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Abstract

The problem of thermal ignition in a reactive slab with unsymmetric temperatures equal
to 0 and T is considered. Steady state upper and lower solutions are constructed. It is
found that T plays a critical role. Results similar to the case with symmetric boundary
temperatures are expected when T is small. When T is sufficiently large, there is only one
steady state upper or lower solution. The time dependent problem is then considered.
Phenomena suggested by studying the upper and lower steady state solutions are
confirmed.

1. Introduction

The stationary problem of thermal ignition in a reactive slab with unsymmetric
boundary temperatures is a logical extension of the problem with symmetric
boundary temperatures. As such, there have been a number of investigations on
the problem, starting from the early work of Zel’dovich and Semenov (for
references to early work, see Frank-Kamenetskii [1]), to the work of Shouman and
Donaldson [2]. Using an exact solution method, Shouman and Donaldson dem-
onstrated the existence of two types of steady state temperature profiles for a
given set of boundary conditions. One solution describes the case of cooling at
both surfaces and the other describes the case where one surface is heated and the
second surface is cooled. The authors in [2] refer to both solutions as exhibiting
thermal runaway. However, in the first case, the temperature has an interior
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maximum, while in the second case, the temperature is monotonic with its
maximum value given by the prescribed temperature at one wall. Thus, the two
types of solutions are qualitatively different. We emphasize this difference by
referring to the first type solution as having an interior maximum, and the second
type as monotonic. Recently, Tam [3] has used a comparison theorem to construct
upper and lower solutions for the problem with symmetric boundary tempera-
tures, and obtained some results concerning the role of the initial temperature
distribution in determining the steady state, in the event there are multiple steady
state solutions. The role of the initial data was further studied in [4] where the
time dependent problem was considered.

In this note, we use the same approach to deal with the problem with
unsymmetric boundary temperatures. An interesting though perhaps not surpris-
ing result is that for « and § in a certain domain, the type of solution that results
depends on T. For the case of T = 0, it is well-known that there is a critical value
for the parameter 8, which is dependent on a, such that the steady state solution
is super-critical if § > §_(a), and sub-critical if § < §_(«). In the present case, the
critical value of 8 depends on both a and T, and §,(a, T) < §_(a). Further,
numerical results suggest that 6,(a, T') is a decreasing function of 7. Thus, a
situation that is sub-critical when T = O becomes super-critical when T is suffi-
ciently large.

In Section 2, we construct upper and lower solutions for the steady state. In
Section 3, we examine the role of the boundary temperature and show that
multiple upper and lower steady state solutions can exist only if T is sufficiently
small. In Section 4, we follow the approach used in {4] to rewrite the initial value
problem as an integral equation, then use asymptotic considerations to obtain
information about the influence of the initial and boundary data. Results similar
to those for the case of T = 0 are obtained. Further, consistent with the findings
of Section 3, it is seen that for a given «, there is a transitional value of T(«)
above which there is no multiple steady state solution to the initial value problem.
Thus, we have a new parameter in the phenomenon of “disappearance of
criticality”. The values of T, («) for a few values of a are obtained for illustrative
purposes.

The time dependent problem is formulated as the system

060 9% af _
Po—m—w—sexp(-m)—o, >0, 0<x<1, (1)
. 0(0,t)=T, 0(1,¢)=0, >0, )
0(x,0)=h,(x), O0<x=<I, 3)

where §, @ and T are positive parameters (see Frank-Kamenetskii [1]).
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2. The steady state upper and lower solutions

We seek an upper solution of the form
U=(1-x)(bx+ T(1 + x)),

where the parameter b is to be determined. Since dU/dx = b at x = 0, it follows
that when b >0, U has a local maximum at x,, = 3b/(b + T) where U(x,,)
= 4(b+2T)?/(b + T). When b < 0, the maximum value of Uin 0 < x < 1 is
U(0) = T. Here, we observe that it is sufficient to consider b > -T, as an upper
solution must lie above the straight line joining § = T at x =0 and § = 0 at
x = 1. The value of b is determined from the condition that U be an upper
solution, that is PU = 0. We have

PU=2(b+T) —8exp(a¢:_UU).

To ensure PU = 0, we ask that
alU_.. _
2(b+T)—8eXp(m) —0, (4)

since the exponential function exp( il
p e+ U

b>0, U, = U(x,,) and (4) becomes

) is an increasing function of U. For

a(s + T)
4as + (s + T)

2s = dexp , (5)

where we havesets = b + T.

