The notions of flows

and flow sets which use extended channel types are defined precisely as given in

section 3.1. On the extended channel types we define:

Definition 4.1 ≺ is given as the smallest precongruence on extended channel types

including ∗p ≺ τp for each τ. Γ1 ≺ Γ2 is defined as: ∀x ∈ dom(Γ1). Γ1(x) ≺ Γ2(x).

Further we write F ≺ A when for each x : τ in F, x : τ′ ∈ A and τ ≺ τ′ for some τ′.

We write τ1 � τ2 when they have a common upper bound with respect to ≺.

Note τ ≺ τ′ essentially means τ is the result of replacing non-∗-types in τ′ with ∗ in

zero or more places. Thus we immediately conclude:

Proposition 4.2 ≺ is a partial order. Further τ1 � τ2 implies there is the join of τ1,2.

We can easily check ∨ is commutative and associative.

Composition of Flow Sets. We next introduce (parallel) composition of two flow

sets. First we define the operator F1 � F2 as follows (note that A1 � A2 means two

types are composable as defined in Appendix B).

1 While we seldom – if ever – use the action mode associated with ∗, having it is convenient since it
allows us to use this construct just as other types in various definitions.
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Definition 4.3 Assume A1 � A2 and Fi ≺ Ai (i = 1, 2). Then FA1

1 � FA2

2 , which we

usually write F1 � F2 leaving A1,2 implicit, iff the following conditions hold: For

each x occurring in both F1 and F2:

i. If A2(x) = A1(x) and x : τ occurs as a source in F1, then x :δ occurs in F2 as

a target such that τ ≺ δ.

ii. If A1(x) = A2(x) and if x :τi occurs in Fi (i = 1, 2), then τ1 � τ2.

A1 and A2 are called the underlying typings of F1 and F2, respectively.

In practice (for example when we work with the encoding of a programming

language), it almost always suffices to assume the strict duality for compensating

types in (i) above, replacing “τ ≺ δ” with “τ = δ.”

When defining composition of flow sets, it is convenient to use a decomposition

of a flow into its “prime” elements.

Definition 4.4 Given F, a flow Γ0 � x :τ is a prime flow in F when Γ � x :τ is in F

such that either (1) Γ0 = {y :ρ} ⊂ Γ or (2) Γ0 = ∅ = Γ. We write F � Γ0 � x : τ if

Γ0 � x :τ is a prime flow in F.

Proposition 4.5 Write |F| for the set of all prime flows in F. Then |F1| = |F2| iff

F1 = F2.

Now assume FA1

1 � FA2

2 . Then a composed prime flow of F1,2 is a sequence of prime

flows, each being either in F1 or in F2 alternately, of the shape:

x0 :τ0 � x1 :τ1, x1 :τ′1 � x2 :τ2, . . . , xn−1 :τ′n−1 � xn :τn (n � 1)

where (1) each xi is distinct and (2) τ0 and τn have the same modes as A1 � A2,

i.e. τ0 ≺ (A1 � A2)(x0) and τn ≺ (A1 � A2)(xn). Above x0 and xn are respectively the

source and target of the composed prime flow with assigned types τ0 and τn.

We now define the composition of flow sets, F1 � F2.

Definition 4.6 (composition of flow sets) Assume F1,2 such that F1 � F2, with the

underlying action types A1 and A2. Then F1 � F2 is given as follows:

i. Let each composed prime flow with source y and target x assign τi to y and

τ to x, respectively. Then F1 � F2 � y :∨iτi � x :τ.

ii. If Fi � Γ � x : τ with either i = 1 or i = 2, but there is no composed prime

flow whose target is x, then we set F1 � F2 � ∅� x :τ.

Example 4.7 (composition of flow sets)

1. Recall y.x which has a flow F1
def
= y : ()↓A

s � x : ()↑A

s′ in (6) in section 3.

Similarly x.w has a flow F2
def
= x : ()↓A

s′ � w : ()↑A

s′′ . Then we have F1 � F2 and

F1 � F2 = y : ()↓A

s � w : ()↑A

s′′ .

2. Recall a copycat [x→ y] which has a flow y : �s � x : �s′ (cf. (10) in section 3).

Then [x→ y] | [y → x] has a flow {∅ � x : �s, ∅ � y : �s}. Definition 4.6 (ii)

can also treat a composition of two flows which creates circular behaviour, as

https://doi.org/10.1017/S0956796804005477 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005477


Noninterference through flow analysis 309

Ωx in Example 2.3 (3), which is given a flow ∅ � x : �s. Note the resulting

flow itself is always non-circular.

3. Recall the process (13) in section 3.4. We define Ri
def
= x(y1y2).yi(e)e.f. Let

τ1
def
= (�s1 ∗)↓L and τ2

def
= (∗ �s2 )↓L . Then Ri has a flow x :τi � f : ()↑A

si
. Further

Wi
def
=!wi(f).y(x)Ri has a flow y : (τi)

?L � wi : (()
↑A

si
)!L . Now suppose the dual

process Q
def
= w1(c1)c1.w2(c2)c2.f whose flow is {w1 : (()↓A

s1
)?L · w2 : (()↓A

s2
)?L} � f :

()↑A

s . Then composition of these processes has a flow:

� Q |W1 |W2 � y : (τ1 ∨ τ2)
?L � f : ()↑A

s

with τ1 ∨ τ2 = (�s1 �s2 )
↓L . Note this flow is secure iff s1 � s2  s.

Remark 4.8 (on composition of flow sets)

• In Definition 4.6 (i), ∨ρi is well-defined since ρi ≺ (A1 � A2)(y) for each i and

by Proposition 4.2.

• By Definition 4.6 (i) and (ii), as well as Definition 4.3, if F1 and F2 only have

positive (! and ↑) channels as targets and negative (? and ↓) ones as sources,

then the same is also true in F1 � F2.

4.2 Inductive flow analysis

We introduce the inference rules for the flow analysis one by one. There are several

prefix rules and several composition rules, as well as additional structural rules. Prefix

rules and composition rules are in direct correspondence with the typing rules in

Appendix B. We assume a process in the conclusion of each rule is well-typed. This

allows us to leave out most of the typing information from the inference rules.

Figure 1 summarises all inference rules for the flow analysis.

Composition Rules. There are four composition rules in correspondence with the
typing rules.

(Zero)

−

� 0 � ∅

(Par)

� Pi � Fi (i =1, 2)

F1 � F2

� P1|P2 � F1 � F2

(Res)

� P � F x �∈ fn(F)

� (ν x)P � F

(Weak) md(τ) ∈M?

� PA � Γ � w : σ x �∈ Γ

� PA,x:τ � Γ · x :∗� w : σ

(Zero) does not record any information flow since there is none. (Par) connects

causal chains in accordance with composition of the underlying action type. The

composition generally needs more than one causal map for compensating multiple

sources of even a single flow. In (Res) we restrict the name which does not occur

in the flow (note that, since (ν x)P is well-typed, x in the rule should have either

!-mode or �-mode). Finally, in (Weak), a weakened ?-mode name can be given a

trivial ∗ type (we omit the rule for the weakening of a name with the mode � in

which case, since �-channels never occur in flows, no change takes place in the flow

set). Note this rule only treats a singleton flow set: this does not lose generality due

to the structural rules, which we discuss next.
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(Zero)

−

� 0 � ∅

(Par)

� Pi � Fi (i =1, 2)

F1 � F2

� P1|P2 � F1 � F2

(Res) x �∈ fn(F)

� P � F

� (ν x)P � F

(Weak) md(τ) ∈ {?L, ?A}
� PA � Γ � w : σ

� PA·x:τ � Γ · x :∗� w : σ

(Union)

∀i. � P � Fi

� P �
⋃

i Fi

(Subset)

� P � F, Γ � x :τ

� P � F

(Empty)

A(x) positive, A(�y) negative

� PA � �y :�∗ � x :∗

(In↓L )

� P � Γ ·�y :�ρ � w : σ

� x(�y).P � Γ · x : (�ρ)↓L � w : σ

(Out↑L )

∀i. � P � Γi � yi : ρi

� x(�y)P � ∨i Γi � x : (�ρ)↑L

(In↓A )

� P � Γ ·�y :�ρ � w : σ

� x(�y).P � Γ · x : (�ρ)↓As � w : σ

(Out↑A )

∀i. � P � Γi � yi : ρi

� x(�y)P � ∨i Γi � x : (�ρ)↑As

(In! ) (p ∈M! )

� P � Γ ·�y : �ρ � z : σ

�! x(�yz).P � Γ � x : (�ρσ)p

(Out? ) (p ∈M? )

� P �
⋃

i{Γi � yi : τi}, z : ρ · Γ � w : σ

� x(�yz)P � ∨i Γi ∨ Γ ∨ x : (�τ ρ)p � w : σ

Fig. 1. Flow analysis for πLA.

Structural Rules. Structural rules are in close connection with (Par).

(Union)

∀i. � P � Fi

� P � ∪i Fi

(Subset)

� P � F, Γ � x :τ

� P � F

(Empty)

A(x) positive, A(yi) negative

� PA � �y :�∗ � x :∗

The need for these rules comes from the following reason: (1) as noted above, (Par)

in general uses multiple flows for compensating source channels; and (2) in spite of

(1), prefix rules infer only a single flow, as we shall see below. Thus we need a rule

to collect individual flows into a flow set, which is done by (Union). After (Par) rule

is applied, we may have to single out one flow (to which, for example, we can apply

a prefix rule). For this we use (Subset). Note that, by repeatedly applying (Subset),

we can always infer an empty flow set from a process. Finally (Empty) adds an

ineffective flow (which can later be used in prefix rules).

Prefix Rules. We start with the linear input/output rules.

(In↓L)
� P � Γ ·�y :�ρ � w : σ

� x(�y).P � Γ · x : (�ρ)↓L � w : σ
(Out↑L)

∀i. � P �Γi � yi : ρi

� x(�y)P � ∨i Γi � x : (�ρ)↑L

As noted, each prefix rule only treats a single flow. In (In↓L ) we abstract the

carried types used for producing the result: some ρi can be weakened by (Weak)
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and (Empty). (Out↑L ) is its exact dual, recording the flow information for part of its

abstracted names, leaving out some of yi for which we choose to use ∗. ∨iΓi takes

the union of {Γi}, with the unification of types for coinciding names using ∨. The

duality between (In↓L ) and (Out↑L ) in their treatment of ∗ in carried types is essential

for a sound notion of composition. For example, from the following flows of two

copycats (the right-hand side uses (Empty) above):

� [y1 → w1] � w1 :�� � y1 :�� � [y2 → w2] � ∅� y2 :∗

we can infer, using (Out↑L ):

� x(y1y2)([y1 → w1] | [y2 → w2]) � w1 :�� � x : (�� ∗)↑L (15)

This can be composed with:

� x(y1y2).y1(c)c.f � x : (�� ∗)↓L � f : ()↑A

�

so that we obtain:

� x(y1y2).y1(c)c.f | x(y1y2)([y1 → w1]|[y2 → w2]) � w1 :�� � f : ()↑A

� (16)

which indicates a safe flow. Note if we cannot neglect y2 in (15), we would have

gotten a flow from w2, resulting in an insecure flow unnecessarily.

The next prefix rules are for affine input/output. These rules are the precise

analogue of (In↓L ) and (Out↑L ) except for the added secrecy levels.

(In↓A )
� P � Γ ·�y :�ρ � w : σ

� x(�y).P � Γ · x : (�ρ)↓A

s � w : σ
(Out↑A )

∀i. � P � Γi � yi : ρi

� x(�y)P � ∨i Γi � x : (�ρ)↑A

s

While the tampering level of (�τ)↑L

s is always s regardless of the carried types �τ,

a carried type becomes sometimes significant in flow extraction. As an example,

consider

P1
def
= x�(c)!c(e).y(g)g�.e� P2

def
= x�(c).c(e)e�.w�

where affine channels are annotated with secrecy levels, with � being a level between

� and �. Then P
def
= (ν x)(P1 | P2) has an insecure flow from y to w, which is extracted

as follows. Firstly, we infer for P1 and P2 using these two affine rules:

(Out↑A )
�!c(e).y(g)g�.e� � y : �� � c : ��

� x�(c)!c(e).y(g)g�.e� � y : �� � x : (��)↑A

�

(In↓A )
� c(e)e�.w� � c : �� � w : ()↑A

�

� x�(c).c(e)e�.w� � x : (��)↓A

� � w : ()↑A

�

By (Par), we obtain an insecure flow y : �� � w : ()↑A

� .
Finally, we list the rules for replicated input/output. Since linear/affine distinction

does not make a difference in these rules, we list one rule for replicated input and
one rule for replicated output.

(In! ) (p ∈M! )

� P � Γ ·�y : �ρ � z : σ

�! x(�yz).P � Γ � x : (�ρσ)p

(Out? ) (p ∈M? )

� P �
⋃

i{Γi � yi : τi}, z : ρ · Γ � w : σ

� x(�yz)P � ∨ Γi ∨ Γ ∨ x : (�τ ρ)p � w : σ
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(In! ) is similar to (In↓L ), except that we record the resulting type (�ρσ)p in the positive

position. (Out? ) is its dual. Note (In! ) (resp. (Out? )) abstracts negative (resp. positive)

channels, even though the newly introduced type is positive (resp. negative). A

detailed explanation of this point is found in Remark 4.11 later.

A couple of basic properties of the flow analysis are worth noting. Both properties

are by easy induction.

