
J. Aust. Math. Soc. 117 (2024), 375–391
doi:10.1017/S1446788723000149

SOME GLOBAL EXISTENCE RESULTS ON LOCALLY FINITE
GRAPHS

SHOUDONG MAN and GUOQING ZHANG

(Received 7 July 2023; accepted 13 September 2023; first published online 6 November 2023)

Communicated by Florica C. Cîrstea

Abstract

Let G = (V , E) be a locally finite graph with the vertex set V and the edge set E, where both V and E are
infinite sets. By dividing the graph G into a sequence of finite subgraphs, the existence of a sequence of
local solutions to several equations involving the p-Laplacian and the poly-Laplacian systems is confirmed
on each subgraph, and the global existence for each equation on graph G is derived by the convergence
of these local solutions. Such results extend the recent work of Grigor’yan, Lin and Yang [J. Differential
Equations, 261 (2016), 4924–4943; Rev. Mat. Complut., 35 (2022), 791–813]. The method in this paper
also provides an idea for investigating similar problems on infinite graphs.

2020 Mathematics subject classification: primary 35R02; secondary 35A01.

Keywords and phrases: analysis on graph, Sobolev embedding theorem, division of a graph, existence of
global solution.

1. Introduction

Partial differential equations play an important role in dynamics, mathematical
physics, engineering, geometry and the other sciences. For examples, readers are
referred to [1, 2, 8, 12] and the references therein. As they model discrete systems,
it is important to study such equations on graphs.

In recent years, Grigor’yan, Lin and Yang systematically raised and studied several
partial differential equations involving Yamabe equations, Kazdan–Warner equations
and Schrödinger equations on graphs [4–6]. They first established the Sobolev spaces
and the functional framework on graphs. As a consequence, variational methods are
applied to solve partial differential equations on graphs, that is, to find critical points of
various functionals. In particular, in [4], they derived the Sobolev embedding theorems

The first author was supported by the National Natural Science Foundation of China (Grant No.
11601368). The second author was supported by Shanghai Natural Science Foundation (Grant No.
21ZR1445600)
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

375

https://doi.org/10.1017/S1446788723000149 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446788723000149
https://orcid.org/0000-0002-9748-4237
https://orcid.org/0000-0002-4917-9676
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788723000149&domain=pdf
https://doi.org/10.1017/S1446788723000149


376 S. Man and G. Zhang [2]

on graphs, that is, if G = (V , E) is a locally finite graph and Ω ⊂ V is a bounded
domain, then

W1,s
0 (Ω) ↪→ Lγ(Ω) for s > 1 and 1 ≤ γ ≤ +∞,

while if G = (V , E) is a finite graph, then

W1,s(V) ↪→ Lγ(V) for s > 1 and 1 ≤ γ ≤ +∞.

They observed that the Sobolev embedding theorems on graphs are quite different
from those on Euclidean space, and thus they could assume different growth conditions
on the nonlinear terms f and g on graphs. They also observed that the Sobolev
space they established is pre-compact. By these crucial observations, they studied the
following p-Laplacian equation:⎧⎪⎪⎨⎪⎪⎩

−Δpu = f (x, u) in Ω◦,
u ≥ 0 in Ω◦, u = 0 on ∂Ω,

(1-1)

on a locally finite graph and obtained a local solution. They also studied the following
equation on a locally finite graph:⎧⎪⎪⎨⎪⎪⎩

Lm.pu = f (x, u) in Ω◦,
|∇ju| = 0, 0 ≤ j ≤ m − 1 on ∂Ω,

(1-2)

and obtained a nontrivial local solution. In addition, they studied several equations on
a finite graph and obtained global solutions. For more details, we refer readers to [4].
In [11], Lin and Yang studied several Laplacian equations involving the Schrödinger
equation, the mean field equation and the Yamabe equation on a locally finite graph
G = (V , E), and obtained global solutions in Sobolev space W1,2(V) or its subspaceH
by using calculus of variations, where

H =
{
u ∈ W1,2(V) :

∫
V

(|∇u|2 + hu2) dμ < ∞
}
.

For more results about differential equations on graphs, we refer readers to [3, 7, 9, 10],
for example.

In this paper, we give a different division of graph G = (V , E) from that in [11]. We
divide the locally finite graph G = (V , E) into a sequence of finite subgraphs

Gk = (Vk, Ek) where k = 1, 2, 3, . . . , and V =
∞⋃

k=1

(Vk ∪ ∂Vk)

(please see (2-3) for details), while in [11], the graph G is divided into a sequence of
balls centred at a fixed point O in V. We investigate several equations on each subgraph,
and obtain a sequence of local solutions to each equation. At last, we derive the global
existence of nontrivial solutions to each equation on graph G through the convergence
of these local solutions. We extend the local existence results of [4, Problems 1 and
2] to global existence results on locally finite graphs, and also extend the results for
W1,2(V) in [11] to space Wm,p(V), where p ≥ 2, p ∈ R, m ≥ 1 and m is an integer.
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This paper is organized as follows. In Section 2, we give some preliminary results
on graphs and state our main results. In Section 3, we prove our main results.