The exponential function equals e at s = 0, is asymptotic to e® as s tends to
infinity, and has a local minimum at s = T with value exp(aT/(a + T)). Thus, a
solution for b is obtained from (5) for b > 0 and from

aT
a+ T ) (6)
for 0 <s<Tor —T<b<0. It can be readily verified that depending on the
magnitude of the parameters, there may be one, two or three solutions. We shall

examine the detailed situation in the next section.
We seek a lower solution of the form

2s = 8exp(

u = Csin’ ny,
where C = (a + 2T)’/4a+ T)>0 and y = ((a+ T)x + T)/(a + 2T). The
parameter a introduced here is to be determined, but a > -T. The interval
0<x=<1 becomes 0<T/(a+ 2T)<y=< 1. For u to be a lower solution, we
must first ascertain that (0) = u|,_, < 7. This can be verified by showing that
u(0) = T when a = 0, du(0)/da <0, for a>0 and du(0)/da >0 for a <0; a
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straightforward, though somewhat cumbersome procedure. Next, we have Pu =
—37%a + T)cos2my — 8 exp((aCsin® wy) /(@ + Csin® wy)). For 0 <y < I,
and 3 <y < 1, we have cos 2wy = 0, so that Pu < 0. Further, we have cos 27y < 0
and sin® 7y > 1 for § <y < 2. Thus, u will be a lower solution, that is Pu < 0 if
a is determined from the equation

" (a T‘:f}ex‘[ a«C )
2\ 4 Plaa ¥+ C)’
or
2 2
—p =8exp op+T) (7
) 2
8ap+(p+T)

where p = a + T. The exponential function on the right hand side of (7) equals e*
at p = 0, is asymptotic to e“ as p tends to infinity, and has a local minimum at
p = T with value exp(aT/(2a + T)). Again, depending on the magnitude of the
parameters, (7) may have one, two or three solutions.

3. The influence of the boundary temperature
on the upper and lower solutions

To investigate whether there is more than one upper solution of the form
sought, we have to consider the pair of simultaneous equations consisting of (5)
and the equation obtained by differentiating (5) with respect to s. For given a and
T, if the simultaneous equations have two positive solutions, then one can use
them to obtain two values for 8, say 8,(a, T') and 8,(a, T') > 8,(a, T'), such that
there will be three upper solutions for 8, < § < §,, and two upper solutions for
8 = 8, or 8 = §,. This result is evident from a consideration of the logistic-shaped
curve given by the right hand side of (5). Now, the pair of equations can be
reduced by elimination to yield the quartic equation

s+ 4T+ 2a — a?)s® + 2(3T2 + 8aT + 8a?)s?
+4T*(T+ 2a + a*)s + T* = 0. (8)
It is clear that if T is sufficiently large, (8) has no positive real solution. The value
of T above which (8) has no real positive solution depends on a, say T,(a).
Taking an increment of one unit in 7, we have computed the following result on
T, () for a range of values of a, and shown it in Table 1.
TaBLE 1. The quantity 7, () as a function of a

a [516|7|8 |9 (1011|1213 [14|15]16 (17|18 |19 [20
Ty(a) [3]16]914119}25|32[39|48(57|67|77|88]|100(130]135
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From the above, we can draw the following conclusion: For a fixed a and
T > T,(«a), there is a unique upper solution of the form sought, given either by
the solution of (5) or (6). Which equation is to be used depends on the magnitude
of 8, with the demarkation value given by

8,(a,T) = 2Texp(— al:_TT). 9)

If 8 <$,, we have dU/dx | ._, = b <0 and since U” <0, we have dU/dx < 0
for 0 < x < 1. Thus, the upper solution will have negative slope in 0 < x < 1,
indicating that heat flows into the slab at x = 0 and out at x = 1. As for the
actual solution, since 9%6,/3x2 < 0 for 0 < x < 1 and 30/3x |,_, < b < 0, § must
be monotonic decreasing for 0 <x <1 if § <§,. If § > §,, the upper solution
will have an interior maximum, but this does not imply the solution itself must
necessarily have an interior maximum also.

Entirely analogous considerations given to the lower solution yield similar
results. The algebraic equation corresponding to (8) is

p+ 4T+ 4a — 2a2)p® + 2(3T? + 16aT + 32a%) p?
+4T*(T + 4a + 2a*)p + T* = 0. (10)

The value of T above which (10) has no real positive solution is tabulated as a
function of a in Table 2.