Proposition 4.9

1. If � PA � Γ � x :τ then τ is positive and, for each y :ρ ∈ Γ, ρ is negative.

2. If � PA � Γ � x :τ for some Γ, then there exists Γ0 such that � PA � Γ0 � x :τ

and, moreover, whenever � PA � Γ′ � x :τ, we have Γ0 ≺ Γ′.

Proposition 4.10 If � P � Γ � x :τ and P −→ P ′ then � P ′ � Γ � x :τ.

In the proof below P
l−→ P ′ is the standard (bound name passing) labelled

transition, whose formal definition is left to Appendix F.

Proof

By easy induction, the proof system is closed under the structural equality ≡. Since
τ−→≡ = −→ (

τ−→ is the τ-transition) it suffices to show that � P � Γ � x : τ

and P
τ−→ P ′ imply � P ′ � Γ � x : τ. Permuting back all (Weak) to just after

each (Zero), we can work with the system which precisely follows the syntax except

for the structural rules. We can then show each visible transition changes the flow

precisely following the prefix rules. For example, if we have x(�y).P
x(�y)
−→ P , assuming

x is linearly typed, we can infer:

� x(�y).P � Γ · x : (�ρ)↓L � w :σ and � P � Γ ·�y :�ρ � w :σ.

Assume that P
x(�y)
−→ P ′. Then this implies:

� P � Γ · x : (�ρ)↓L � w :σ and � P ′ � Γ ·�y :�ρ � w :σ,

Dually we can show Q
x(�y)
−→ Q′ implies � Q � ∆ � x : (�ρ)↑L and, for each yi, either

� Q′ � ∆i � yi : ρi or ρi = ∗ and ∆i = ∅, such that ∆ = ∨∆i. Note that, by

typing, σ has mode ↑
L

or ↑
A
, while types in ∆ have mode ?

L
or ?

A
. Now assume

P | Q τ−→ (ν�y)(P ′ | Q′) from these transitions. Then we have:

� P | Q � Γ ∨ ∆ � w :σ and � P ′ | Q′ � Γ ∨ ∆ � w :σ, ∪i∆i � yi :ρi

Then an application of (Res) to the latter gives us

� (ν�y)(P ′ | Q′) � Γ ∨ ∆ � w :σ

as required. Other cases are similar. �

Example 4.11 We illustrate the rules (In! ) and (Out? ), focussing on how each rule

needs to abstract types with the opposite polarity. Let us consider the following

process (we annotate channels with � and � and assume all types are affine).

P
def
= !x(uz).u(c)c�.z� (17)
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Clearly, this process is insecure: upon invocation, it asks at its first argument u,

from which it receives, at c, a high-level effect: this effect is then transmitted to a

low-level effect at z, the second argument of the initial invocation. Let us compose

P with the following agent, to make explicit this insecurity.

Q
def
= x(uz)([u� → v�]|z�.w�) (18)

In the composite process P |Q, Q asks at x, then gets asked by P in return. Q relays

this question to v which is an interface with the outside environment. If it receives an

answer, Q replies to P , which then returns, via z, an answer to the initial question;

which Q transmits to the outside via w. Thus a high-level effect at v is transmitted

to a low-level effect at w. This unsafe flow is due to interaction between P and Q.

If Q interacts with a different process, the resulting flow can be completely secure.

Indeed, take the following process:

P ′
def
= !x(uz).z� (19)

Then there is no insecure flow from v to w in P ′|Q (note that u is never invoked by

P ′). We can analyse the difference between P |Q and P ′|Q by extracting from them

the following two pairs of mutually compatible flows. For P and Q, we obtain:

� P � ∅ � x : (�� ()↑A

� )!A , � Q � x : (�� ()↓A

� )?A · v :�� � w : ()↑A

� . (20)

Whereas, for P ′ and Q, we have:

� P ′ � ∅ � x : (∗ ()↑A

� )!A , � Q � x : (∗ ()↓A

� )?A � w : ()↑A

� . (21)

Observe the difference in the flow of P in (20) and that of P ′ in (21), which is

reflected in the source part of the flow of Q in (20) and the one of Q in (21). It is

instructive to see how these flows are inferred. For Q in (20):

(Out? )
� [u� → v�] | z.w� � v :�� � u :��, z : ()↓L

� � w : ()↑A

�

� x(uz)([u� → v�]|z.w�) � x : (�� ()↓A

� )?A · v :�� � w : ()↑A

�

which assumes the environment would invoke at u to return to the initial question

by Q at x. For Q in (21), we infer:

(Out? )
� [u� → v�] | z.w� � ∅� u :∗, z : ()↓L

� � w : ()↑A

�

� x(uz)([u� → v�]|z.w�) � x : (∗ ()↓A

� )?A � w : ()↑A

�

Here, in contrast to the first inference, we assume u is never invoked: we use (Empty)

to introduce a vacuous flow to u in the antecedent. Thus the derived flow does not

include the high-level source v, resulting in a safe flow. This example shows how the

flow analysis adds precision by tacitly using the assumption on the environment.

5 Noninterference via flow analysis

In this section, we show the noninterference result for securely typed processes via

the inductive flow analysis introduced in the previous section. We first state the

non-interference theorem. Below P ⇓x is defined before Definition 3.1, Page 303.
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Theorem 5.1 (non-interference for securely typed processes) Let �sec R1,2 � A such

that tamp(A) � s and let �sec P � A, x : ()↑A

s . Then P | R1 ⇓x iff P | R2 ⇓x.

This theorem essentially says that high-level data never interferes with low-level

observable behaviour; in other words, it says that two processes with a tamper

level strictly higher than (or incompatible with) s, must always give the same s-level

observation.

The proof of this theorem is divided into the following two steps.

Step 1: Demonstration of the syntactic soundness, which states that only secure flows

are inferable from securely typed processes.

Step 2: Demonstration of the behavioural soundness, which states that processes

from which only secure flows are inferable satisfy noninterference.

More concretely we prove the following main statement for each step.

Step 1: If �sec R � A and � R � F, then F is secure.

Step 2: Suppose �sec P � A, x : ()↑A

s . If � P � F always implies F is secure, then for

all �sec R1,2 � A such that tamp(A) � s, P | R1 ⇓x iff P | R2 ⇓x.

Step 1 and 2 are formally stated and proved in Propositions 5.10 and 5.15,

respectively. The main appeal of this two-step method is that Step 2 is independent

from individual secrecy analyses and can be done once and for all, while Step 1 can

be verified by simple induction on the typing rules.

To relate secrecy analysis and causality analysis, we use the following dual notion

of the tampering level, called receiving level (in the sense that it is the level at which

the process may receive information from the environment).

Definition 5.2 (receiving level) Given τ of mode ? or ↓, the receiving level of τ,

denoted receive(τ), is given inductively as follows:

receive(∗) = � receive((�τ)↓A

s ) = s

receive((�τρ↓)? ) = receive(ρ) receive((�τ)↓L ) = �i{receive(τi)}

Then receive(Γ) = �i{receive(τi) | ∃x.Γ(x) = τ
?,↓
i }.

The tamper level of an extended channel type τ is as given in section 2.3 defined as

before, except for adding the clause:

tamp(∗) = �

Note tamp(∅) = � while receive(∅) = �.

5.1 From secure typing to flow security

We are now going to show, in securely typed processes, each of their flows is such

that the receiving level of its sources is lower than, or equal to, the tampering level

of its target. To formalise this idea, we need some care for linear output. Consider

a process P
def
= x(y1y2).x′(y

′
1y
′
2)([y

′
1 → y1] | [y′2 → y2]) which is typed as:

� P � x : (�� ��)↓L , x′ : (�� ��)↑L
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Intuitively, this process is secure, and is indeed securely typable, since there are two

separate flows, one from c′1 (hence y′1) to c1 (hence y1) and another from c′2 (hence

y′2) to c2 (hence y2): thus the high level of information only flows down to the high

level action, not to the low level one. However, we can extract the following flow

from this process:

� P � x : (�� ��)↓L � x′ : (�� ��)↑L (22)

which is intuitively correct, since to give information at both y′1 and y′2 via x′, the

process does need information at both y1 and y2 via x, so it cannot forget any of

the types using ∗. But the receiving level of the source (x) is �, while the tampering

level of the target (x′) is �, saying the process is insecure, which is incorrect. This is

because we cannot distinguish two flows once we collect them into a single type.

A solution to this problem is to extract flows individually.

� P � x : (�� ∗)↓L � x′ : (�� ∗)↑L and � P � x : (∗ ��)↓L � x′ : (∗ ��)↑L ,

which decomposes (22) into two flows. Note these two flows together capture the

whole of the flow in (22), so there is no loss of information. In each of the

decomposed flows, the receiving level is equal to the tampering level, hence we

conclude this process is secure. We call such decomposed flows basic.

Definition 5.3 (basic) τ of mode ! or ↑ is basic if either:

i. τ = (�ρρ′↑)! or τ = (�∗ρ′�∗)↑L , where ρ′ is basic in each case.

ii. τ = ()↑L or τ = (�∗)↑A

s

A flow Γ � x : τ is basic if τ is basic and Γ is minimum among the sources of x : τ

(cf. Proposition 4.9 (2)).

For each basic type with non-trivial information content, its tampering level and

the receiving level of its dual coincide. First we delineate those types which only

bear trivial information.

Definition 5.4 (cancellable) The set of cancellable types (of mode !/↑) are generated

from the following induction.

i. τ = ∗
ii. τ = (ρ1 . . ρn)

↑L (n � 0) (each ρi is cancellable)

iii. τ = (�ρρ′↑L )!L (ρ′ is cancellable)

We say τ is co-cancellable if τ is cancellable. We also say Γ is co-cancellable if Γ(x)

is co-cancellable for all x ∈ dom(Γ).

Cancellable types represent a sequence of linear interactions which neither emit

nor receive non-trivial information so that they are negligible from the viewpoint of

information flow.

Lemma 5.5 The set of non-cancellable basic types are generated from the following

induction:
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i. τ = (�∗)↑A

s .

ii. τ = (�∗ ρ�∗)↑L (n � 1) such that ρ is generated from (iii) below.

iii. τ = (�ρρ′)! such that ρ′ is generated from (i) or (ii).

Proof

Immediate by construction. �

Proposition 5.6 1. If τ  τ′ then tamp(τ)  tamp(τ′).

2. If τ is positive and not cancellable, then tamp(τ)  receive(τ).

3. If τ is basic and not cancellable, then receive(τ) = tamp(τ).

Proof

(1) is straightforward by tamp(τ!)  tamp(∗!) = � and tamp(τ?) = tamp(∗!) = �.

(2) is proved by induction on the types. We infer:

tamp((�τ)↑A

s ) = s = receive((�τ)↓A

s )

tamp((�τ)↓L ) = �i{tamp(τi)}  �i{receive(τi)} = receive((�τ)↓L )

tamp((�σρ)!) = tamp(ρ)  receive(ρ) = receive((�σρ)?)

In the last two lines, we use induction hypothesis (note for a cancellable type,

say ()↑L , the inequation does not hold). For (3), we use the rule induction on the

generation of basic, non-cancellable types in Lemma 5.5. The proof is as the same

as (2). �

We use the following lemma for cancellable types. For the lemma, we use the

following condition.

Definition 5.7 A cancellable type τ is is well-formed if, in Definition 5.4 (iii), we

strengthen the condition:

iii. τ = (�ρρ′↑L )!L (ρ′ and each ρi cancellable.)

Dually a co-cancellable type τ is well-formed if τ is a well-formed cancellable type.

Below we simultaneously show, assuming well-formedness for co-cancellable types:

(1) derivable cancellable types are always well-formed; and (2) a flow towards a

cancellable target only uses co-cancellable sources.

Lemma 5.8 Assume we restrict derivable flows so that each co-cancellable type in the

source is well-formed.

1. If � PA � �y :�ρ � x :τ such that τ is cancellable, then each τ is well-formed.

2. If � PA � �y :�ρ � x :τ such that τ is cancellable, then each ρi is co-cancellable.

Proof

We simultaneously prove (1) and (2) by rule induction. (1) is related only to (In!L )

and (Out?L ), respectively.

(Zero) Irrelevant.

(Par) Immediate from the definition of �.
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(Res) Immediate.

(Weak) Immediate since ∗? is co-cancellable.

(Union, Subset, Empty) Immediate.

(In↓L ) Because if σ is cancellable, by induction, �ρ are co-cancellable, hence (�ρ)↓L is

co-cancellable.

(Out↑L ) Because if �ρ is cancellable, by induction, each Γi is co-cancellable, including

the case it is empty, hence ∨iΓi is co-cancellable (note if τ1,2 are co-cancellable

their superposition by ∨ is also co-cancellable).

(In↓A ) Irrelevant because σ cannot be cancellable by the linear/affine typing (since

an affine input cannot prefix over a linear output by the typing rule).

(Out↑A ) Irrelevant since (�τ)↑A

s is not cancellable.

(In!L ) Because if (�τσ)!L is cancellable so is σ hence by induction Γ and each τi is

co-cancellable. Hence Γ is co-cancellable and (�τσ)!L is well-formed.

(In!A ) Irrelevant since (�τ σ)p is not cancellable.

(Out?L ) Suppose (�τρ)?L is well-formed. Then τi is cancellable. Hence by the inductive

hypothesis, Γi is co-cancellable. If σ is cancellable, then Γ, ρ are co-cancellable

by induction. We note that (�τρ)?L is also co-cancellable since ρ is co-cancellable.

Hence ∨iΓi ∨ Γ · x : (�τρ)p is co-cancellable.

(Out?A ) Irrelevant as (In↓A ). �

We now define when a flow is safe.