2. Preliminaries and main results

Let G = (V , E) denote a graph where V is the vertex set and E is the edge set. Let
x ∼ y represent that vertex x is adjacent to vertex y, and (x, y) denote an edge in E
connecting vertices x and y. Assume that χxy = χyx > 0, where χxy is the edge weight.
A graph G is called connected if for any vertices x, y ∈ V , there exists a sequence {xi}ni=0
that satisfies

x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn = y.

The degree of vertex x, denoted by ϑ(x), is the number of edges connected to x. If for
every vertex x of V the number of edges connected to x is finite, we say that G is a
locally finite graph. The finite measure ϑ(x) =

∑
y∼x χxy.

In this paper, let G = (V , E) denote a connected graph. Thus, graph G = (V , E) has
no isolated vertices.

From [4], for any function u : V → R, the ϑ(x)-Laplacian of u is defined as

Δu(x) =
1
ϑ(x)

∑
y∼x

χxy
(
u(y) − u(x)

)
.

The associated gradient form is written as

Γ(u, v)(x) =
1
2
{Δ(u(x)v(x)) − u(x)Δv(x) − v(x)Δu(x)}

=
1

2ϑ(x)

∑
y∼x

χxy(u(y) − u(x))(v(y) − v(x)).

The length of the gradient for u is denoted by

|∇u|(x) =
√
Γ(u, u)(x) =

( 1
2ϑ(x)

∑
y∼x

χxy(u(y) − u(x))2
)1/2

.

The length of the m-order gradient of u is written as

|∇mu|(x) =

⎧⎪⎪⎨⎪⎪⎩
|∇Δ(m−1)/2u| when m is odd,
|Δm/2u| when m is even,

where |Δm/2u| is the usual absolute value of the function Δm/2u. To compare with the
Euclidean setting, the integral of a function u : V → R is defined as∫

V
u dϑ =

∑
x∈V
ϑ(x)u(x).
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Let Lm,pu be defined in the distributional sense: for any function φ, there holds
∫

V
(Lm,pu)φ dϑ =

⎧⎪⎪⎨⎪⎪⎩
∫

V |∇
mu|p−2Γ(Δ(m−1)/2u,Δ(m−1)/2φ) dϑ when m is odd,∫

V |∇
mu|p−2Δm/2uΔm/2φ dϑ when m is even.

In particular, the poly-Laplacian (−Δ)mu can be defined as

(−Δ)mu = Lm,2u.

The p-Laplacian of u : V → R, namely Δpu, is defined in the distributional sense as

Δpu(x) =
1

2ϑ(x)

∑
y∼x

χxy
(|∇u|p−2(y) + |∇u|p−2(x)

)(
u(y) − u(x)

)
. (2-1)

Let G = (V , E) denote a locally finite graph and Ω ⊂ V . For any integer m ≥ 1 and
any p > 1, Wm,p(Ω) is defined as a space of all functions u : Ω→ R with the norm

‖u‖Wm,p(Ω) =

( m∑
k=0

∫
Ω

|∇ku|p dϑ
)1/p
< +∞.

Denote Cm
0 (Ω) as a set of all functions u : Ω→ R with u = |∇u| = · · · = |∇m−1u| = 0 on

∂Ω. Here, Wm,p
0 (Ω) is denoted as the completion of Cm

0 (Ω) with the norm

‖u‖Wm,p
0 (Ω) =

( ∫
Ω

|∇mu|p dϑ
)1/p

.

Moreover, for any s > 0, Ls(Ω) denotes a linear space with the norm

‖u‖Ls(Ω) =

( ∫
Ω

|u|s dϑ
)1/s

.

Additionally, L∞(Ω) means

‖u‖L∞(Ω) = sup
x∈Ω
|u(x)| < ∞.

Obviously, Wm,p
0 (Ω) and Ls(Ω) are two Banach spaces, and we have the following

famous Sobolev embedding theorem derived by Grigor’yan, Lin and Yang.

THEOREM A [4, Theorem 7]. Let G = (V , E) be a locally finite graph and Ω be a
bounded domain of V with Ω0 � ∅. Let m be any positive integer and p > 1. Then,
Wm,p

0 (Ω) is embedded in Lq(Ω) for all 1 ≤ q ≤ +∞, that is, there exists a constant C0
depending only on p, m and Ω such that for all u ∈ Wm,p

0 (Ω),
( ∫
Ω

|u|q dϑ
)1/q
≤ C0

( ∫
Ω

|∇mu|p dϑ
)1/p

.