TABLE 2. The quantity T,,(«) as a function of a

a (516 17 |8 |9 [10f11f12{13 |14 |15 |16 |17 |18 |19 |20
Ty |S{11 {18 (2738 |50(63}|78(95(113]|1331154177 201 (227|254

For fixed a and T > T, we have the demarkation value for 8 corresponding to

®

2 aT
8U(a, T) = TTexp(— m)

If 8 >4, (7) has a unique solution with p > T. Thus, we have du/dx |x=0 =
(7(p+ T)/4sinRaT/p+ T)>0 and C=(p+ T)*/4p > T, implying that
the lower solution has an interior maximum greater than 7. Hence the actual
solution must also have an interior maximum greater than T when 8 > §,,. When
T is small enough for both the upper and lower solutions to have multiple
solutions, the roles of § and the initial temperature are as in the case with
symmetric boundary temperatures, and we expect similar results as in [4] to hold.
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4. The time dependent problem
and the influence of the initial and boundary data

In the previous section, we have shown that the surface temperature 7 plays a
significant role in affecting the number of possible upper and lower solutions of
the forms sought. This phenomenon is reminiscent of the roles played by a and 6.

s A

To have more definitive information on the influence of T on the number of
steady state solutions, we study the time dependent problem along the lines
detailed in [4].

We reformulate (1) by writing 8(x, ¢t) = T(1 — x) + Y(x, t) for t > 0. Equa-
tion (1) then becomes

oy _ 'y
5 = o +80(y), >0, 0<x<l1, (1)

where Q(¢) = exp{((aT(1 — x) + ay)/(a + T(1 — x) + Y)}.

The boundary and initial conditions are then

¥(0,7) =y¢(1,t) =0, t>0 (12)
and
¥(x,0) =0(x,0) — T(1 — x)
= h(x), 0<x<l. (13)

We then rewrite (11), (12) and (13) as an integral equation. From this point on,
the treatment is exactly as in [4], and we shall simply quote the relevant results.
Let G(x, &, t) be the Green’s function for the linear boundary value problem
obtained from (11), (12) and (13) by omitting Q(y). We have

o0
G(x,£,1) =2 e %" sin kaxsin knt.
k=1

The solution of (11), (12) and (13) can then be obtained from the integral
equation

W(x,1) = G(x, &, 1) - h(£) + ajo’c;(x, £t —s) - F(Y(&, s)) ds,
where G(x, &, 1) - ¢(£€) = [) G(x, &, £)9(§) d&. We define the iteration scheme
foaa(%, 1) = Gx, £,0) - h(8) + 8 G (x, &1 = 5) - F(4y(,)) ds,

with

Yo(£, 5) = h(£).
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Figure 1. K, ., as a function of v = §K,, fora = 20, T = 20
with 8, = 2.10 X 1073 and 8, = 5.55 X 1073,

After some asymptotic analysis, it was found that in approximating ¥, ,, we can
write
. S YRR
Yoir ~ 28sinmx [0 sin g - O(v, (4, 5)) ds,
T

where 7 is sufficiently large.

Now suppose for t > 7, we have sin#¢ - Q(y,(§, s) ~ K, for some n where K,
is independent of s. Then there exists 7, > 7, such that for ¢ > 1, we have

28K, .
Ypp1 ~ ——5 sin7x.
m
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Figure 2. K, ,, as a function of v = 8K, for a = 20, T = 80
with 8, = 1.88 X 1075 and 8,, = 4.50 X 1075,

Using the above representation for y,,,, we can proceed to consider sin#§ -
Q(Y,+.(§, 5)). Supposing we have sin#{ - Q(¢,, (£, s)) ~ K, ;, then, by repeat-
ing the above, we generate a sequence of numbers K,, i =n,n + 1,.... We now
compare K, with X, ,. If, for a fixed §, we have K,,, = K, for all n, the
sequence {K,} is monotonic increasing. Conversely, if K,., < K, for all n, the
sequence {K,} is monotonic decreasing. Since we know the solution ¢ is bounded,
{K;} tends to a limit. If the limit K is exponentially large, the solution of the
initial value problem is super-critical. If K remains small, the solution is
sub-critical.
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Figure 3. K, ., as a function of v = 8K, for a = 20, T = 146
with &, = 8, = 1.57 X 1075,

To illustrate, we carry out some calculations for K, , for a = 20, and various
values for T. The results for T = 20, 80, and 146 are presented in Figures 1, 2 and
3. For T < 146, one can determine two values of §, say 8, and 8, such that for
8, <8 < 4§, there are two stable steady states, and the initial data determines
which one is reached. For T = 146, there is only one steady state, reached
independently of the initial data. This situation is reminiscent of the “disap-

pearance of criticality” in the case of T = 0 when a approaches 4.

https://doi.org/10.1017/50334270000002915 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002915

288 K. K. Tam and P. B. Chapman [10]

5. Concluding remarks

The initial and boundary value problem consisting of equations (1) to (3) offers
a wealth of bifurcating phenomena, some of which are well-known. In this note,
we have elucidated the role of the boundary temperature 7. For a and 8 in a
certain range, the magnitude of T determines whether there is one or two stable
steady states for the problem. Viewed in a different way, a sitnation that ig

sub-critical for a given T can become super-critical when T is increased. In this
sense, T plays a “critical” role.
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