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Introduction
Ultrafast lasers—that is, lasers that pro-

duce optical pulses with a duration of less
than a picosecond—are playing an in-
creasingly important role in many science
and technology disciplines. Ultrafast,
time-resolved measurements are well es-
tablished in physical chemistry, where
fundamental time scales of chemical reac-
tions become accessible,1 and in solid-state
physics and electrical engineering, where
carrier dynamics and transport are probed
on picosecond time scales directly rele-
vant to the operation of modern high-
speed devices.

Applications in materials research have
been slower to emerge, because only
within the past decade have commercial
instruments reached a level of reliability
and sophistication that make them practi-
cal tools for scientists and engineers who
may not be experts in laser technology
and the manipulation of short-duration,
high-intensity optical pulses. The rapid
development of ultrafast laser technology
is a principal motivation for this issue of
MRS Bulletin: the time is ripe for ultrafast
lasers to take on a rapidly expanding role
in studies of the science of materials and in
materials characterization, materials mod-
ification, and microfabrication. Ten years
ago, very little materials research was con-
ducted using high-intensity, ultrafast
lasers. With the commercial availability of
off-the-shelf ultrafast tools, a small revolu-
tion in materials research is underway.

Ultrafast optical pulses of �1 ps dura-
tion are generated by mode-locked laser
oscillators. The phases of the longitudinal
optical modes of the laser cavity are
locked together by either an active ele-
ment (e.g., an acousto-optic modulator) or
by passive effects such as Kerr-lensing in
the gain medium or the use of a saturable
absorber. Mode-locking produces short-
duration optical pulses with a high repeti-
tion rate determined by the length of the
optical cavity. The wide bandwidth of op-
tical gain in sapphire doped by Ti enables
extremely short-duration pulses.

Ti:sapphire lasers dominate the market,
but Ti:sapphire laser oscillators are, of
course, actually a set of three lasers.
Continuous-wave (cw) diode lasers
pump a cw solid-state laser, which is
frequency-doubled and used to pump the
Ti:sapphire oscillator. Ultrafast laser oscil-
lators and amplifiers that can be directly
pumped by diode lasers, such as Er:glass-
fiber lasers and Yb:tungstate lasers, are
becoming more common and may lead to
more compact and less expensive instru-
ments, but they have a more limited range
of output wavelengths and a longer pulse
duration than Ti:sapphire.

The typical repetition rate of a laser os-
cillator is 80 MHz. Therefore, a laser oscil-
lator with an average power of 1 W
produces optical pulses with an energy of
approximately 10 nJ. This pulse energy is
sufficient for metrology using picosecond

acoustics, for experiments that probe heat
transfer or carrier dynamics, and for many
forms of optical spectroscopy; it is not
generally sufficient for materials modifica-
tion, except with pulses that are tightly
focused by high-numerical-aperture
microscope objectives. Higher-energy
pulses are available from so-called
“extended-cavity oscillators” that oper-
ate with a lower repetition rate, on the
order of 10 MHz, but this technology is
currently limited to �100 nJ in commer-
cial Ti :sapphire lasers and �1 μJ in
Yb:tungstate lasers.

Optical pulses from laser oscillators
must therefore be amplified to reach ener-
gies of �1 μJ. The ability to amplify ultra-
fast lasers was an elusive goal for 20 years
following the development of the ultrafast
oscillator in the mid-1960s. In 1985, high-
intensity ultrafast lasers emerged with the
development of the chirped-pulse ampli-
fier.2 In a chirped-pulse amplifier, pairs of
diffraction gratings are used to temporally
stretch the optical pulse prior to amplifica-
tion and then temporally compress the
pulse after it leaves the amplifier. Twenty
years later, Ti:sapphire chirped-pulse am-
plifiers that produce 1–2 mJ optical pulses
at 1 kHz repetition rates are available
from a number of commercial suppliers.
Higher-repetition-rate (�100 kHz) lasers
with microjoule energy pulses are desir-
able for many applications in materials re-
moval and modification. These types of
lasers are becoming more common. The
relative simplicity of amplifiers that are di-
rectly pumped by diode lasers is driving
the development of systems based on
Er:glass and Yb:tungstate. A remarkable
feature of the articles in this issue of MRS
Bulletin is the huge range of pulse energies
that are used in the research: from �1 nJ
optical pulses applied in metrology to the
1 J energies used for a relativistic optics
phenomenon called plasma wakefield accel-
eration of electrons that may one day re-
place synchrotrons as bright sources of
x-rays5,6 and γ-rays.7