In particular, denoting ϑ0 = minx∈Ω ϑ(x), there holds

‖u‖L∞(Ω) ≤
C0

ϑ0
‖u‖Wm,p

0 (Ω). (2-2)
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Moreover, Wm,p
0 (Ω) is pre-compact, namely, if {uk} is bounded in Wm,p

0 (Ω), then up to
a subsequence, still denoted by {uk}, there exists some u ∈ Wm,p

0 (Ω) such that uk → u
in Wm,p

0 (Ω).
Now, we state our main results.
First, we define a sequence of subgraphs of G = (V , E) denoted by

Gk = (Vk, Ek), (2-3)

where k = 1, 2, 3, . . . , Vk is a finite vertex set, Ek is a finite edge set, Vk ⊂ V and Ek ⊂ E,
such that

Vi ∩ Vj = ∅ when i � j and V =
∞⋃

i=1

(Vi ∪ ∂Vi).

For any finite set � ⊂ V , Wm,p(�) is a Sobolev space including all functions u :
�→ R with the norm

‖u‖Wm,p(�) =

( ∫
�

(|∇mu|p + |u|p) dϑ
)1/p

.

For any q > 0, p > 1 and integer m ≥ 1, we have the below Sobolev embedding
theorem involving the two spaces Wm,p(�) and Lq(�).

THEOREM 1. Let G = (V , E) be a connected and locally finite graph. Suppose that the
measure ϑ(x) ≥ ϑ0 > 0 for all x ∈ V, where ϑ0 is a constant. Let m ≥ 1 be any integer,
p > 1 and q > 0. Then, for any finite set� ⊂ V,

‖u‖Lq(�) ≤ C∗‖u‖Wm,p(�),

where

C∗ = ϑ
−1/p
0 ( vol(�))1/q and vol(�) =

∑
x∈�
ϑ(x).

In particular,

‖u(x)‖L∞(�) ≤ ϑ−1/p
0 ‖u(x)‖Wm,p(�). (2-4)

Moreover, by [4, Theorem 8], Wm,p(�) is pre-compact, namely, if {uk} is bounded
in Wm,p(�), then up to a subsequence, still denoted by {uk}, there exists some
u ∈ Wm,p(�) such that uk → u in Wm,p(�).

REMARK 2. Let Dk = Wm,2
0 (Vk) ∩Wn,2

0 (Vk) be the space with the norm

‖u‖Dk = ‖u‖Wm,2
0 (Vk) + ‖u‖Wn,2

0 (Vk).

Take a sequence of functions (ûj) ∈ Dk. If there exist

uk ∈ Wm,2
0 (Vk) and uk ∈ Wn,2

0 (Vk)
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such that

‖ûj − uk‖Wm,2
0 (Vk) → 0 and ‖ûj − uk‖Wn,2

0 (Vk) → 0 as j→ ∞,

we can easily get that

‖ûj − uk‖Dk = ‖ûj − uk‖Wm,2
0 (Vk) + ‖ûj − uk‖Wn,2

0 (Vk) → 0 as j→ ∞,

and thus ûj → uk in Dk as j→ ∞. In addition, if we use � instead of Vk and set
Dk = Wm,2(�) ∩Wn,2(�), we can get a similar result.

Now, we obtain the following global existence result for a class of semi-linear
elliptic equations involving the p-Laplacian, which can be used in wavelets and
dimension reductions for high-dimensional data because p is a tunable parameter.

THEOREM 3. Let G = (V , E) be a connected and locally finite graph. Suppose that
ϑ(x) ≥ ϑ0 > 0 for all x ∈ V, where ϑ0 is a positive constant. Assume K(x) ∈ Ls/(s−1)(V),
where s > 1. The function f (x, u) ∈ C(V × R,R) satisfies

u f (x, u) ≥ 0 for all (x, u) ∈ V × R (2-5)

and

| f (x, u)| ≤ a(x) + b|u|s−1, K(x) − f (x, u) � 0 for all (x, u) ∈ V × R,

where a(x) ∈ Ls/(s−1)(V), b > 0 and s > 1. Then, for any p > 2, there exists a nontrivial
solution to the following problem:

−Δpu = K(x) − f (x, u) in V . (2-6)

Moreover, if

f (x, u) ≤ K(x) for all (x, u) ∈ V × R, (2-7)

there exists a positive solution to (2-6).

Now, we extend the global existence result for p-Laplacian to Laplacian systems.
The next result is about a poly-Laplacian system on a locally finite graph G.

THEOREM 4. Let G = (V , E) be a connected and locally finite graph. Suppose that
ϑ(x) ≥ ϑ0 > 0 for all x ∈ V, where ϑ0 is a positive constant. For i = 1, 2, assume that

λi > 0,ϕi(x) ∈ L1(V) and ϕi(x) > 0 for all x ∈ V .

