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HEARING THE SHAPE
OF AN ANNULAR DRUM
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Abstract

The asymptotic expansion for a spectral function of the Laplacian operator, involving
geometrical properties of the domain, is demonstrated by direct calculation for the case of
a doubly-connected region in the form of a narrow annular membrane. By utilizing a
known formula for the zeros of the eigenvalue equation containing Bessel functions, the
area, total perimeter and connectivity are all extracted explicitly.

1. Introduction

During the past couple of decades, techniques have been developed for obtaining
information on geometrical properties of a closed manifold, such as its volume,
from asymptotic expansions of spectral functions involving eigenvalues of Lapla-
cian-type operators. (See [2], [4], [6], [7] and [8].) Kac’s paper [6], is particularly
stimulating: the title of this paper and its contents may be regarded as being in
response to the question posed in the title of Kac’s paper. As well as dealing with
the case of a vibrating membrane, Kac also considers several analogous physical
systems from the fields of classical and quantum statistical mechanics, diffusion
theory and Brownian motion.

The result which concerns us here, in the form discussed by Kac [6],is as
follows. Consider the eigenvalues A, of the Helmholtz equation (obtained from
the two-dimensional wave equation by separation of variables after taking out the
time dependence):

%v24/’l+xn¢n=0' (1)
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For a vibrating membrane held fixed along its smooth boundaries, with r smooth
holes, there is the asymptotic relation
s A L 1 (1—-r)
> exp(-A,t) ~5—— =+ +
ot 27t 4 ‘/2 at 6

ast -0, (2)

where A is the area of the membrane and L is the total length of its perimeter.

It is the purpose of this note to illustrate the theorem by direct calculation for
the case of a multiply-connected region, something which does not appear to have
been done before. We use the case of a vibrating annular membrane with fixed
rims, and extract explicitly its area, perimeter and connectivity.

Kac [6], as well as other more rigorous analyses (e.g. [2]), proceeded indirectly
by consideration of the Green’s function of a corresponding diffusion equation.
But even for the circular membrane, Kac was unable to proceed further than the
first two terms on the right-hand side of (2) because of difficulty with the Green’s
function. For a polygonal drum, letting the number of sides become infinite, Kac
obtained the constant term ¢ corresponding, for r = 0, to the third term in (2).
Subsequently, McKean and Singer [7] proved (2) from a differential geometric
approach on a more general manifold.

Here, we are able to proceed directly by using a known expression for the
eigenvalues on the left-hand side of equation (2) for the case of a narrow annular
membrane. The harmonic properties of such an annular drum have been investi-
gated by the author [5]. For a full circular membrane, there is an asymptotic
expression for the sth zero of the corresponding eigenvalue equation, valid for
large s (Abramowitz and Stegun [1], page 371). However, the infinite sum in
equation (2) must account for all eigenvalues, so such an asymptotic expression
does not permit the accurate inclusion of all summands. For an annulus, the
corresponding expression ([1], page 374) may be used for all s provided the ratio
of external to internal radii is sufficiently close to 1, [3].

2. Derivation

For the wave equation of a system vibrating with angular frequency w, the
standardized parameter in equation (1) is given by A, = k2/2 where k = w/c and
c is the free wave speed. In the case of the annular membrane [5], k = x§/a,
where x§ is the s th root of the “cross-product” Bessel equation

Iy (rx)Yu(x) — Jy(x)Yy(yx) =0, (3)
where J, and Y, are the Bessel functions of integer order N of the first and

second kind respectively, and the radius ratio is y = b/a > 1. Here, s is the radial
number and N is the angular number.
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McMahon’s formula ([1], page 374) for x{’ may be written in the form

3
o _ TS 4N2—1(y—1) (y—l)
x$ Y_1+ Sy . + 0 — | (4)

Note that the parameter (y — 1)/s is small not only if s is large but also if y — 1
is small, i.e. for a narrow annulus. Thus we have

2.2 2
_1__7Q_+N___1_+0(7_1)2, (5
2a?

A =
(r—1? ¥ &

S =
and we wish to evaluate the expression
o0 [e o]
E=3 2 exp(-Xr) (6)
s=1 N=-o0

as t — 0 in the case of a narrow annulus, for which v is sufficiently close to 1, so
the last term in equation (5) may be neglected. In (6), the summation takes
account of the double degeneracy for angular modes with N > 0.

To evaluate the sum (6) we utilize the Poisson summation formula ([10], page
219) which is related to the transformation formula for the Jacobi theta function
([9], page 74) and may conveniently be written in the form

S ep(an’) = (f/F) 3 emlrtnse) (72)

n=-oo0 n=-oo

~\r/lz asz-0; (7b)
and
o0
Y exp(-zn?) ~ \/;/(2\/;) —1 asz-0. (7¢)
n=1
The corrections to the asymptotic expressions (7b) and (7c¢) are exponentially
small errors ([7], page 67), and do not affect the calculations involving powers of V7.

Factorizing the exponentials in (6) resulting from use of (5), and evaluating the
sums accordingly to (7b) and (7¢) as ¢ — 0, we find

E~A/2at+ O[(y — 1) /1]
— L/4f2m + of(v — 1)’ V1]
+0+0(y—1) » (8)
— f2nt /16a + O (v — 1)1]
+o[(y — 1],
where 4 = ma*(y?> — 1) = #(b®> — a®’) and L = 2ma(y + 1) = 27(b + a).
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Insofar as the first three sets of terms in (8) involve respectively an area, a
length, and a pure number independent of the dimensions of the system, and as
the corrections to each of the first three successive terms in (8) decrease by a
power of (y — 1) for each increase of } in the power of ¢, we have verified the
formula (2) for our case of a narrow (y — 1 small) vibrating annulus (r = 1). Of
special interest is the recovery of the term involving the total length L which is
not small. The area, perimeter and connectivity of the annulus have all heen
evinced because of the analytical form of McMahon’s formula (4) which involves
the two independent summation parameters s and N in that particular combina-
tion resulting from the solution of the appropriate eigenvalue equation (3). A
concrete case of the asymptotic relation (2) has thus been demonstrated explicitly
for a multiply-connected region.

The next term in (8), involving v2x¢, whose coefficient has dimensions of
inverse length, is included to allow comparison with any future attempts to
deduce its geometrical interpretation in a general formulation.
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