Definition 5.9 (flow security) We say a basic flow Γ � x :τ is secure if receive(Γ) 
tamp(τ). A typed process PA is flow-secure if whenever � PA � Γ � x : τ such that

Γ � x :τ is basic, it is secure.

Proposition 5.10 (secure typing implies flow-security) If �sec P � A then PA is flow-

secure.

Proof

Since secure typing is in direct correspondence with the underlying linear/affine

typing, and because (Union) and (Subset) do not affect constituting flows, we can

argue by rule induction on the flow inference rules. Below symbols for processes,

types etc. refer to those occurring in each inference rule in Figure 1.

(Zero) Vacuous.

(Par) Assume we compose � P � u : δ � x : ρ and � Q � x : ρ′ � v : τ such that

ρ  ρ′ to obtain a flow u : δ � v : τ (the general case is proved precisely by

the same reasoning). If ρ is cancellable, δ is co-cancellable by Lemma 5.8, that is

receive(δ) = �, hence done. If not, by induction hypothesis and by Proposition 5.6,

we have receive(δ)  tamp(ρ)  tamp(ρ′)  receive(ρ′)  tamp(τ), as required.

(Res,Weak) Because receive(Γ) = receive(Γ · x :∗).
(Sub,Union,Empty) Immediate.

(In↓L ) Because receive(Γ · x : (�ρ)↓L ) = receive(Γ ·�y :�ρ).

(Out↑L ) Since we only infer a basic flow, and because the case when the type of x

is ()↓L is vacuous, we can safely assume ρi = ∗ except for a single ρj for which

we have � P � Γj � yj :ρj . On this flow we use induction hypothesis to obtain

receive(Γ)  tamp(ρj) = tamp((�∗ ρj �∗)↑L ), hence done.
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(In↓A ) In the inference rule, consider the typing of P is A,�y :�τ while that of x(�y).P

is A, x : (�τ)↓A

s . By the side condition in the secrecy typing, we have tamp((�τ)↓A

s ) =

s  tamp(A). Since we know A(w) = tamp(σ) when σ is immediate tampering, we

conclude tamp((�τ)↓A

s )  tamp(σ), as desired.

(Out↑A ) Since (�ρ)↑A

s is basic, ρi = ∗. Hence Γi is co-cancellable, and receive(Γi) =

�  s = tamp((�ρ)↑A

s ), as required.

(In! ) Because receive(Γ)  receive(Γ ·�y :�ρ)  tamp(σ) = tamp((�ρσ)! ).

(Out? ) Because receive(Γ · x : (�ρρ)? ) = receive(z :ρ · Γ)  tamp(σ). �

Note that composition in (Par) has two cases, depending on whether the interme-

diate node is cancellable. When the cancellable types are involved, we use Lemma

5.8, since if not false dependency could arise (this potential false dependency due to

composition at cancellable types becomes particularly significant when we introduce

branching, as detailed in section 6.2). Observe also that the reasoning for the case

(Out↑L ) goes through because the flow security is only about basic flows.

5.2 From flow security to noninterference

The next step is to show that the syntactic notion of flow security as defined

in Definition 5.9 entails its semantic counterpart, the noninterference property,

stipulated in Theorem 5.1. Along the way we show that the collection of flows of a

process given by the flow inference system at least includes those given by a semantic

means. The semantic notion of flows we shall use is defined as follows.

Definition 5.11 (semantic flow) Let � P � A where (1) A(xi) = τi is negative for each

xi ∈ {�x} �= ∅, (2) A(y) = τ is positive and (3) A(uj) = ρj is negative with�u = fn(A)\�xy.
Then we say PA has a semantic flow from �x to y, written |= PA � �x � y, iff the

following two conditions hold.

1. There exist � Ri � �x :�τ (i = 1, 2), � S � y :τ, w : ()↑A

s and � Q � �u :�ρ such that:

Q|R1|P |S ⇓w and Q|R2|P |S �⇓w.

2. For each � R � �x :�τ and � S � y :τ, w : ()↑A

s , we have, for arbitrary � Q1,2 � �u :�ρ:

Q1|R|P |S ⇓w ⇔ Q2|R|P |S ⇓w.

We also write |= PA � ∅� y (with A(y) positive) iff |= PA � �x � y never holds for

any {�x} �= ∅.

Intuitively, |= PA � �x � y indicates there is a non-trivial flow (transmission of

behaviour) to y from some of xi ∈ {�x}, and from no other negative names. Note

that the notion is defined behaviourally: in fact a semantic flow is invariant under

the maximum contextual congruence ∼= given in section 3.2.

The following lemma for cancellable types is a key to the noninterference result.

Lemma 5.12 Let � PA,w:()
↑
A

s � Γ � w : ()↑A

s such that types in A are negative and Γ

is co-cancellable. Then |= P � ∅� w, i.e. P |R1 ⇓w iff P |R2 ⇓w for any � R1,2 � A.
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Proof

See Appendix E. �

Intuitively, the lemma says that having the source of a flow which solely consists

of co-cancellable types is semantically the same thing as having the empty source.

We illustrate the key operational ideas underlying this lemma. By analysing the

inference rules which may induce co-cancellable types, we can observe those actions

associated with co-cancellable types are of quite specific nature – those which only

consist of unary linear input/output and their replicated variants. More concretely,

interactions between a process P and its environment interfaced at co-cancellable

channels satisfy the following property:

if P has a co-cancellable interface Γ to w, there always exists a finite chain of linear

transitions with R1,2 without being interfered by nonterminating actions.

Here by linear transitions we mean those which involve only linear replicated actions

and unary linear actions. Note that this is intuitively obvious since the derivability

of co-cancellable types at the source of a flow means that, by the definition of

cancellable types, only replicated actions and unary linear actions are exchanged

between the process and the environment starting from the typed channel. In fact,

the sequences of linear transitions thus derived have a regular form called linear

call sequence (l.c.s), which is introduced and studied in Yoshida (2002) and Yoshida

et al. (2002). We illustrate the notion of l.c.s. by a concrete example. Take:

P ≡ a(x)x.b(y)y.w | [b→ a] | (ν v)(Ωv | v〈e〉)

If we assume a target is co-cancellable, we cannot assign a and b to (()↑A)?L or

(()↑A )?A . Hence a flow to w is:

� P � a : (()↓L )?L · b : (()↓L )?L � w : ()↑A

s

Now the l.c.s. reaching w is:

a(x)(()
↓
L )?L · x()↓L · (b(y)(()↓L )?L , b(y)(()

↑
L )!L ) · (y()↑L , y()↓L )

where we explicitly annotate each label by its type. Note that the typing (()↓L )?L of

a and b determines the typing of bound names x and y. We note that finiteness

of linear call sequences does not imply convergence of the whole term (actually we

can observe P above has a diverging reduction path even though P ⇓w). But we can

guarantee that the interaction with Ri has the form (except linear call-backs from

the environment, which never affects the subsequent behaviour of P ):

(a(x), a(x)) · (x, x) · (b(y), b(y)) · (y, y)

without being interfered by affine transitions at intermediate steps. By this and by

its shape, a linear call sequence never affects the final convergence action (the output

at w in the example above). From this we conclude, for appropriately typed R1,2,

that we always have P |R1 ⇓w iff P |R2 ⇓w . For detail, see Appendix E.

We next observe a basic consequence of Lemma 5.12, which elucidates the central

status of Lemma 5.12 in the technical machinery of the present flow analysis. Below
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we say a flow Γ � x : τ is non-trivial if τ is not cancellable and, for some y, Γ(y) = ρ

is not co-cancellable.

Corollary 5.13 (completeness of flow inference) If |= PA � �x � y with {�x} �= ∅,
then � PA � Γ � y : τ for a non-trivial Γ � y : τ such that {�x} ⊂ fn(Γ).

Proof

If there is a semantic flow from �x to y, then, taking P ′
def
= P |S for S as given

in Definition 5.11, there is a non-trivial semantic flow from �x to w in P ′ by the

definition of semantic flow. By Lemma 5.12, P ′ should have a non-trivial source, say

Γ. But in the derivation for this flow inference for P ′, a derivation for P is included

(because the inference rules are compositional), all of whose interface points with S

at x cannot be cancellable by Lemma 5.8. �

Corollary 5.13 says that whenever there is a non-trivial semantic flow in a typed

process, it also has a non-trivial syntactic flow inferable by the flow inference

system. It is notable that we can also derive Lemma 5.12 from Corollary 5.13. In

fact, assume Corollary 5.13 holds and let � PA,w:()
↑
A

s � Γ � w : ()↑A

s such that types

in Γ are co-cancellable. If |= P � �y � w for non-empty �y, Corollary 5.13 says that

� P � ∆ � w : ()↑A

s where ∆ is not co-cancellable. By Proposition 4.9 (2) we have Γ

is also not co-cancellable, a contradiction. Hence |= P � ∅� w, as required.

Another observation is that Corollary 5.13 suggests a basic method for debugging

flow inference rules, where each rule should obey the satisfaction of the stated

completeness property inductively.

We also use the following syntactic property of co-cancellable types for our

noninterference result.

Lemma 5.14 If � PA,x:ρ � Γ � x :τ with y ∈ dom(Γ) where Γ(y) is not co-cancellable,

then tamp(A(y))  receive(Γ(y)).

Proof

By Γ(y) ≺ A(y) and Proposition 5.6, we have: tamp(A(y))  receive(A(y)) 
receive(Γ(y)), as required. �

We can now prove noninterference.

Proposition 5.15 (flow security implies noninterference) If � P � A, w : ()↑A

s is flow-

secure, tamp(A) �s and � R1,2 � A, then P |R1 ⇓w iff P |R2 ⇓w .

Proof

Let � P � A, w : ()↑A

s be flow-secure with tamp(A) � s (note this implies fn(A) �= ∅).
We show |= P � ∅ � w. Below let {y} = fn(A). First we show Γ is (i.e. all its types

are) co-cancellable. We reason towards a contradiction.

Γ(yi) not co-cancellable ∧ tamp(A) �s

⇒ tamp(A(yi))  receive(Γ(yi)) (Lemma 5.14)

⇒ receive(Γ(yi)) � s (tamp(A(yi)) � s)
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But this contradicts PA being flow-secure, hence Γ is co-cancellable. We can now

reason:

� P � �y : �ρ � w ⇒ �ρ co-cancellable (above)

⇒ |= P � ∅� w (Lemma 5.12),

hence as required. �

By combining Propositions 5.10 and 5.15, we have now reached the non-interference

property, establishing Theorem 5.1.

Remark 5.16 Lemma 5.12, as well as the technical development to follow, shows

that co-cancellable types in the source are operationally negligible. In particular, if

we only consider the cases when all types are affine, we do not have co-cancellable

types, hence we do not need Lemma 5.12 (even though we need a weaker version

for a flow which has the empty source). One may thus wonder whether there is

any significance to have (unary) linear actions in processes. Their incorporation is

however useful in many settings, for example when we encode sequential composition

of commands, when we need indirection in the encoding of polymorphic programs,

when representing the unit type. Thus having co-cancellable types is useful, in spite

of its needing an extra step in reasoning. Note however an extracted flow may as

well neglect co-cancellable sources.

Remark 5.17 Definition 5.15 does not exclude a flow which uses an “unsafe” type,

such as ∅ � x : (��()↑A

� )!A (which contains an unsafe flow from �� to ()↑A

� ). This

does not cause a problem in the present technical development because of the simple

shape of the target type in the non-interference result in Proposition 5.15 (in other

words, including or excluding these unsafe types does not change the technical

development). The flow inference we shall present in section 7.4 later naturally

incorporates this consideration.

6 Extensions (1): Inflation and branching

This section and the next extend the flow analysis to broader classes of typed process

behaviours. This section treats two extensions which still stay within pure functional

behaviour, inflation and branching. In the next section we treat the extensions which

incorporate stateful behaviour.

6.1 Inflation

The inflation operation, which is suggested by Dependency Core Calculus (Abadi

et al., 1999), allows relaxing of the secrecy typing by changing secrecy levels as far

as global flows remain safe. Write τ � s for the result of raising each secrecy level

occurring in τ by taking its join with s. For example, �� �� = �� with �s = (()↑A

s )!A .

We extend this operation pointwise to A, writing A � s. Using this operation, the
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typing rule for inflation is given by:

(Inf)
� P � inf(A)

� P � A

where we set inf(A) = A � tamp(A).

To show how this extends the secrecy typing without endangering secure inform-

ation flow, we consider the following process.

Q
def
= y(ab)(!a(c).z(c′)c′

�
.c� | b�.e�)

where we attach the security levels on channels for readability. Let B
def
= y :

(�� ()↓A

� )?L , z :��, e : ()↑A

� , under which Q is untypable in the secrecy typing without

inflation because a high-level input c′ prefixes a low-level output c. Yet we can argue

Q is in fact secure under B, since this violation is not observable to the environment

which receives information only at the high-level. More precisely, this process only

affects the environment at e, and never at y and z. For example, we may compose

Q with:

R
def
= !y(ab).a(c)c�.b

� | !z(c′).c′�

Note that the insecure action at c� is “nullified” by the high-level action at b� by

R. In other word, the local violation in Q is ineffective as a whole. In fact, as we

shall see later, Q is flow-secure, so, in the light of Proposition 5.10, Q is secure. With

(Inf), however, we can check Q becomes typable under B, as follows.