Then for any integers m, n > 1, there exists a solution to the following problem:

(−Δ)mu + (−Δ)nu = −λ1
ϕ1(x)e−u∫

V ϕ1(x)e−u dϑ
+ λ2

ϕ2(x)eu∫
V ϕ2(x)eu dϑ

(2-8)
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in V. Moreover, if

λ1
ϕ1(x)∫

V ϕ1(x) dϑ
− λ2

ϕ2(x)∫
V ϕ2(x) dϑ

� 0 for all x ∈ V ,

there exists a nontrivial solution to problem (2-8).

Now, we consider another division of graph G = (V , E). By [11], for any fixed
O ∈ V , the distance between x and O, denoted by ρ(x) = ρ(x, O), is the minimum
number of edges connecting them. Thus, for any integer k ≥ 1, we define a ball centred
at O with radius k by

Bk = Bk(O) = {x ∈ V | ρ(x) < k}. (2-9)

The boundary of Bk can be defined as

∂Bk = {x ∈ V | ρ(x) = k}.

REMARK 5. Set Xk = Wm,p
0 (Bk) ×Wn,q

0 (Bk) and define the norm on Xk as

‖(u, v)‖Xk = max {‖u‖Wm,p
0 (Bk), ‖v‖Wn,q

0 (Bk)}.

Take a sequence of functions (ûj, v̂j) ∈ Xk. If there exist

uk ∈ Wm,p
0 (Bk) and vk ∈ Wn,q

0 (Bk)

such that

‖ûj − uk‖Wm,p
0 (Bk) → 0 and ‖v̂j − vk‖Wn,q

0 (Bk) → 0 as j→ ∞,

we can easily get that

‖(ûj, v̂j) − (uk, vk)‖Xk = max {‖ûj − uk‖Wm,p
0 (Bk), ‖v̂j − vk‖Wn,q

0 (Bk)} → 0 as j→ ∞.

Thus,

(ûj, v̂j)→ (uk, vk) in Xk as j→ ∞.

In addition, if we use� instead of Bk and set Xk = Wm,p(�) ×Wn,q(�), we can get a
similar result.

Next, we study the system (2-10), where each equation can be viewed as one
type of Kazdan–Warner equation when u = v. The Kazdan–Warner equation has very
important applications in geometry. By the division of graph G, we can obtain a global
solution to the system on graph G.

THEOREM 6. Let G = (V , E) be a connected and locally finite graph. Suppose that
ϑ(x) ≥ ϑ0 > 0 for all x ∈ V, where ϑ0 is a positive constant. Assume that

K(x) > 0, κ(x) > 0, K(x) � κ(x), K(x) ∈ Ls/(s−1)

and

κ(x) ∈ Ls/(s−1) for all x ∈ V and s > 1.
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Then, for any integer m, n ≥ 2 and p, q > 2, there exists a nontrivial solution to the
following problem: ⎧⎪⎪⎨⎪⎪⎩

Lm,pu = K(x)e−u−v − κ(x) in V ,
Ln,qv = κ(x)e−u−v − K(x) in V .

(2-10)

3. Proof of main results

First, we prove the Sobolev embedding theorem in Theorem 1. For the proof in the
case of W1,2

0 (V) and Lp(V), where p > 0.

PROOF OF THEOREM 1. Since for all x ∈ �,

‖u(x)‖pWm,p(�) =

∫
�

(|∇mu(x)|p + |u(x)|p) dϑ

≥
∑
x∈�
ϑ(x)|u(x)|p

≥
∑
x∈�
ϑ0|u(x)|p,

we get

|u(x)| ≤ ϑ−1/p
0 ‖u(x)‖Wm,p(�). (3-1)

It is easy to see that (3-1) implies

‖u(x)‖L∞(�) ≤ ϑ−1/p
0 ‖u(x)‖Wm,p(�). (3-2)

For all 1 ≤ q < +∞, by (3-2),

‖u(x)‖Lq(�) =

(∑
x∈�
ϑ(x)|u(x)|q

)1/q

≤ ϑ−1/p
0 (vol(�))1/q‖u(x)‖Wm,p(�),

where vol(�) =
∑

x∈� ϑ(x).
Thus, we complete this proof. �

Now, we prove the existence results. The method can be viewed as a variational
method from local existence to global existence.

PROOF OF THEOREM 3. Let Gk = (Vk, Ek) be a subgraph defined as in (2-3). Define
the functional Jk(K) : W1,p

0 (Vk)→ R by

Jk(K)(u) =
1
p

∫
Vk

|∇u|p dϑ −
∫

Vk

K(x)u dϑ +
∫

Vk

F(x, u) dϑ, (3-3)

where

F(x, u) =
∫ u

0
f (x, t) dt and F(x, 0) = 0.
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From (2-5),

F(x, u) ≥ 0 for all (x, u) ∈ V × R. (3-4)

It is easy to see that

Jk(K) ∈ C1(W1,p
0 (Vk),R).