How Fast Is Ultrafast?
A simple illustration of the time scale

represented by a femtosecond (one-
quadrillionth of a second) is the fact that
light travels around the Earth about seven
times in a second, but only about 300 nm
in a femtosecond (see Figure 1).

The answer to the question “How fast is
ultrafast?” in materials research more ac-
curately depends on the characteristic
time scale of the application or the science
being studied. For example, for the gener-
ation of high-frequency longitudinal
acoustic waves in metal films, an impor-
tant time scale is the optical absorption

Ultrafast Lasers in
Materials Research

David G. Cahill and Steve M. Yalisove,
Guest Editors

Abstract
With the availability of off-the-shelf commercial ultrafast lasers, a small revolution in

materials research is underway, as it is now possible to use these tools without being
an expert in the development of the tools themselves. Lasers with short-duration optical
pulses—in the sub-picosecond (less than one-trillionth of a second) range—are finding
a variety of applications, from basic research on fast processes in materials to new
methods for microfabrication by direct writing. A huge range of pulse energies are being
used in these applications, from less than 1 nJ (a billionth of a joule) to many joules.

Keywords: laser, ablation.

www.mrs.org/bulletin

https://doi.org/10.1557/mrs2006.155 Published online by Cambridge University Press

https://doi.org/10.1557/mrs2006.155


Ultrafast Lasers in Materials Research

MRS BULLETIN • VOLUME 31 • AUGUST 2006 595

depth divided by the speed of sound,
typically 1–5 ps. Thus, optical pulses with
duration of �1 ps are usually sufficient
for observing the sharpest possible
acoustic signals.

Each of the articles in this issue of MRS
Bulletin will answer the question differ-
ently, and in many cases the answer is
complicated by the existence of multiple
processes, some of which are not well
characterized.

It is often stated that the ultrafast regime
is reached when the pulse duration is less
than the time scale of electron–phonon

coupling. This statement has truth to it but
sometimes oversimplifies reality. The laser
pulse directly excites the electronic de-
grees of freedom in a material, and it takes
time for the energy absorbed by the elec-
trons to be transferred to the lattice. The
complete description of this process is
complex, even for the relatively simple
case of a laser pulse incident on the sur-
face of a metal. Energetic electrons trans-
fer energy to other electronic excitations
and to the motions of the atoms (i.e., the
phonons), and despite the popularity of
so-called “two-temperature” models that

assume the electrons and phonons are in-
dependently in thermal equilibrium at
two different temperatures, the time scales
for these processes are not always well
separated.3 Furthermore, ballistic trans-
port and rapid diffusion of hot electrons
can distribute energy in a metal over
much longer length scales than the optical
absorption depth. Because many scatter-
ing events are needed to transfer energy
from the highly excited electron system to
the motions of the atoms, the time scale
for the heating of the lattice can be much
greater than 1 ps, depending on the mate-
rial under study and the density of the en-
ergy deposited in the material.

The first article in this issue describes in
detail the mechanisms and characteristic
time scales of near-threshold laser ablation
in metals and semiconductors. Reis and
co-authors summarize the x-ray dif-
fraction results obtained last year at the
Stanford Linear Accelerator Center. This
experiment tour de force—the publication
in Science4 has 51 authors associated with
18 institutions—represents a diffraction
study of ultrafast melting with the fastest
time resolution to date. During the initial
200–400-fs period following the laser
pulse, a significant fraction (10–15%) of
the valence electrons are excited to higher
electronic states; this strong excitation
greatly reduces the attractive part of the
interatomic potential and allows the
atoms to freely drift with their room-
temperature thermal velocities until the
electrons relax, 400–600 fs later. Atoms can
drift as much as half of the unit-cell di-
mension, even though the center of mass,
collectively, is still in the original position,
without thermal expansion. Yet, once the
electrons relax (600 fs to 1 ps), the system
evolves in the same way as it would if
the lattice of atoms was heated instanta-
neously by the laser pulse. Large-scale
molecular dynamics (MD) and associated
hydrodynamics simulations that are de-
scribed later in the first article bear this out
as well.