(Inf)
�sec Q � y : (�� ()↓A

� )?L , z :��, e : ()↑A

�

�sec Q � y : (�� ()↓A

� )?L , z :��, e : ()↑A

�

The flow analysis associated with this operation is simple, adding the following

sequent (F � s is given as A � s)

(Inf)
� P inf(A) � F � tamp(A)

� PA � F

Intuitively, the addition of this rule (which in fact does not change derivability of

flows except inflated secrecy levels in flows) still maintains the flow security, since

tamp(A) is always lower than, or equal to, the tamper level of τ in a basic flow

Γ � x :τ, hence its effect on Γ and τ is negligible from the viewpoint of flow-security.

Indeed:

Proposition 6.1 If �sec P � A with inflation then PA is flow-secure.

Proof

Assume we derive � P � Γ′ � x : τ′ from � P � Γ � x : τ by (Inf). By definition,

tamp(τ′) = tamp(τ) and, for each yi in fn(Γ), receive(Γ′(yi))  receive(Γ(yi)). Finally

all and only cancellable types in Γ are those in Γ′. �

Note that the same behavioural secrecy (Lemma 5.12) immediately holds in this

extension (since the set of untyped processes derived with co-cancellable sources
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remain identical). Hence by combining Proposition 5.15 and Proposition 6.1 above,

we obtain the noninterference theorem (Theorem 5.1) for this system.

6.2 Branching and selection

Branching is used for representing base values as well as conditionals (Berger

et al., 2001; Yoshida et al., 2001). We assume the index set I is either countable

or finite. While this construct can be simply encoded into the calculus without it,

the branching plays a basic role in the typed setting and is essential for the secrecy

analysis of complex behaviour. In the system with branching and selection, processes

are extended as follows.

P ::= . . . | x[&i∈I (�yi).Pi] | xini(�y)P

We also often omit the indexing set I of x[&i∈I (�yi).Pi]. Dynamics of branching

involves selection of one branch, discarding remaining ones, as well as name passing.

x[&i(�yi).Pi] | xini(�yi)P −→ (ν�yi)(Pi | P )

For types, we extend the grammar by:

τ :: = . . . | [&i�τ
?
i ]
↓L

s | [⊕i�τ
!
i ]
↑L

s

We only add linear branching/section for simplicity. In fact, from the viewpoint

of expressiveness, this is enough since the affine branching can be represented by

combination of a unary affine type with linear branching. Branching types (&) are

negative, while selection types (⊕) are positive, and they are dual to each other. Note

that unlike (�τ)↑L , a selection type [⊕i�τi]
↑L

s is immediately tampering as it transmits

information to the received channel. Hence we set:

tamp([⊕i�τi]
↑L

s ) = s receive([&i�τi]
↓L

s ) = s

Selections are never cancellable, dually for branching. The typing rules are defined

in Appendix C. For illustration we give a couple of examples which use branching.

Example 6.2 (branching types)

1. A natural number agent, [[n]]u
def
=!u(c).cinn, acts as a server which necessarily

returns a fixed answer n. This agent is invoked by sending a channel c through

its free channel u, to which an output should be sent. c plays the role of a

continuation of interaction. Now let �•
s

def
= [⊕i∈�]↑L

s and �◦
s

def
= (�•

s )
!L with � the

set of natural numbers. Then �sec [[n]]x � x :�◦
s is typable. Note tamp(�◦

s ) = s

(note this agent does emit information when asked).

2. The process u(c)c[&n∈�.einn+1] acts as the successor function for the natural

number agent. This successor invokes the natural number with continuation

c; if its i-th branch is selected via c, it emits the answer i + 1 via e.

[[2]]u|u(c)c[&n∈�.einn+1] ≡ (ν c)([[2]]u|u〈c〉|c[&n∈�.einn+1])

−→ (ν c)([[2]]u|cin2|c[&n∈�.einn+1])

−→ (ν c)([[2]]u|ein3)

≡ [[2]]u|ein3
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The essence of this encoding lies in the precise representation of functional

behaviour as an interacting process. Then �sec u(c)c[&n∈�.einn+1] � u :�
◦
s , e :�•

s′

is well-typed iff s  s′. To check this, it suffices to know that �sec c[&n∈�.einn+1] �

c :�•
s→e :�•

s′ is well-typed, the condition for which is nothing but s  s′.

For the flow analysis, first we extend the syntax of channel types as in section 4.1.
Then we add the four prefix rules for the added constructs.

(Bra↓L )

� Pi � Γ ·�yi :�ρi � w : σ

� x[&i(�yi).Pi] � Γ · x : [&i�ρi]
↓L
s � w : σ

(Sel↑L )

∀i, j. � P � Γij � yij : ρij

� xini(�y)P � ∨ij Γij � x : [⊕i�ρi]
↑L
s

Note these rules treat actions which immediately emit/receive information, so

have the same shape as (In↓A ) and (Out↑A ) in Figure 1. In branching, there arises a

subtle point in composition at (co-)cancellable types, which we illustrate using an

example.

Example 6.3 (composition at cancellable types in branching) As we have seen from

the previous section, representing (co-)cancellable types in flows are in effect unneces-

sary in the unary case. They become harmful in the presence of branching/selection.

Take, for example, the following process:

� f.w � f : ()↓L , w : ()↑A

� , � x[.f&.f] � x : [&]↓L

� , f : ()↑L (23)

They respectively have the following flows:

� f.w � f : ()↓L � w : ()↑A

� , � x[.f&.f] � x : [&]↓L

� � f : ()↑L (24)

They are both secure. However, a naive composition of these flows leads to the

following flow:

x[&]↓L

� � w : ()↑A

� (25)

which is clearly not secure.

A solution to the above problem is to prohibit such composition, and to allow

the trimming of co-cancellable types from the source of a flow. When incorporating

these two elements, the flow analysis induces:

� f.w � ∅� w : ()↑A

� , � x[.f&.f] � ∅ (26)

which is composed to give the safe flow ∅� w : ()↑A

� . Note that having the flow (26)

instead of (24) makes sense since causality is in effect nonexistent at the composition.

For formally preventing composition at cancellable types, we first introduce the

following structural rule.

(Cancel)
� P � Γ · y :ρ � x :τ ρ co-cancellable

� P � Γ � x :τ

Note this rule has no substantial effect in the unary setting since co-cancellable

types never have any effect, both in inference (because co-cancellable types have the

lowest receiving level) and in operation (because they do not transmit information).
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By having (Cancel), we do not have to have channels typed with co-cancellable

types when composing two flows. We further require that no such composition can

occur.

Definition 6.4 In the flow analysis in this section and next, we add the condition:

“with τ not co-cancellable” in Definition 4.3 (i). That is, we replace Definition 4.3 (i)

by: If A2(x) = A1(x) and x : τ occurs as a source in F1 and τ is not co-cancellable,

then x :δ occurs in F2 as a target such that τ ≺ δ.

Incorporating this refinement does not affect the technical development of the

analysis for unary processes since composition at cancellable types was of no use in

the unary case by Lemma 5.12. But they can prevent the dangerous composition as

discussed in Example 6.3.

The extended system satisfies uniqueness of inferable flows (Proposition 4.9 (ii)),

modulo the difference of channels with co-cancellable types in their sources. Basic

types add linear selection types [⊕�∗]↑L

s . As before (Proposition 5.6), if τ is basic and

is not cancellable, then receive(τ) and tamp(τ) coincide. The notion of flow-security

(Definition 5.9) remains precisely the same.

Lemma 5.8 does not hold since a linear selection can be prefixed by a unary linear

input. This does not matter since we do not allow composition of co-cancellable

types, which is the only place where Lemma 5.8 is used.

Proposition 6.5 If �sec P � A with branching and selection then PA is flow-secure.

Proof

(Bra↓L ,Sel↑L ) As (In↓A ) and (Out↑A ) in Proposition 5.10, respectively.

(Cancel) Immediate since receive(ρ) = �. �

To deduce behavioural security from flow security, we need some preparation.

Assume we have derived a flow from P in the system which use neither (Cancellable)

nor Definition 6.4. Note, because of dangerous composition at co-cancellable types,

the derived flow may not be secure. Yet we can always extract a process from P

which does not use composition at co-cancellable channels as follows.

If the derivation of a flow does not involve composition at co-cancellable types,

we can use P as it is. If it does, then we can find P ′ and S such that P ≡ P ′|S (here

we are safely neglecting hiding of composed channels), so that the interface between

P ′ and S is precisely the composition(s) at co-cancellable channel(s). For example,

in the case of the processes in Example 6.3, we first have P
def
= x[.f&.f]|f.w, which

we cut off at the problematic composition at f, to obtain:

P ′
def
= f.w S

def
= x[.f&.f].

If there are n such compositions in distinct branches of a flow, we have P ≡ P ′|S1|..|Sn
where each Si has a distinct cancellable interface, so that we take S

def
= S1|..|Sn. If

two or more such compositions are located in the same branch, we choose the one

which occurs as near to w as possible. The (flow of the) derived P ′ does not use
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the composition at co-cancellable types but still retains w. Note that, for such P ′,

Lemma 6.5 is valid due to the lack of problematic compositions.

We can now derive behavioural security from flow security precisely as we did

in section 5.2. Take P and R1,2 as in Lemma 5.12 and Proposition 5.15. By the

decomposition of P into P ′ and S , we can regard P |R1,2 as P ′|(R1,2|S). If the flow of

P ′ has co-cancellable types in its source, then by the same linear liveness property

in the linear/affine π-calculus with branching (Yoshida, 2002), R1,2 do not affect

convergence of P , cf. Lemma 5.12. We can then show, via Lemma 5.14 in the

present setting, that if � P ′ � A, w : ()↑A

s and tamp(A) � s, and if Γ � w : ()↑A

s is a flow

from P ′, then Γ solely consists of co-cancellable types. Thus we obtain Proposition

5.15, reaching the noninterference, Theorem 5.1, for this extension.

We observe that integrating inflation into the flow analysis with branching/selection

does not change any technical development, since the inflation rule is flow secure

and because behavioural properties of flow security are independent from individual

embeddings. The resulting flow analysis can easily justify the semantic soundness of

Dependency Core Calculus (Abadi et al., 1999) via the standard process encoding

of functions into processes.

7 Extensions (2): State

7.1 Elementary state (1): Flow analysis

This section discusses flow analysis on stateful extensions of the linear/affine π-

calculus (πLA). The stateful extension, designated πLAR, adds a reference agent, which

embodies stateful computation, to πLA. This addition means that the clear distinction

between positive/negative types, which we had in πLA, is lost: some typed channels can

be used for both emitting and receiving information. However distinction between

positivity and negativity is still essential for our flow analysis – information always

flows from negative channels to positive channels. Thus the flow analysis continues

to focus on polarities, or directions of information. The only change is that a single

channel in a process can be used both positively and negatively, or as a source and

as a target, even in a single flow.

To give a cleanly articulated presentation of the subtle points involved in the flow

analysis with mixed polarities, we first treat a simpler form of stateful actions in

section 7.1 and section 7.2, where we augment πLA with a minimal notion of state;

we then treat the flow analysis for the full πLAR-calculus in section 7.3 and section 7.4,

where a general notion of state is fully integrated into the original calculus.

A basic stateful process is an encoding of an imperative variable, which we call

reference. We use the following extension of the grammar for processes, adding

references and their duals.

P ::= . . . | Ref〈xv〉 | x read〈c〉 | x write〈yc〉

Ref〈xv〉 is called reference, while x read〈c〉 and x write〈yc〉 are called read and write

selections, respectively. In Ref〈xv〉, x is the principal channel and v is the stored

value (which is also a channel name). This process waits for invocation at x, with
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one branch for reading and one branch for writing. The read branch receives a

single name c as a continuation from the request, which is used to return its content

v. In the write branch, it receives two names, v′ and c, and uses v′ as its new value

(thus changing its state) and acknowledges the receipt via c. Dynamics of Ref〈xv〉 is

formally defined as follows.2

Ref〈xv〉 | x read〈c〉 −→ Ref〈xv〉 | c〈v〉
Ref〈xv〉 | x write〈v′c〉 −→ Ref〈xv′〉 | c

The reader can find more examples of the encodings with reference agents in Honda

& Yoshida (2002). Introduction of references makes the calculus nondeterministic

(as we shall see in later examples). Regarding types, we add reference types and

mutable replicated affine types to the grammar so that the type structure simply and

minimally increments the original linear/affine types.

τe ::= from section 2

τ ::= τe | refs〈τ!
e〉 | rws〈τ?

e〉 | (�τ?
eτ
↑A

e )!As | (�τ!
eτ
↓A

e )?As | (�τ?L
e τ
↑L

e )?Ls | (�τ?
eτ
↑L

e )?Ls

The added types are called elementary stateful types, while the types from sec-

tion 2, written τe in this subsection, are called stateless types. refs〈τ〉 stands for

[(τ)↑L&τ()↑L ]!Rs , while rws〈τ〉 = refs〈τ〉. Accordingly these types have mode !
R

and

its dual ?
R
, respectively. !

L
and ?

L
now have their stateful counterpart, distinguished

by added annotations of secrecy levels. Similarly for !
R

and ?
R

(these modes are

only used for reference types). They are given secrecy levels since they receive/emit

information, as we shall discuss in the next subsection. Elementary stateful types

are those which do not carry stateful types, even though the types themselves can

be stateful. Restricting to elementary stateful types allows us to demonstrate the

subtlety of information flow specific to stateful actions in a simplest possible setting

with a minimal increment on πLA. The resulting calculus is also expressive enough

to encode many stateful behaviours, such as a first-order imperative programming

language (the so-called While language (Winskel, 1993)). The tampering levels of

the elementary stateful types (for added ones) are given as follows:

tamp(refs〈τ〉) = tamp(τ) tamp((�ττ)!s) = tamp(τ)

tamp(rws〈τ〉) = s tamp((�ττ)?s) = s

The typing rules for additional constructs are given in Appendix D.3 We also add

the following condition from Honda & Yoshida (2002) for well-formed types.