Set

Θk = inf
u∈W1,p

0 (Vk)
Jk(K)(u).

Obviously,

Θk ≤ Jk(K)(0) = 0. (3-5)

To proceed, the proof is divided into three steps.

Step 1. For any integer k ≥ 1, Jk(K)(u) is bounded from below in W1,p
0 (Vk).

By the Hölder inequality, Theorem A and the Young inequality, for any s > 1,∫
Vk

Ku dϑ ≤ ‖u‖Ls(Vk)‖K‖Ls/(s−1)(V)

≤ C0‖u‖W1,p
0 (Vk)‖K‖Ls/(s−1)(V)

=
1
2
‖u‖W1,p

0 (Vk) · 2C0‖K‖Ls/(s−1)(V)

≤ 1
2p
‖u‖p

W1,p
0 (Vk)

+
p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

. (3-6)

By (3-3), (3-4) and (3-6),

Jk(K)(u) ≥ 1
2p
‖u‖p

W1,p
0 (Vk)

− p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

(3-7)

≥ − p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

. (3-8)

Therefore, we have that Jk(K)(u) is bounded from below in W1,p
0 (Vk).

Step 2. For any integer k ≥ 1, there exists a function uk ∈ W1,p
0 (Vk) such that

Jk(K)(uk) = Θk = inf
u∈W1,p

0 (Vk)
Jk(K)(u).

Moreover, uk satisfies the Euler–Lagrange equation{
−Δpuk = K(x) − f (x, uk) in Vk,
uk = 0 on ∂Vk. (3-9)
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Obviously, by (3-5) and (3-8),

− p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

≤ Θk ≤ 0. (3-10)

By (3-10), we get that Θk is a bounded sequence of numbers.
Now fix a positive integer k. We take a sequence of functions (ûj) ∈ W1,p

0 (Vk) such
that

Jk(K)(ûj)→ Θk as j→ ∞.

Thus, by (3-7),

‖ûj‖W1,p
0 (Vk) ≤ M,

where M is a positive constant. Therefore, we get that {ûj} is bounded in W1,p
0 (Vk).

By Theorem A, we have that up to a subsequence, ûj converges to some function
uk ∈ W1,p

0 (Vk). Clearly,

Jk(K)(uk) = Θk = inf
u∈W1,p

0 (Vk)
Jk(K)(u).

Thus, uk satisfies the Euler–Lagrange equation (3-9).

Step 3. There exist ũ : V → R and a subsequence of {uk}, still denoted by {uk}, such
that {uk} converges to ũ uniformly in V, that is, ũ is a solution to (2-6). Moreover, ũ > 0
for all x ∈ V .

By (3-8) and (3-10),

‖uk‖pW1,p
0 (Vk)

≤ M1, (3-11)

where M1 is a positive constant independent of k. By Theorem A and (3-11),

‖uk‖L∞(Vk) ≤
C0

ϑ0
‖uk‖W1,p

0 (Vk) ≤ M2, (3-12)

where M2 is a positive constant independent of k.
It is easy to see that {uk} can be viewed as a sequence defined on V with uk = 0 on

V \ Vk, that is,

uk(x) =

⎧⎪⎪⎨⎪⎪⎩
uk(x) for x ∈ Vk,
0 for x ∈ V \ Vk.

(3-13)

Therefore, by (3-12) and (3-13), we get that {uk} is uniformly bounded in V. Thus,
there exists a subsequence of {uk}, still denoted by {uk}, such that {uk} converges to ũ
uniformly in V, that is,

lim
k→∞

uk(x) = ũ(x).
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For any fixed x ∈ V , letting k → ∞ in (3-9),

−Δpũ(x) = K(x) − f
(
x, ũ(x)

)
in V . (3-14)

Thus, ũ(x) is a solution to (2-6). Since K(x) − f (x, u) � 0, we get ũ � 0.
Now, we prove that ũ > 0 if (2-7) holds. We set

ũ+ = max{ũ(x), 0} and ũ− = min{ũ(x), 0}.

It is easy to see that ũ = ũ+ + ũ−. Noting that

|∇ũ−|2 ≤ Γ(ũ−) + Γ(ũ−, ũ+) = Γ(ũ−, ũ),

since K(x) − f (x, u) ≥ 0,∫
V
|∇ũ−|p dϑ ≤ −

∫
V

ũ−Δpũ dϑ =
∫

V
ũ−
(
K(x) − f (x, ũ)

)
dϑ ≤ 0.

So,

ũ− ≡ 0 and thus ũ = ũ+ + ũ− ≥ 0 for all x ∈ V .