The articles that follow Reis et al. ex-
pand on these ideas and discuss specific
applications of ultrafast lasers in the char-
acterization and fabrication of materials.

Antonelli et al. describe how the rapid
heating of the near surface of metal films
by nanojoule ultrafast optical pulses can
be used to generate strain and tempera-
ture fields for measurements of the me-
chanical and thermal properties of thin
films and interfaces. Conversely, if the me-
chanical properties are known, the geom-
etry of thin-film structures can be derived
from the spectra of acoustic echoes and os-
cillations. This approach, termed pico-
second acoustics, is widely used in the

Figure 1. Illustration of ultrafast processes in nature and technology. A femtosecond, the
duration of the shortest ultrafast laser pulse, is an extremely short period of time; light can
travel around the Earth about seven times in a second, but only about 300 nm in a
femtosecond. Adapted from Reference 8.
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microelectronics industry for measuring
the thicknesses of metal interconnects and
interlayer dielectrics.

King et al. describe their efforts to de-
velop an ultrafast imaging tool to observe
the time-dependence of phase transforma-
tions and shock-driven mechanical proc-
esses related to the interaction of ultrafast
light and materials. This article discusses
progress on two distinct types of instru-
ments, an ultrafast transmission electron
microscope and a laser-produced, rela-
tivistic electron beam with MeV energies
that is subsequently used as a source of
high brightness x-rays and γ-rays.

Itoh et al. illustrate how bulk dielectrics
can be modified with ultrafast lasers to
produce waveguides, Bragg reflectors, op-
tical devices, and microfluidic channels by
direct-writing in three dimensions. Again,
a thermal mechanism is identified as the
root cause of these materials modifica-
tion processes. In all cases, the extremely
sharp thermal gradients produced by ul-
trafast laser pulses permit such structures
to be created—something that would
not be possible for laser pulses of longer
than 10 ps.

Tull et al. describe the morphological
changes that an ultrafast laser can produce
at surfaces and interfaces. They describe
the use of high-intensity ultrafast light to
produce “black silicon” by taking advan-
tage of laser-induced periodic structures
and accelerating the process by machining
in a halogen gas environment. This mor-
phological variant of Si strongly adsorbs
light in the IR, something flat Si does not
do. The authors also describe another
morphological modification of a Si–SiO2
interface. Here, the ultrafast light is ab-
sorbed at the Si surface and the softened

glass is blown into a bubble by the spalla-
tion of a thin layer of ejected molten Si,
again a thermal mechanism. These bub-
bles have highly reproducible heights and
can be accurately joined to form tubes ca-
pable of transporting fluid.

Finally, Haight et al. describe the use of
ultrafast lasers to repair lithographic
masks at the 20–200-nm scale. This is, to
the best of our knowledge, the first ap-
plication of ultrafast lasers for nanoscale
fabrication in a manufacturing facility.
Here, the deterministic threshold is ex-
ploited  to either photo-dissociate precur-
sor molecules to deposit a thin line or
ablate unwanted material below the dif-
fraction limit.

These articles describe but a few of the
exciting materials research topics that are
actively being studied today with ultrafast
lasers. Unfortunately, the number of top-
ics in materials research that we could not
include because of space constraints is
very large: the much more mature field of
ultrafast spectroscopy,8 new areas of spec-
tral and temporal pulse shaping,9 ultrafast
interactions with organic and biological
materials,10 high-harmonic generation as a
source of UV and soft x-rays, ultrafast
generation of particle beams,11 terahertz
spectroscopy and imaging,12,13 and abla-
tion mechanisms in dielectric materials14

(which are quite different from those in
metals and semiconductors). Our hope is
that the selection of topics will illustrate
the breadth of this new area of ultrafast
lasers in materials research and the appli-
cations that have already been generated.
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