Definition 7.1 (structural security for elementary stateful types) τ is structurally

secure if (1) for each occurrence of refs〈τ′〉 in τ, we have s  tamp(refs〈τ′〉) and (2)

for each occurrence of rws〈τ′〉 in τ, we have s  tamp(refs〈τ′〉).

2 We can represent the reference by bound name passing by translating c〈v〉 into the copycat, cf. Exam-
ple 2.1 (2). We use free name passing for reference agents and their duals, which results in an arguably
simpler presentation.

3 In (Honda & Yoshida, 2002), we also used read-write subtyping for a refined secrecy typing. While
we omit this refinement for brevity, the refined secrecy typing can be easily treated using precisely the
same technical development.
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The significance of structural security becomes apparent when we introduce the

flow inference rules for stateful actions (see also Honda & Yoshida (2002, section

6) for further discussions). A similar idea is also used in SLam-Calculus (see

transparency types in the Appendix of Heintze & Riecke (1998)).

Using the extended syntax, we illustrate the subtlety in the flows associated with

stateful actions. We first show a reference (an imperative variable) is indeed both

positive (i.e. giving information) and negative (i.e. receiving information).

Example 7.2 (polarities of a reference agent) First let us show a reference type

is behaviourally positive in the sense of Definition 3.1, that is, two references

of the same type can induce a difference in the ultimate convergent behaviour.

Let [[deref x]]w
def
= x read(e)e(y)y(c)c.w which is a process reading a value from a

reference x. This agent has type x :rws〈�s′ 〉, w : ()↑A . Then consider the following two

processes.

Ref〈x()〉 def
= (ν y)(Ref〈xy〉 | [[()]]y) Ref〈xΩ〉 def

= (ν y)(Ref〈xy〉 | Ωy)

where [[()]]y and Ωy are from Example 2.3 (3) in section 2 (while having the same type,

the former converges, while the latter diverges). Ref〈x()〉 (resp. Ref〈xΩ〉) represents

a reference whose stored value is the unit (resp. the omega), with type refs〈�s′ 〉. Then

these two processes do “make difference”, since we have [[deref x]]w | Ref〈x()〉 ⇓w
while [[deref x]]w | Ref〈xΩ〉 ⇑. Hence by letting P1

def
= Ref〈x()〉, P2

def
= Ref〈xΩ〉 and

R = [[deref x]]w , by Definition 3.1, refs〈�s′ 〉 is positive.

Next we show that a reference type is behaviourally negative too. Let us define

R
def
= Ref〈xΩ〉 | [[deref x]]w , which is typed as � R � x : refs〈�s〉, w : ()↑A , and consider

the following two processes.

[[x := ()]]
def
= x write(vg)([[()]]v | g.0) [[x := Ω]]

def
= x write(vg)(Ωv | g.0)

[[x := ()]] (resp. [[x := Ω]]) represents a process (with type x : rws〈�s′ 〉) which writes

the unit (resp. the omega) to the reference Ref〈xy〉. Then [[x := ()]] | R ⇓w while

[[x := Ω]] | R ⇑. Hence refs〈�s′ 〉 is negative. Thus a reference type (hence its dual) is

both positive and negative, by Definition 3.1.

Example 7.2 extends to all reference types (except those which carry types which

are neither positive nor negative), so that all reference types are both positive and

negative. Example 7.2 also clarifies the need of secrecy annotations for reference

types and their duals: “s” in refs〈τ〉 indicates the level at which the reference receives

information as a negative type, via writing.

A mutable affine replication is also simultaneously both positive and negative: it

emits information in the same way as its stateless counterpart. And it also receives

information unlike its stateless counterpart, as the following example shows.

Example 7.3 (polarity of mutable affine replication) Let P1
def
= x(c)c.0 and P2

def
= 0.

Then we have � P1,2 � x :τ with τ = (()↓A

s )?As . Now consider the following process:

R
def
= (ν y)(! x(c).([[y := ()]] | c) | Ref〈yΩ〉 | [[deref y]]w)
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then � R � x :τ, w : ()↑A

s for some s. We then observe: P1 | R ⇓w while P2 | R ⇑. Hence

τ is behavioural positive.

Example 7.3 also shows the need for the secrecy annotation of mutable replication:

s in (�τ)!As is the level at which a mutable replication receives information.

7.2 Elementary state (2): Flow inference

We now introduce flow inference rules for elementary stateful actions, starting from

extended channel types.

τe ::= Extended Channel Types from Section 4.1

τ ::= τe | rs〈τe〉 | ws〈τe〉 | refrs〈τe〉 | refws〈τe〉
| (�τe∗)!As | (�τe∗)?As | (�τe∗)!Ls | (�τe∗)?Ls

where the four reference types are in fact abbreviations, given as follows.

• rs〈τ?〉 stands for [(τ)↓L ⊕ ∗()↓L ]?Rs , while refrs〈τ!〉 stands for rs〈τ〉; and

• ws〈τ?〉 stands for [(∗)↓L ⊕ τ()↓L ]?Rs , while refws〈τ!〉 stands for ws〈τ〉.

Note that the extended affine replicated types contain ∗ with mode {↑, ↓}.
The decomposition of reference types into extended channel types allows us to

assign a unique polarity to each form of channel types, as follows.

• τe is positive (resp. negative) if it is so in section 3.2, Definition 3.3.

• ws〈τe〉, refrs〈τe〉, (�τe)
!
s and (�τe∗)?s are positive.

• rs〈τe〉, refws〈τe〉, (�τe)
?
s, and (�τe∗)!s are negative.

For the extended set of channel types we set the tampering levels and receiving

levels. Below we assume each τ has mode !.

tamp((�τ∗)!s) = �

tamp(refrs〈τ〉) = tamp(τ)

tamp(ws〈τ〉) = s

receive((�τ∗)?s) = �

receive(rs〈τ〉) = receive(τ)

receive(refws〈τ〉) = s

The table above is arranged to clarify that the receiving level of some type is precisely

the tampering level of its dual. The receiving level for (�ττ)?s is similarly defined as

(�τ)↓A

s in section 4, i.e. receive((�ττ)?s) = receive(τ).

Basic types are defined by adding (�∗)?s, ws〈∗〉, (�ττ)!s and refrs〈τ〉 with τ basic.

The set of cancellable types add those of the form refrs〈τ〉 with τ cancellable. We

observe:

Proposition 7.4 1. If τ  τ′ then tamp(τ)  tamp(τ′).

2. If τ is positive and not cancellable, then tamp(τ)  receive(τ).

3. If τ is basic and not cancellable, then receive(τ) = tamp(τ).

Proof

By the same routine as Proposition 5.6. For (3), in addition to the equations in

Proposition 5.6, we use the equations in the above table. For example we have
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two axioms:

receive(refws〈τ〉) = s = tamp(ws〈τ〉)
receive((�∗)!s) = s = tamp((�∗)?s)

as well as the inductive cases. �

The additional inference rules are naturally given by considering the polarities of

stateful types, cf. Examples 7.2 and 7.3. We first show the rule for the reference agent,

which says that a reference emits information by getting read, and that information

comes from either the initial value or the result of writing.

(Ref)
−

� Ref〈xy〉 � y :τ · x :refws〈∗〉� x :refrs〈τ〉
Let us see what this rule tells us about safety in information flow of a reference.

Assuming τ is basic, we first observe:

receive(τ) = tamp(τ) = tamp(refrs〈τ〉).

Since receive(refws〈∗〉) = s, we can see that the sufficient and necessary condition

for making the flow above secure, is s  tamp(refs〈τ〉) = tamp(τ). This is precisely

what the structural security condition (Definition 7.1) dictates.

For the two duals of references, we have the following rules.

(Read)

−

� x read〈c〉 � x :rs〈τ〉� c : (τ)↑L

(Write)

−

� x write〈vc〉 � v :τ � x :ws〈τ〉

(Read) says the action of reading a datum from the reference that stores that datum

(which would return that datum) affects c. (Write) says there is a flow from the

datum to the write action and the write action immediately affects a reference (emits

information) at the level specified at a reference type. There is also (Write-sig) rule

(given in Figure 2), which induces a trivial information flow (note ()↑L is cancellable).

For mutable replication and its dual, we have the same rules as for non-

mutable replication and its dual (cf. Figure 1). In addition, since a replicated input

(resp. output) can also be negative (resp. positive), we have the following rules:

(In! -receive)

� P � Γ ·�y :�τ � w :σ w �∈ {�yz}

�!x(�yz).P � Γ · x : (�τ∗)!s � w :σ

(Out?-emit)

� P �
⋃

i{Γi � yi : τi}

� x(�yz)P � ∨i Γi � x : (�τ∗)?s
(In! -receive) introduces an immediately receiving type, while (Out?-emit) introduces

an immediately tampering (emitting) type. These rules can be understood just as

(In↓A ) and (Out↑A ) in section 4.2.

We summarise the additional rules for treating elementary stateful actions in

Figure 2, augmenting the original rules for stateless actions in Figure 1 (all original

rules stay intact).

The notion of flow-security is defined as before (cf. Definition 5.9), considering

only basic types in targets. We observe:
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(In! -receive)

� P � Γ ·�y :�τ � w :σ w �∈ {�yz}

�!x(�yz).P � Γ · x : (�τ∗)!s � w :σ

(Out?-emit)

� P �
⋃

i{Γi � yi : τi}

� x(�yz)P � ∨i Γi � x : (�τ∗)?s

(Ref)

−

� Ref〈xy〉 � y :τ · x :refws〈∗〉� x :refrs〈τ〉

(Read)

−

� x read〈c〉 � x :rs〈τ〉� c : (τ)↑L

(Write)

−

� x write〈vc〉 � v :τ � x :ws〈τ〉

(Write-sig)

−

� x write〈vc〉 � ∅� c : ()↑L

Fig. 2. Flow analysis for elementary stateful actions.

Proposition 7.5 If �sec P � A in the elementary stateful secrecy typing in Appendix D,

then PA is flow-secure w.r.t. the inference rules above.

Proof

By definition we are only interested in basic flows.

(Out?-emit) As (Out↑A ) in Proposition 5.10.

(In! -receive) As (In↓A ) in Proposition 5.10.

(Ref) Noting refrs〈τ〉 is basic if τ is, we have receive(τ) = tamp(τ). Further by

structural security we have s  tamp(refs〈τ〉) = tamp(τ) hence done.

(Read) By receive(rs〈τ〉) = receive(τ) = tamp((τ)↑L ).

(Write) Assume ws〈τ〉 is basic. Then τ = ∗. Hence immediate.

(Write-sig) Trivial.

Further, we observe that the identical behavioural property for co-cancellable

sources (Lemma 5.12) holds using the same liveness property of linear outputs (cf.

Yoshida (2002, section 4): while the reduction in general becomes nondeterministic

with state, interactions between P and Ri (if any), which are linear call sequences,

are still deterministic, so this does not affect the reasoning). This also leads to

an analogue of Corollary 5.13. By the same reasoning steps as in the proof for

Proposition 5.15, we obtain the same noninterference theorem (Theorem 5.1).

7.3 General state (1): Indirect flows in general reference

This subsection studies information flow analysis for a general class of stateful

processes, where the stateful and non-stateful types are fully integrated. The syntax

of types is now extended as follows.

τ ::= . . . | refs〈τ!〉 | rws〈τ?〉 | (�τ?τ↑A )!As | (�τ!τ↓A )?As | (�τ?τ↑L )!Ls | (�τ!τ↓L )?Ls
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Note that we now allow any type to carry stateful types. The resulting types are

called general stateful types, or simply stateful types. Similarly reference types which

can carry stateful types are called general reference types.

Having the generalised form of stateful types adds complication due to indirect

flows caused by mutable types that are carried in other types. In fact, it makes

even “purely positive” types (of mode ↑
L
, ↑

A
,) negative. Similarly for the dual types.

The existence of such indirect flow in general reference was, as far as we know,

first observed in Volpano et al. (1996). We illustrate the added subtlety again by

examples.

Example 7.6 (indirect flows in general references) As a typical case of indirect flows

coming from general stateful types, we show that writing action, which is usually

just positive, can become behaviourally negative when a reference carries another

reference. This suggests an extended type ws〈τ〉 is not only positive but also negative

when τ is mutable. First, let us define T〈e〉 (a truth agent) and F〈e〉 (a falsity agent)

as !e(c).cin1 and !e(c).cin2, respectively. We also write if deref y then P1 else P2 as

y read(c′)c′(e).e(g)g[.P1 & .P2] (which means if a value of the reference y is truth, then

behaves as P1, otherwise behaves as P2) and [[y := T]] as y write(ec0)(T〈e〉 | c0.0).

Now let us define:

P1 = Ref〈xz〉 | x read(c)c(y).[[y := T]]

P2 = Ref〈xz〉 | x read(c)c(y).[[y := F]]

R = x write(yc)(Ref〈yF〉 | if deref y then w else (ν v)(Ωv|v(c)c.w))

where � P1,2 � x : refs〈τ〉, z : τ and � R � x : rws〈τ〉, w : ()↑A

s′ with τ = refs′ 〈([ ⊕ ]↑L

s )!L〉
(observe a reference type carries another reference type). In this configuration, after

the writing side accesses the reference agent at x by writing a reference storing

a boolean value, if Pi first reads at x and writes at the boolean reference, then

the latter can, by changing the value of the reference, communicate information to

the writing side. This in effect leads to a difference in the ultimate observable at

w. Operationally we have P1|R ⇓w while P2|R ⇑. Thus a writing party can indeed

receive information. Noting the initial interface is only at x, the channel x should be

regarded as negative for the writing party. Since the writing action is also positive

just as before, we conclude that writing is of mixed polarities.