Next, we prove that ũ > 0 for all x ∈ V . Suppose not. Then there would exist a point
x∗ ∈ V such that

ũ(x∗) = 0 = min
x∈V

ũ(x).

Thus, by (2-1), we get Δpũ(x∗) > 0. Then, by (3-14),

−Δpũ(x∗) = K(x∗) − f
(
x∗, ũ(x∗)

)
< 0,

which contradicts (2-7). Therefore, we have that ũ(x) > 0 for all x ∈ V , and the proof
is completed. �

PROOF OF THEOREM 4. Let Gk = (Vk, Ek) be a subgraph defined as in (2-3). By
Remark 2, set Dk = Wm,2

0 (Vk) ∩Wn,2
0 (Vk) with the norm

‖u‖Dk = ‖u‖Wm,2
0 (Vk) + ‖u‖Wn,2

0 (Vk).

Define the functional Jk(Q) : Dk → R by

Jk(Q)(u) =
1
2

∫
Vk

|∇mu|2 dϑ +
1
2

∫
Vk

|∇nu|2 dϑ

− λ1 log
∫

Vk

ϕ1(x)e−u dϑ − λ2 log
∫

Vk

ϕ2(x)eu dϑ. (3-15)

Obviously, Jk(Q) ∈ C1(
Dk,R

)
.

Since ϕ1(x) > 0 for all x ∈ V , there exists some x0 ∈ Vk such that

ϑ0ϕ1(x0) ≤ ϑ(x0)ϕ1(x0) ≤
∫

Vk

ϕ1(x) dϑ =
∑
x∈Vk

ϑ(x)ϕ1(x). (3-16)
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Similarly,

ϑ0ϕ2(x0) ≤
∫

Vk

ϕ2(x) dϑ. (3-17)

Set Θk = infu∈Dk Jk(Q)(u). By (3-16) and (3-17),

Θk ≤ Jk(Q)(0) ≤ −λ1 log
(
ϑ0ϕ1(x0)

) − λ2 log
(
ϑ0ϕ2(x0)

)
. (3-18)

To proceed, the proof is divided into three steps.

Step 1. For any integer k ≥ 1, Jk(Q)(u) is bounded from below in Dk.
By Cauchy’s inequality and (2-2), for any ε > 0,

eu ≤ eu2/4ε‖u‖2
Dk
+ε‖u‖2

Dk ≤ eC2
0/4εϑ

2
0+ε‖u‖

2
Dk ,

e−u ≤ e(−u)2/4ε‖u‖p
Dk
+ε‖u‖2

Dk ≤ eC2
0/4εϑ

2
0+ε‖u‖

2
Dk .

Thus,

log
∫

Vk

ϕ1(x)e−u dϑ ≤ log ‖ϕ1‖L1(V) +
C2

0

4εϑ2
0

+ ε‖u‖2
Dk

, (3-19)

log
∫

Vk

ϕ2(x)eu dϑ ≤ log ‖ϕ2‖L1(V) +
C2

0

4εϑ2
0

+ ε‖u‖2
Dk

. (3-20)

By (3-15), (3-19) and (3-20),

Jk(Q)(u) ≥
(1
2
− ε
)
‖u‖2
Dk
− log(‖ϕ1‖L1(V) · ‖ϕ2‖L1(V)) −

C2
0

2εϑ2
0

.

Choosing ε = 1
4 , for any u ∈ Dk,

Jk(Q)(u) ≥ 1
4
‖u‖2
Dk
− log(‖ϕ1‖L1(V) · ‖ϕ2‖L1(V)) −

C2
0

2εϑ2
0

(3-21)

≥ − log(‖ϕ1‖L1(V) · ‖ϕ2‖L1(V)) −
C2

0

2εϑ2
0

. (3-22)

Therefore, we have that Jk(Q)(u) is bounded from below in Dk.

Step 2. For any integer k ≥ 1, there exists a function uk ∈ Dk such that

Jk(Q)(uk) = Θk = inf
u∈Dk

Jk(Q)(u).

Moreover, uk satisfies the Euler–Lagrange equation:

(−Δ)muk + (−Δ)nuk = −λ1
ϕ1(x)e−uk∫

V ϕ1(x)e−uk dϑ
+ λ2

ϕ2(x)euk∫
V ϕ2(x)euk dϑ

in V . (3-23)
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Obviously, by (3-18) and (3-22),

− log(‖ϕ1‖L1(V) · ‖ϕ2‖L1(V)) −
C2

0

2εϑ2
0

≤ Θk ≤ −λ1 log
(
ϑ0ϕ1(x0)

) − λ2 log
(
ϑ0ϕ2(x0)

)
.

(3-24)

By (3-24), we get that Θk is a bounded sequence of numbers.
Now fix a positive integer k. We take a sequence of functions ûj ∈ Dk such that

Jk(Q)(ûj)→ Θk as j→ ∞.