In the same way, non-mutable types can now have mixed polarities if they carry

mutable types. That is, if a stateful type is carried in another type (directly or

indirectly), then it can induce indirect flows of the same kind as noted above. Below

we illustrate one typical such example resulting in mixed polarities of a non-mutable

type which carries a mutable type, using concrete processes.

Example 7.7 (Indirect flows via carried stateful types) We show the type τ
def
=

(rws〈�s′ 〉)↓L is behaviourally positive (the same is true for all types which carry this

and other stateful types directly or indirectly). Let:

P1
def
= x(y).[[y := ()]] R

def
= x(y)(Ref〈yΩ〉|[[deref y]]w)

P2
def
= x(y).[[y := Ω]]
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Note � Pi � x : τ while � R � x : τ, w : ()↑A

s′ . Then we can easily show P1 | R ⇓w but

P2 | R ⇑, so that τ is behaviourally positive (hence τ is behaviourally negative).

From these observations, we set all types which carry (directly or indirectly)

stateful types to be both positive and negative.

The secrecy typing rules stay the same as in Appendix D, though we refine the

definition of the tampering levels as follows (all positive types are given non-trivial

levels). Others are from Definition 2.2.

tamp(refs〈τ〉) = tamp(τ) � tamp(τ) tamp(rws〈τ〉) = s

tamp((�τ)!s) = �{tamp(τi)} tamp((�τ)?s) = s

tamp((�τ)! ) = �i{tamp(τi)} tamp((�τ)↓L ) = �i{tamp(τi)}

We can check that this definition and the previous one in section 7.1 coincide for

elementary stateful types. Some illustrations of the refinement would be due:

• The tamper level of refs〈τ!〉, or the level of information this type produces, is

that of τ itself in the elementary case. This is because τ is what a reference

of this type returns when it is read. However if τ is mutable (for example is

a reference type), there is another way a reference of the type refs〈τ!〉 can

produce information as illustrated in Example 7.6.

• For rws〈τ〉, the tamper level of a process which writes to a reference of level s

is s.

• Since τi in (�τ)↓L and (�ττ)! may be mutable, we need to accumulate the tampering

level of τi.

The extended channel types now include ∗ with modes ↑ and ↓:

τ ::= . . . . | ∗p | (�τ)p

where p is any mode. Note that the above syntax includes (�τ)p with p ∈ {↓
A
, ↑

A
, !, ?},

which are used as glues between two flows (hence we ignore their security levels, and

calculate their tampering and receiving levels just like their linear counterparts). We

first review polarities of extended types.

• (�τ)↓L , (�τ)↑L , (�τ)↓A

s , (�τ)↑A , (�τ)!s, (�τ)?, rs〈τ〉, ws〈τ〉, refrs〈τ〉 and refws〈τ〉 are negative.

• (�τ)↓L , (�τ)↑L , (�τ)↓A , (�τ)↑A

s , (�τ)! , (�τ)?s, rs〈τ〉, ws〈τ〉, refrs〈τ〉 and refws〈τ〉 are positive.

Note most types are both positive and negative; however we distinguish polarities

of !?-types by the presence/existence of secrecy annotations.

The grammar of basic types becomes simpler (due to decomposition of flow

inference rules on which we shall discuss in the next subsection). We say τ is basic

iff:

i. τ = (�∗ρ�∗)p where ρ is basic and p ∈ {↑
L
, ↓

L
, ↑

A
, ↓

A
, !, ?}; or

ii. τ = ()↑L , τ = (�∗)↑A

s or τ = (�∗)?s is basic.

iii. ws〈∗〉 and refrs〈τ〉 are basic if τ is basic.

A flow Γ � x : τ is basic if τ is basic and Γ is minimum among the sources of x : τ

(whose existence we can check as before).
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The grammar of cancellable types is precisely the same as in elementary stateful

types.

As before, we only treat structurally secure types. Then the following tamper-

ing/receiving levels are added to the table given in section 7.2.

tamp(refws〈τ〉) = tamp(τ)

tamp(rs〈τ〉) = tamp(τ)

receive(ws〈τ〉) = receive(τ)

receive(refrs〈τ〉) = receive(τ)

We also define the receiving level for other types as follows.

• receive((�τ)↓L ) = receive((�τ)! ) = receive((�τ)↑) = receive((�τ)↑A

s ) = receive((�τ)?) =

receive((�τ)?s) = �i{receive(τi)}
• receive((�τ)↓A

s ) = receive((�τ)!s) = s

We can again mechanically check:

Proposition 7.8 1. If τ  τ′ then tamp(τ)  tamp(τ′).

2. If τ is positive and not cancellable, then tamp(τ)  receive(τ).

3. If τ is basic and not cancellable, then receive(τ) = tamp(τ).

7.4 General state (2): Flow inference

This subsection introduces the flow inference rules for general stateful actions. In

this generalised setting, flows can be from arbitrary free names to arbitrary free

names in a process, due to mixed polarities. For this reason, it becomes more

convenient to present flow inference rules for prefixed agents in a form which is

more analytic (or more atomic) than before. The resulting rules can be seen as a

uniform decomposition of the original flow rules into more atomic ones.4

Because of the decomposition, all prefix rules now have a uniform shape.

(In↓L -receive) (w �∈ {�y})
� P � Γ ·�y :�ρ � w :τ

� x(�y).P � Γ · x : (�ρ)↓L � w :τ

(In↓L -emit)

� P � Γ ·�y :�ρ � yi :τ

� x(�y).P � Γ · x : (�ρ)↓L � x : (�∗τ�∗)↓L

The first rule should look familiar: it says that if the body of a prefixed process has

a flow from �y (to be abstracted by a prefix) and Γ to the designated target w, then

the prefixed process has a flow from the result of abstracting these names at x and

Γ, to the same target w. In the second rule, (In↓L -emit), we infer a flow for the same

prefixed process but to its own subject (i.e. the initial name in the prefix) as a target,

4 In fact, we can reconstruct the flow inference rules in πLA and its extension to elementary state from
these decomposed rules; we can recover the original set of flows by deleting superfluous ones using
the fixed polarities in πLA. See Remark 7.10 for further discussions.
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and has a different shape from those rules we have seen so far. In detail, the rule

says that:

If the body P has a flow from �y (to be abstracted) and Γ, to one of the channels,

here yi, to be abstracted, then the prefixed process as a whole has a flow from the

result of abstracting �y at x and Γ, to the result of abstracting yi at x.

Some observations:

1. Having a common channel (in this case yi) on both sides of a flow is not only

necessary for analysing stateful actions (as we have already seen in section 7.2),

but is also consistent with flow analyses in πLA and its stateful extension.

Remark 7.10 presents a non-trivial example which relates this double-sided

flow inference to the original flow inference in πLA.

2. The rule only treats the case when a target type in the conclusion carries the

type of a single component of abstracted names, yi. This does not lead to

a loss of generality since, by the rule for super-imposition (Super) discussed

later, we can always super-impose multiple flows to the same target channel,

to make its type “bigger”.

Note that, in the first rule, x : (�ρ)↓L occurs in the source: thus this type is used

negatively, which indicates we measure this type in terms of its receiving level.

On the other hand, in the second rule, x : (�∗τ�∗)↓L occurs positively, indicating we

should measure this type in terms of the tampering level of τ. In this way, polarities

now arise as the roles of typed channels in flow analyses, giving again essential

information.

Reflecting mixed polarities, the rules for linear output are constructed in the way

identical to those for linear input.

(Out↑L -receive) (w �∈ {�y})
� P � Γ ·�y :�ρ � w :τ

� x(�y)P � Γ · x : (�ρ)↑L � w :τ

(Out↑L -emit)

� P � Γ ·�y :�ρ � yi :τ

� x(�y).P � Γ · x : (�ρ)↑L � x : (�∗τ�∗)↑L

These rules are understood just as the rules for linear input. Similarly, we have the

rules for affine input and output rules (with appropriate secrecy annotations, as

noted in Figure 3). Replicated prefix rules (except those for the reference and its

duals, which we treat next) are similarly defined.

For reference agents, we have precisely the same rule as before (cf. Figure 2), as

well as the following two additional rules.

(Ref-reverse)

−

� Ref〈xy〉 � x :refrs〈τ〉� x :refws〈τ〉

(Ref-leak)

−

� Ref〈xy〉 � x :refrs〈τ〉� y :τ

In (Ref-reverse), we capture the situation where a reference agent emits information

when it is written. As we illustrated in Example 7.6, when a process writes to a

mutable datum (say a name of another reference) to a reference and another process

reads that datum and changes it, then the reference is in effect mediating a flow
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(In↓L -receive) (w �∈ {�y})
� P � Γ ·�y :�ρ � w :τ

� x(�y).P � Γ · x : (�ρ)↓L � w :τ

(In↓L -emit)

� P � Γ ·�y :�ρ � yi :τ

� x(�y).P � Γ · x : (�ρ)↓L � x : (�∗τ�∗)↓L

(Out↑L -receive) (w �∈ {�y})
� P � Γ ·�y :�ρ � w :τ

� x(�y)P � Γ · x : (�ρ)↑L � w :τ

(Out↑L -emit)

� P � Γ ·�y :�ρ � yi :τ

� x(�y).P � Γ · x : (�ρ)↑L � x : (�∗τ�∗)↑L

(In↓A -receive) (w �∈ {�y})
� P � Γ ·�y :�ρ � w :τ

� !x(�y).P � Γ · x : (�ρ)↓A � w :τ

(In↓A -emit)

� P � Γ ·�y :�ρ � yi :τ

� !x(�y).P � Γ · x : (�ρ)↓A � x : (�∗τ�∗)↓A

(Out↑A -receive) (w �∈ {�y})
� P � Γ ·�y :�ρ � w :τ

� x(�y)P � Γ · x : (�ρ)↑A � w :τ

(Out↑A -emit)

� P � Γ ·�y :�ρ � yi :τ

� x(�y)P � Γ · x : (�ρ)↑A � x : (�∗τ�∗)↑A

(Ref-reverse)

−

� Ref〈xy〉 � x :refrs〈τ〉� x :refws〈τ〉

(Ref-leak)

−

� Ref〈xy〉 � x :refrs〈τ〉 � y :τ

(Read-leak)

−

� x read〈c〉 � c : (τ)↑L � x :rs〈τ〉

(Write-reverse)

−

� x write〈vc〉 � x :ws〈τ〉� v :τ

(Super)

� PA � Γi � x :τi

� PA � ∨ Γi � x :∨τi

(Weak-∗)
� PA � Γ−x � y :τ

� PA � Γ · x :∗� y :τ

• We also add (Zero, Par, Res, Weak, Union, Subset, Empty) from Figure 1 and

(Ref, Read, Write, Write-sig) from Figure 2.

Fig. 3. Flow analysis for general stateful actions.

from the reading party to the writing party. Similarly, (Ref-leak) depicts the situation

where the reader of the content, which is a mutable datum, gives information by

changing it, emitted via that datum. Note the resulting flows become insignificant

when we consider them in the context of elementary stateful agents.
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For read/write actions, in addition to the preceding rules, there are two additional

rules which treat indirect flows.

(Read-leak)

−

� x read〈c〉 � c : (τ)↑L � x :rs〈τ〉

(Write-reverse)

−

� x write〈vc〉 � x :ws〈τ〉� v :τ

In (Read-leak), we introduce the reading action in the target, rather than in the

source. The rule is the dual of (Ref-leak), saying that the reading action may give

effects by tampering the datum it has read. Similarly, (Write-reverse) is the dual of

(Ref-reverse), saying the write action can be a source of another action since, after

writing a name of a mutable datum (say another reference), another process may as

well read that name and tampers it, so that the write action is indirectly the source

of information change.

The composition rules, (Zero), (Par) and (Res) are as before, together with (Cancel)

in section 6.2 and the refinement of (Par) as stipulated in section 6.2 (which prohibits

composition at co-cancellable channels).

Finally, for structural rules, we use the same rules (Union), (Subset) and (Empty)

in Figure 1: in addition, we also have two additional structural rules, which play an

essential role in the present flow analysis.

(Super)

� PA � Γi � x :τi

� PA � ∨ Γi � x :∨τi

(Weak-∗)
� PA � Γ−x � y :τ

� PA � Γ · x :∗� y :τ

The rule (Super) does super-imposition: if we have two or more flows with the same

target channel x, then (noting that all these types are lesser than the type of x in

the original typing of the process), we can take their lub (cf. Proposition 4.2). In

this way, one can always generate an appropriate target type which is necessary

(only) for compensating its dual in the source in (Par). (Weak-∗) simply adds an

insignificant typed channel in the source, which is semantically innocuous. This

rule is needed since prefix rules assume all abstracted names to be present in the

source.

As in section 7.2, we assume the use of (Cancel) and the refined composition in

(Par), as stipulated in section 6.2.

We summarise the additional rules for general stateful actions in Figure 3. We only

present the prefix rules for linear input/output and linear replicated input/output:

as noted already, their affine versions are identical except that we introduce a secrecy

level as appropriate, as noted at the end.

We conclude this section by checking the same properties as before, but for the

generalised stateful types. The secrecy typing is given in Appendix D.

Proposition 7.9 If �sec P � A in the stateful secrecy typing in Appendix D, then PA is

flow-secure.
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Proof

By inspecting each rule. The reasoning for the rules we have checked in Proposition

7.5 remains the same.