Thus,

‖ûj‖Dk ≤ M,

where M is a positive constant. Therefore, we get that {ûj} is bounded in Dk. By
Theorem A and Remark 2, we have that up to a subsequence, ûj converges to some
function uk ∈ Dk. Clearly,

Jk(Q)(uk) = Θk = inf
u∈Dk

Jk(Q)(u).

Thus, uk satisfies the Euler–Lagrange system (3-23).

Step 3. There exist ú : V → R and a subsequence of {uk}, still denoted by {uk}, such
that {uk} converges to ú, that is, ú is a solution to (2-8).

Since Θk is bounded, by (3-21),

‖uk‖2Dk
≤ M1, (3-25)

where M1 is a positive constant independent of k.
By Theorem A and (3-25), for any uk ∈ Dk,

‖uk‖L∞(Vk) ≤
C0

ϑ0
‖uk‖Dk ≤ M2, (3-26)

where M2 is a positive constant independent of k.
Let {uk} be extended as a sequence defined on V with uk = 0 on V \ Vk, that is,

uk(x) =

⎧⎪⎪⎨⎪⎪⎩
uk(x) for x ∈ Vk,
0 for x ∈ V \ Vk.

(3-27)

Therefore, by (3-26) and (3-27), we get that {uk} is uniformly bounded in V. Thus,
there exists a subsequence of {uk}, still denoted by {uk}, such that {uk} converges to ú
uniformly in V, that is,

lim
k→∞

uk(x) = ú(x).
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For any fixed x ∈ V , letting k → ∞ in (3-23),

(−Δ)mú + (−Δ)nú = −λ1
ϕ1(x)e−ú∫

V ϕ1(x)e−ú dϑ
+ λ2

ϕ2(x)eú∫
V ϕ2(x)eú dϑ

in V . (3-28)

Thus, ú(x) is a solution to (2-8).
Moreover, if

λ1
ϕ1(x)∫

V ϕ1(x) dϑ
− λ2

ϕ2(x)∫
V ϕ2(x) dϑ

� 0 for all x ∈ V ,

by (3-28), we get that ú(x) � 0. Therefore, ú(x) is a nontrivial solution to (2-8). �

PROOF OF THEOREM 6. Let Bk be defined as in (2-9). Set

Xk = Wm,p
0 (Bk) ×Wn,q

0 (Bk)

with the norm

‖(u, v)‖Xk = max
{‖u‖Wm,p

0 (Bk), ‖v‖Wn,q
0 (Bk)
}
.

Define the functional Jk(κ) : Xk → R by

Jk(κ)(u, v) =
1
p

∫
Bk

|∇mu|p dϑ +
1
q

∫
Bk

|∇nv|q dϑ +
∫

Bk

K(x)e−u−v dϑ

+

∫
Bk

κ(x)e−u−v dϑ +
∫

Bk

κ(x)u dϑ +
∫

Bk

K(x)v dϑ. (3-29)

Set

Θk = inf
(u,v)∈Xk

Jk(κ)(u, v).

Obviously,

Θk ≤ Jk(κ)(0, 0) =
∫

Bk

K(x) dϑ +
∫

Bk

κ(x) dϑ ≤
∫

V
K(x) dϑ +

∫
V
κ(x) dϑ. (3-30)

To proceed, the proof is divided into four steps.

Step 1. For any positive integer k, Jk(κ) is bounded from below in Xk.
Noting the fact that e−t > −t + 1 for all t ∈ R, since K(x), κ(x) > 0, by (3-29),

Jk(κ)(u, v) ≥ 1
p

∫
Bk

|∇mu|p dϑ +
1
q

∫
Bk

|∇nv|q dϑ

−
∫

Bk

Ku dϑ −
∫

Bk

κv dϑ +
∫

Bk

(K + κ) dϑ. (3-31)
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By the Hölder inequality, Theorem A and the Young inequality,∫
Bk

Ku dϑ ≤ ‖u‖Ls(Bk)‖K‖Ls/(s−1)(V)

≤ C0‖u‖Wm,p
0 (Bk)‖K‖Ls/(s−1)(V)

=
1
2
‖u‖Wm,p

0 (Bk) · 2C0‖K‖Ls/(s−1)(V)

≤ 1
2p
‖u‖p

Wm,p
0 (Bk)

+
p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

. (3-32)

Similarly, ∫
Bk

κv dϑ ≤ 1
2q
‖v‖q

Wn,q
0 (Bk)

+
q − 1

2q
(2C0)q/(q−1)‖κ‖q/(q−1)

Lγ/(γ−1)(V)
. (3-33)

By (3-31), (3-32) and (3-33),

Jk(κ)(u, v) ≥ 1
2p
‖u‖p

Wm,p
0 (Bk)

+
1
2q
‖v‖q

Wn,q
0 (Bk)

− p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

− q − 1
2q

(2C0)q/(q−1)‖κ‖q/(q−1)
Lγ/(γ−1)(V)

(3-34)

≥ − p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

− q − 1
2q

(2C0)q/(q−1)‖κ‖q/(q−1)
Lγ/(γ−1)(V)

. (3-35)

Therefore, for any positive integer k, Jk(κ) is bounded from below in Xk.

Step 2. For any positive integer k, there exists (uk, vk) ∈ Xk such that

Jk(κ)(uk, vk) = Θk = inf
(u,v)∈Xk

Jk(κ)(u, v).

Moreover, (uk, vk) satisfies the Euler–Lagrange system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Lm,puk = K(x)e−uk−vk − κ(x) in Vk,
Ln,qvk = κ(x)e−uk−vk − K(x) in Vk,
uk = vk = 0 on ∂Vk.

(3-36)

Obviously, by (3-30) and (3-35), there holds⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θk ≥ −

p − 1
2p

(2C0)p/(p−1)‖K‖p/(p−1)
Ls/(s−1)(V)

− q − 1
2q

(2C0)q/(q−1)‖κ‖q/(q−1)
Lγ/(γ−1)(V)

,

Θk ≤
∫

V K(x) dϑ +
∫

V κ(x) dϑ.
(3-37)

By (3-37), we know that Θk is a bounded sequence of numbers.
Now we fix a positive integer k and take a sequence of functions {(ûj, v̂j)} ⊂ Xk

satisfying

Jk(κ)(ûj, v̂j)→ Θk as j→ ∞. (3-38)
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It follows from (3-34) and (3-38) that {ûj} and {v̂j} are bounded in Wm,p
0 (Bk) and

Wn,q
0 (Bk), respectively. By Theorem A, we get that there exist

uk ∈ Wm,p
0 (Bk) and vk ∈ Wn,q

0 (Bk)

such that

‖ûj − uk‖ → 0 and ‖v̂j − vk‖ → 0 as j→ ∞.

By Remark 5, for (uk, vk) ∈ Xk, up to a subsequence, {(ûj, v̂j)} converges to (uk, vk).
Clearly,

Jk(κ)(uk, vk) = Θk = inf
(u,v)∈Xk

Jk(κ)(u, v).

Thus, (uk, vk) satisfies the Euler–Lagrange system (3-36).

Step 3. For any finite set� ⊂ V , (uk, vk) is uniformly bounded in Wm,p
0 (�) ×Wn,q

0 (�).
By (3-34) and (3-38),

‖uk‖pWm,p
0 (Bk)

≤ M1, (3-39)

‖vk‖qWn,q
0 (Bk)

≤ M1, (3-40)

where M1 is a positive constant independent of k. When k is large enough, we get that
� ⊂ Vk. By (2-4), (3-39) and (3-40),

‖uk‖L∞(�) ≤ M2 and ‖vk‖L∞(�) ≤ M2,

where M2 is a positive constant independent of k. Therefore, {(uk, vk)} is uniformly
bounded in Wm,p

0 (�) ×Wn,q
0 (�).

Step 4. There exist (u∗, v∗) : V × V → R and a subsequence of {(uk, vk)}, still denoted
by {(uk, vk)}, such that {(uk, vk)} converges to (u∗, v∗), that is, (u∗, v∗) is a solution to
(2-10).

By Step 3, we have that {(uk, vk)} is uniformly bounded in B1. Thus, there
exists a subsequence of {(uk, vk)}, denoted by {(u1k, v1k)}, and functions (u∗1, v∗1) such
that (u1k, v1k)→ (u∗1, v∗1) in B1. By Step 3 again, {(u1k, v1k)} is uniformly bounded
in B2. Then there exists a subsequence of {(u1k, v1k)}, denoted by {(u2k, v2k)}, and
functions (u∗2, v∗2) such that (u2k, v2k)→ (u∗2, v∗2) in B2. Obviously, (u∗1, v∗1) = (u∗2, v∗2) in
B1. Repeating this process, we can find a diagonal subsequence {(ukk, vkk)}, which is
still denoted by {(uk, vk)}, and functions (u∗, v∗) : V × V → R such that for any finite
set� ⊂ V , (uk, vk)→ (u∗, v∗) in�. For any fixed x ∈ V , let k → ∞ in (3-36), so⎧⎪⎪⎨⎪⎪⎩

Lm,pu∗ = K(x)e−u∗−v∗ − κ(x) in V ,
Ln,qv∗ = κ(x)e−u∗−v∗ − K(x) in V .

Since K(x) � κ(x), we get (u∗, v∗) � (0, 0). Therefore, (u∗, v∗) is a nontrivial solution to
(2-10). �
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