(In↓L/Out↑L -receive/emit) By inductive hypothesis.

(In↓A -receive) As (In↓A ) in Proposition 5.10.

(In↓A -emit) By inductive hypothesis, receive(Γ · �y : �ρ)  tamp(τ). Also we note

receive((�ρ)↓A ) = �i{receive(ρi)}. Hence receive(Γ · x : (�ρ)↓A ) = receive(Γ) �
(�i{receive(ρi)})  tamp(τ) = tamp(x : (�∗τ�∗)↓A

s ), as required.

(Out↑A -receive) By inductive hypothesis.

(Out↑A -emit) As (Out↑A ) in Proposition 5.10.

(In! -receive) As (In↓A ) in Proposition 5.10.

(In! -emit) As (In↓A-emit).

(Out?-receive/emit) As (Out↑A -receive/emit).

(Ref-reverse) By receive(refws〈τ〉) = receive(τ) = tamp(τ) = tamp(refrs〈τ〉).
(Ref-leak) Similar to (Ref-reverse).

(Read-leak) By receive((τ)↓L ) = receive(τ) = tamp(τ) = tamp(rs〈τ〉).
(Write-reverse) Similar to (Read-leak).

(Super/Weak-∗) Trivial.

The same behavioural security as before, as well as an analogue of its corollary,

is easily obtained by the linear liveness property in this extension. Hence, by the

above proposition, we can finally achieve noninterference (Theorem 5.1) for general

stateful processes.

Remark 7.10 (relationship to the preceding systems) Let us see a concrete example

of how the equivalent of a non-trivial rule in the flow analysis in Section 4 can be

precisely derived in the present system. We take the example from Example 4.11 (at

the end of section 4). For the replicated agent, we infer:

(In!L -emit)

� u(c)c�.z� � u : �� · c :∗ � z : ()↑A

�

�!x(uz).u(c)c�.z� � x : (�� ∗)!L � x : (∗()↑A

� )!L

whereas, for the dual process, we use (Out?L -emit) and (Out?L -receive) for the same

process, combined with (Union). First by (Empty), we have: � z.w � ∅� z :∗. Then

by applying (Out?L -emit), we have:

(Out?L -emit)

� [u� → v�] | z.w� � v :�� � u :��, ∅ � z :∗

� x(uz)([u� → v�]|z.w�) � v :�� � x : (�� ∗)?L

For the same output process, we have the following another inference:

(Out?L -receive)

� [u� → v�] | z.w� � u :∗ · z : ()↓A

� � w : ()↓A

�

� x(uz)([u� → v�]|z.w�) � x : (∗ ()↓A

� )?L � w : ()↑A

�
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Thus, via (Union), we obtain:

� x(uz)([u� → v�]|z.w�) � v :�� � x : (�� ∗)?L , x : (∗ ()↓A

� )?L � w : ()↑A

�

which, when compensated in (Par) with the flow for the input process above, leads

to the required (unsafe) flow, v :�� � w : ()↑A

� . Note how the flow inference precisely

captures individual causal flows together with their composition in a fine-grained

fashion. On the other hand, the inference rules for πLA in Figure 1, which are used

in the original inference in Example 4.11, give a direct inference of a complicated

flow exploiting the fixed polarities in πLA.

8 Discussions

This paper proposes a uniform framework of information flow analysis of stateless

and stateful typed π-calculi. Non-interference theorems of secure versions of these

calculi are proved based on an inductive flow analysis. The analysis is crucially

based on the use of polarities, which signify directions of information flows at given

typed channels: in the case of stateless processes, the polarities precisely dictate the

position of typed channels in flows (in the source or in the target), determining the

shape of flow inference rules. In the case of stateful processes, typed channels have

mixed polarities in the sense that a channel can appear both in the source and in

the target, which necessitates fine-grained inference rules. Polarities represent, in this

case, the role of a typed channel in each flow. In the following, we conclude the

paper with comparisons with related work and further issues.

8.1 Comparisons with related work

There are several proof techniques which have been used for proving noninterference.

The notion of noninterference was first proposed by Goguen & Meseguer (1982) in

the context of sorted algebras. Sabelfeld & Sands (1999) gave a denotational proof

method. Abadi and others used a method based on logical relations for proving

the noninterference in Dependency Core Calculus (DCC) (Abadi et al., 1999).

Smith & Volpano (1998) employed operational techniques in a series of their work

on imperative secrecy. Hennessy (2003) and Hennessy & Riely (2000) used May and

Must behavioural equivalences in the context of secrecy-enriched π-calculi. Pottier &

Simonet (2002) proposed a proof method based on an operational analysis of typed

reduction, showing the designated low-level value is never affected by any high-level

substitutions using extended syntax. Pottier also applied the framework to the inter-

ference proofs in the (untyped) π-calculus (Pottier, 2002). We ourselves presented

a bisimulation-based method for the linear/affine π-calculus (Yoshida et al., 2002).

Novel features of the proposed method in comparison with these foregoing studies

may be summarised as follows.

• Our method is based on inductive extraction of information flow, and as such,

justification of a secrecy analysis can be done via embedding into the flow

analysis (essentially simple rule induction), assuming noninterference for the

flow analysis has once and for all been established. Further our method does
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not require the target secrecy typing to satisfy subject reduction (unlike many

of the preceding methods).

• Noninterference for flow-secure processes is essentially transparent from the

shape of the flow analysis rules.

• The flow analysis and noninterference proofs are carried out in the uniform

framework of (typed) name passing processes and their dynamics. This makes

associated proofs quite elementary, while, via encodings, the results can in

principle be carried over to standard programming language constructs.

Our work shares the same target untyped calculus for proving noninterference as

that of Hennessy & Riely (2000) and Hennessy (2003). It is notable that the notions

of secrecy are close in these two works, while the employed type structures are quite

different. A base typing system without secrecy annotations in Hennessy & Riely

(2000) and Hennessy (2003) has more typable terms, while it is often the case that

processes are secure in the present work but not in Hennessy & Riely (2000) and

Hennessy (2003). The inductive flow analysis, the main feature of the present work,

is not studied in Hennessy & Riely (2000). In comparison with Pottier (2002), our

method differs in that it does not presuppose subject reduction of the target secrecy

discipline (for example DCC does not satisfy subject reduction, as discussed in

Honda & Yoshida (2002), but still guarantees secrecy). In comparison with Yoshida

et al. (2002), the main difference is syntactic nature of the analysis, which we discuss

in section 8.2.

There are other flow analyses in programming languages such as control flow

analysis, which traces how a thread of execution goes through a program text

including procedure calls, and data flow analysis, which traces how a datum propag-

ates within a program text via assignment and procedural calls (Nielson et al.,

1999). Bodei and her colleagues first studied a control flow analysis of a untyped

π-calculus in Bodei et al. (1998) which can determine a superset of the set of

names to which a given name may be bound during execution of processes (thus

offering a sound approximation of the latter). Later they refined their framework

to guarantee that once processes are given levels of security clearance, a process

at a high level never sends names to processes at a lower level Bodei et al. (1999).

The presented flow analysis is more fine-grained due to linear/affine types and

refined tracking of causality between channels. More generally, it appears that a

thread of interactions traced in our flow analysis would be related with both data

and control flows. A detailed comparison with control/data and other notions

of flows studied in program analyses community, including algorithmic aspects of

the proposed flow analysis for the practice, would be an interesting and valuable

topic for further study. As a preliminary observation, a close look reveals that

control flow and data flow in programming languages interact in a subtle way in

programs, for example when a program assigns a boolean value to a variable used

in the guard of a conditional statement. We may ask whether such dependency in

programs can be captured uniformly in the flow analysis based on, or extending,

the present framework. Regarding this point we share the motivation with Abadi

et al. (1999) (which uses DCC for capturing various program analyses), expanding
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the scope by the use of the π-calculus and explicit extraction of information

flow.

A notion of information flow for pure functions has been studied under the

name of “paths” in the context of Proof Nets (Asperti et al., 1994), whose precise

connection with the present framework is another interesting topic.

8.2 Limitations of the present work and further topics

The main limitation of the proposed framework of flow analysis is its syntactic

nature. Consider the following popular example of semantically safe flow:

if b� then P else P

with the obvious translation of conditional into a branching, and assuming P outputs

via a low-level channel c. We can check that there is no semantic flow in the sense of

Definition 5.11: however the flow inference rules do extract a non-trivial flow from

a high-level channel b to a low-level channel c. In this case, even though there is a

causal flow from b to c, this flow gets blurred by the fact that the dependency is not

observable to the outside observers.

To capture such blurring and other semantic effects, one may make resort to

arguments based on behavioural equivalences. Our preceding work (Yoshida et al.,

2002) presents a semantic framework for guaranteeing and establishing secrecy and

noninterference based on a new theory of typed bisimulation, which can be used for

reasoning about a process as given above, proving the noninterference theorem up to

the secure sensitive contextual congruence for securely typed processes. Semantically

based secrecy is also studied in Sabelfeld & Sands (1999) and, more recently, in

Mantel & Sabelfeld (2003).

Another limitation of the present approach is that the notion of flow does not

involve timing information (Agat, 2000). It is interesting to see if the flow analysis

following the present framework can be extended to incorporate this and other

refinements, so that it can cover a sufficiently large class of process behaviours.

Finally, in the present framework, once we know that no insecure flow of a given

process is inferable, its non-interference property is automatically guaranteed (this

is formalised as a completeness property in Corollary 5.13). Thus, from a practical

viewpoint, it is worth studying efficient algorithms which produce all possible flows

of a given process derivable by the flow inference rules in this paper. Solving these

issues will become especially important for applying the proposed framework for the

flow analyses of realistic programming constructs via embedding into typed name

passing processes (which may also suggest the construction of a flow analysis for a

target programming language).

A Reduction

The relation ≡ is the least congruence generated by ≡α and the following equations.

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(ν x)0 ≡ 0 (ν xy)P ≡ (ν yx)P ((ν x)P )|Q ≡ (ν x)(P |Q) (x �∈ fn(Q))
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The relation −→ is generated by the following rules.

(Com) x(�y).P | x(�y)Q −→ (ν�y)(P |Q)

(Com!) ! x(�y).P | x(�y)Q −→! x(�y).P |(ν�y)(P |Q)

(Res) P −→ Q =⇒ (ν x)P −→ (ν x)Q

(Par) P −→ P ′ =⇒ P |Q −→ P ′|Q

(Cong) P ≡ P ′ −→ Q′ ≡ Q =⇒ P −→ Q

B Linear/affine typing

B.1 Action types

fn(A) and |A| denote the sets of free names and nodes in A, respectively. We write

x→ y if x :τ→ y :τ′ for some τ and τ′, in a given action type.

We define A � B iff:

• whenever x :τ ∈ A and x :τ′ ∈ B, τ� τ′ is defined; and

• whenever x1→ x2, x2→ x3, . . . , xn−1→ xn alternately in A and B (n � 2), we

have x1 �= xn.

Then A� B, defined iff A � B, is the following action type.

• x : τ ∈ |A � B| iff either (1) x ∈ (fn(A)\fn(B)) ∪ (fn(B)\fn(A)) and x : τ occurs

in A or B; or (2) x :τ′ ∈ A and x :τ′′ ∈ B and τ = τ′ � τ′′.

• x→ y in A�B iff x :τ
I
, y :τ

O
∈ |A�B| and x = z1→z2, z2→z3, . . . , zn−1→zn = y

(n � 2) alternately in A and B.

We use the following notations.

• Ax:τ indicates A such that x :τ ∈ A, and A−x indicates A such that x �∈ fn(A).

• �pA indicates A such that md(A) ⊂ {�p}, and ?A indicates A such that md(A) ⊂
M? .

• A,B denotes the disjoint union of A and B, indicating at the same time

fn(A) ∩ fn(B) = ∅.
• The hiding A/�x is the result of taking off nodes with names in �x from A.

• The prefix x :τ→A adds an edge from a new node x :τ to the nodes in A.

B.2 Typing system

The linear/affine typing rules are given as follows (the secrecy typing is defined by
adding the condition in · · · and replacing � by �sec).

(Zero)

−

� 0 �

(Par)

� Pi � Ai (i =1, 2)

A1 � A2

�P1|P2 � A1�A2

(Res)

� P � Ax:τ

md(τ) ∈M! ∪ {�}

� (ν x)P � A/x

(Weak)

� P � A−x

md(τ) ∈M? ∪ {�}

� P � A, x :τ
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(In↓L )

� P � �y :�τ, ↑LA
−x, ↑A?B−x

� x(�y).P � (x : (�τ)↓L→A), B

(In!L )

� P � �y :�τ, ?LA
−x, ?AB

−x

�! x(�y).P � (x : (�τ)!L→A), B

(In↓A ) s  tamp(A)

� P � �y :�τ, ↑A?A−x

� x(�y).P � x : (�τ)↓As , A

(In!A )

� P � �y :�τ, ?A−x

�! x(�y).P � x : (�τ)!A , A

(Out) p ∈M? ∪M↑

� P � C�y:�τ C � x : (�τ)ps

� x(�y)P � C/�y � x : (�τ)ps

We give a brief illustration of typing rules.

• (Zero) starts from the empty action type.
• (Par) uses � for controlling composition. For example, if P has type x : ()↑L

and Q has type x : ()↑L , then P | Q is not typable because ()↑L �� ()↑L .
• (Res) allows hiding of a name only when its mode is � or replicated (so that

channels of modes ↑ , ↓ or ? should be compensated by their duals before

restricted). (Weak) weakens � and ?-nodes since we allow the possibility of

having no action at these channels. Formally the weakening of these nodes is

necessary for having subject reduction.
• (In↓L ) records the causality from linear input type x : (�τ)↓L to linear output

types. The side condition A−x and B−x ensure linearity (i.e. unique occurrence)

of x. (In!L ) records the causality from replicated input type to ?
L
-types. The

side condition A−x is required to ensure acyclicity. Note (In!L ) and (In!A ) never

suppress ↑
L

or ↑
A

action (except for that which is abstracted) otherwise unicity

of affine or linear name would be lost.
• In (In↓A ), ↓

A
never suppresses ↑

L
, which is crucial for integration (suppose that

x is affine while y is linear in x.y: then a message at x may never arrive so that

y may not fire, violating linearity (Yoshida, 2002)). In securecy typing, we care

the secrecy level since affine input directly receives information (dually to an

affine output which directly emits information). If the information is received

at s, its effects can only be shown to the outside at s or above.
• (Out?L ) essentially composes the output prefix and the body in parallel.

See (Honda & Yoshida, 2002) for more examples and explanations.

C Typing rules for branching/selection

The typing rules for branching/selection are as follows (the secrecy typing is defined
by adding the condition in · · · and replacing � by �sec).

(Bra↓L ) s  tamp(A, B)

� Pi � �yi :�τi, ↑LA
−x, ↑A?B−x

� x[&i(�yi).Pi] � (x : [&i�τi]
↓L
s →A), B

(Sel↑L )

� P � A�y:�τi x �∈ fn(A)

� xini(�y)P � A/�y, x : [⊕�τi]↑Ls
In (Bra↓L ), each summand should have an identical action type A (except for

abstracted channels �yi :�τi). This is similar to the sum type in the λ-calculus and

additives in Linear Logic. A linear branching receives information by being invoked

at one of its branches. Hence the effect should not be transmitted at levels which are

the same as or above the receiving level as (In↓A ). The selection can be understood

as (Out↑A ).
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D Typing rules for stateful actions

The typing rules for stateful actions are as follows (the secrecy typing is defined by
adding the condition in · · · and replacing � by �sec, as well as imposing structural
security).

(In!L ) s  tamp(A,B)

� P � �y :�τ, ?LA
−x, ?AB

−x

�! x(�y).P � (x : (�τ)!Ls →A), B

(In!A ) s  tamp(A)

� P � �y :�τ, ?A−x

� !x(�y).P � x : (�τ)!As , A

(Ref) � Ref〈xy〉 � x :ref s〈τ〉, y :τ

(Read) � xread〈c〉 � x :rws〈τ〉, c : (τ)↑L

(Write) � xwrite〈vc〉 � x :rws〈τ〉, c : ()↑L , v :τ

The typing system for the elementary state is defined by the above last three rules

together with (Zero,Par,Res,Weak,In,Out) from Appendix B. We restrict A and B

to the immutable affine clients types in (In!L ) and (In!A ).

For the general reference, we use all five rules above. In (Ref), we note md(τ) ∈M!

by the well-formedness. (Read) first inquires at a reference, then receives a value

typed by τ; (Write) writes to a reference then gets a linear acknowledgement at c.

These rules can be understood in the light of the reduction rules given in the main

section.

E Proof for Lemma 5.12

In this section, we show the key reasoning steps for establishing Lemma 5.12. While

a mechanical inductive proof of this lemma is possible (based on induction of the

length of derivation of possibly insecurely typed terms), we present an operational

proof which may convey the central reason why the lemma in fact holds. First

of all, we can check easily that, because of the shape of each flow inference rule

which leads to co-cancellable types in the source, P and Ri as given in the lemma

only depend on interactions at either unary linear channels or associated replicated

channels for reaching the desired observable. This allows us to analyse the chain of

typed transition relations created by interaction between P and Ri, which we call

linear call sequences following Yoshida (2002) and Yosdhida et al. (2002).

For defining a linear call-sequence, we use labelled transition relations. Actions

l, l′, . . . are given by the grammar:

l ::= τ | x(�y) | x(�y).

t, s, r, . . . range over sequences of labels. bn(l) denotes bound names in l. If l �= τ , we

write sbj(l) for the initial free name of l. Given A, we often write lτ if A(sbj(l)) = τ

and define md(lτ) = md(τ). We often write lp if md(lτ) = p. We define x(�y) = x(�y)

and x(�y) = x(�y) (τ undefined). Using these labels, the typed transition PA l−→ QB is

formally defined in Appendix F.

Set �=�b ∪ �p where l �b l′ means that the subject of l′ is bound by l, and l �p

l′ means that l′ is under input prefix l. We write 〈l, l〉 � l2 if P
l2

=⇒ Q and P has sub-

terms Q1 and Q2 such that Q1
l−→ Q′1 and Q2

l·l2−→ Q′2 with l � l2; similarly we define
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l1 � 〈l, l〉. When writing down a sequence of causal chains, we often denote 〈l, l〉
by τ , and extend the above chain l1 � τ ∗ � l2 and denote it l1 �+ l2.

We can now define a linear chain of co-cancellable actions.

Definition E.1 (linear call-sequence) A linear call-sequence (l.c.s.) to l under A is a

(possibly infinite) sequence of actions with co-cancellable types whose visible actions

have the following shape:

(l↓L

0 �+) l?L1 �b l
↓L

2 �+ l?L3 �b l
↓L

4 �+ · · · l?L2n−1 �b l
↓L

2n · · ·

where τi, τij , τi+1 are all co-cancellable types in lτii �∗ (l
τij
ij , lij) �∗ l

τi+1

i+1 in the above

sequence and if it is finite, we have l
↓L

2n �p l for some n � ω.

The basic lemmas for the linear call sequence follow.

Lemma E.2 1. (permutation) P
l−→ l′−→ P ′ with l �� l′ implies P

l′−→ l−→ P ′.

2. Suppose � P � Γ � x : (�τ)↑L . Then there is a finite l.c.s. l1 · l2 · · · ln to l such that

sbj(l) = x and P
l1···ln·l−→ .

3. (l.c.s. from !
L
) Suppose � P � Γ � x : (�ττ)!L with (�ττ)!L cancellable. Then

P
x(y1 ...ynz)−→ P ′ implies there is a finite l.c.s. l1 · l2 · · · ln to l s.t. sbj(l) = z and

P ′
l1···ln·l−→ .

Proof

(1) is obvious.

(2) is proved essentially by the same reasoning as in Lemma 7.1 in Yoshida et al.

(2002) and Lemma 2(2) in Yoshida (2002). Suppose � P � Γ � x : (�τ)↑L . Then we

know � P � A implies x : (�τ)↑L ∈ |A| by definition. Then we prove the following more

general claim:

Claim: P
t·l−→ with l linear output iff there is a shortest l.c.s. l1 � · · · � ln to l such

that P
l1···ln−→ l−→.

Proof of the Claim: The ⇐-direction is obvious by letting t = l1 · · · ln. For the ⇒-

direction, by (1), we know there is a finite sequence such that l1 � l2 · · · ln−1 � ln � l.

Then exactly one of the following must be true: (a) md(ln) = ↓
L
. (b) ln = (lτn0n0 , ln0)

with md(τn0) = {↓
L
, ↑

L
}. This is because md(ln) = ↓

A
is impossible by (In↓A ) (affine

inputs never suppress linear outputs), and md(ln) ∈ M! is impossible by (In!L ),(In!A )

(replicated inputs never suppress free outputs). Also by IO-alternation, md(ln) ∈M?,↑
is impossible.

Suppose (a) holds. Then we have either (1) ln = l1 or (2) lτn−1

n−1 �b ln with

md(ln−1) = ?
L

since by the definition of the syntax of types, a linear output cannot

directly carry linear inputs; also md(ln−1) �= ?
A

since the affine client outputs cannnot

carry a linear output. Note that since ln−1 binds ln, we can set τn−1 = (�τn−1τn)
?L with

md(τn) = ↓
L
. Now suppose ln−2 � ln−1. Then md(ln−2) = ↓

L
since it is impossible

that md(ln−2) = !
L

and ln−2 � ln−1 � ln � l by (In!L ) (replication never suppresses

free linear outputs, i.e. l). We repeat the same routine by setting n = n− 2.
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Now suppose (b) holds. Then if ln−1 �b ln0, then we just repeat the same routine as

above by setting n = n−1 in the above case (since md(ln−1) = ?
L
). Suppose ln−1 � ln0.

By input typing rules, ln−1 �b ln. Then obviously ln−1 = τ = 〈l′n−1, ln−1
′〉 �b ln with

l′n−1 �p ln. Then md(l′n−1) = ↓
L

as in the previous reasoning. Hence we repeat the

the same routine as (a) by setting n = n− 1. Then we repeat this procedure until we

reach n = 1. (end of the proof of the claim) �

Now we only have to prove finiteness of the linear call-sequence to l. Assume by

contradiction we have an infinite l1 · l2 · · · to l in � R � C, E → x :τ with md(τ) = ↑
L

and sbj(l) = x. Then there always exist Q and C ′ such that � R | Q � C ′, x : τ with

md(C ′) ⊂ M! ∪ {�}. If a linear call sequence in R is infinite, then ¬R | Q ⇓x, which

contradicts the linear liveness in Theorem 1 in (Yoshida, 2002), hence done.

(3) By assumption, we know � P � A with x : (�ττ)!L ∈ |A| and md(τ) = ↑
L
. Then it is

straightforward by (2) because � P ′ � A,�y :�τ, z :τ with md(τ) = ↑
L
. �

Lemma E.3 Let � PA,w:()
↑
A

s � Γ � w : ()↑A

s such that types in A are negative and Γ

is co-cancellable. Assume � R � A. Then (a) there are finite linear call sequences t

(note t is a sequence of τ -actions) such that P | R t−→ (ν�a)(P ′ | R′) with P
s

=⇒ P ′

and R
s

=⇒ R′; and (b) P ′ ⇓w if (P | R) ⇓w; else ¬P ′ ⇓w .

Proof

The proof is essentially the same as in Lemma 8 in Yoshida et al. (2002) (but

this case is simpler since we do not have to prove the closure property). Assume

b : τ ∈ |Γ|. If md(τ) = ↓
L
, then b : τ ∈ |A|, thus we apply (2) in the above lemma;

if md(τ) = ?
L
, then we apply (3) in the above lemma and the inductive hypothesis

repeatedly. �

Now we prove Lemma 5.12. Assume (P | R1) ⇓w . Then by the above lemma, there

are finite linear call sequences t and s such that P |R1
t−→ (ν�a)(P ′ |R′1) with P

s
=⇒ P ′

and P ′ ⇓w . Then by permutation, there exists a l.c.s s1 such that P
s1

=⇒ P1

s′1
=⇒ P ′.

On the other hand, by the above lemma again, we also know there are finite linear call

sequences t′ such that P |R2
t′−→ (ν�a′)(P ′′ |R′2). Again by the permutation, there exists

a l.c.s. s2 such that P
s2

=⇒ P2

s′2
=⇒ P ′′. By the unicity of s1,2, we note P1 ≡ P2. Because

the affine output cannot be suppressed by the linear replication, we know s1 �∗ w,

but s′1 �� w. Hence P ′ ⇓w implies P1 ⇓w (hence P2 ⇓w). Then finally an application of

the permutation lemma gives P ′′ ⇓w , as desired.

F Typed transition relation

The labels l, l′, . . . are given by the grammar:

l ::= τ | x(�y) | x(�y) | xini(�y) | xini(�y)

Using these labels, the typed transition PA l−→ QB is generated from the following
rules. We assume all l.h.s. processes are well-typed. We define the relation A allows
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l as the negation of: (1) A(sbj(l)) = � or (2) l is output and md(A(sbj(l))) ∈ M!

(Berger et al., 2001). n(l) is the set of names in l.

x(�y).P A
x(�y)−→ P �y:�τ,A/x (x : (�τ)p ∈ A, p ∈M↓)

!x(�y).P A
x(�y)−→ !x(�y).P |P �y:�τ,A (x : (�τ)p ∈ A, p ∈M!)

x(�y)P A
x(�y)−→ P �y:�τ,A/x (x : (�τ)p ∈ A, p ∈M↑)

x(�y)P A
x(�y)−→ P �y:�τ,A (x : (�τ)p ∈ A, p ∈M?)

x[&i(�yi).Pi]
A

xini(�yi)−→ P
�yi:�τi,A/x
i (x : [&�τi]

p ∈ A, p ∈M↓)

xini(�y)P
A

xini(�y)−→ P �y:�τi,A/x (x : [⊕i�τi]
p ∈ A, p ∈M↑)

xini(�y)P
A

xini(�y)−→ P �y:�τi,A (x : [⊕i�τi]
p ∈ A, p ∈M?)

P ′1 ≡α P1 P
A1
1

l−→ P
A2
2 P2 ≡α P

′
2

P ′1
A1

l−→ P ′2
A2

P
A1
1

l−→ P
A2
2 x �∈ n(l)

(ν x)P
A1/x

1

l−→ (ν x)P
A2/x

2

P
A1
1

l−→ P
A2
2 A1 � B allows l

P1|QA1�B l−→ P2|QA2�B

P
A1
1

l−→ P
A2
2 Q

B1
1

l−→ Q
B2
2

P1|QA1�B1
1

τ−→ (ν bn(l))(P2|Q2)
A2�B2/bn(l)

The transition relation for the reference agents are defined as follows.

Ref〈xv〉
xinl1〈c〉−→ Ref〈xv〉 | c〈v〉

Ref〈xv〉
xinl2〈wc〉−→ Ref〈xw〉 | c
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