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Abstract
With the recent outbreak of COVID-19, evaluating the epidemic risk appears to be a pressing issue of
global concern and one of the major challenges recently. In the fight against pandemics, the ability to
understand, model, and forecast the transmission dynamics of infectious diseases plays a crucial role.
This paper provides an overview of foundational compartment models and introduces the Susceptible-
Exposed-Infected-Containing-3-Substates-Recovered-Dead model to study the dynamics of COVID-19.
A meticulous data calibration procedure is employed to study the evolution trend of an actual pandemic
using real-world data from Victoria, Australia. Additionally, the paper discusses innovative applications
of epidemic models to the insurance industry, which are currently under investigation. Through the use
of the newly developed analytically tractable model, insurance companies are able to determine fair pre-
mium levels during an outbreak. Moreover, the paper provides practical guidance for insurance companies
by examining the variation in reserve levels over time.
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1. Introduction
The recent outbreak of the Coronavirus pandemic has rendered scientific investigation of infec-
tious diseases a globally pressing issue. From a historical perspective, infectious diseases have
significant impacts on the life expectancy of humans. The records analyzed by Acemoglu et al.
(2021) indicate that pandemic outbreaks caused substantial increases in mortality rates. For this
reason, we must remain vigilant during the pandemic and develop robust statistical methods
based on the latest data in conjunction with experts’ insights.

Based on the research conducted by Levins et al. (1994), not only does the new infectious virus
emerge when the disease agents adapt to the environment but also the existing contagious ailments
can re-appear under such conditions.

Compartment models are the critical modeling technique in epidemiological modeling. An
early version of the compartment models was proposed by Kermack and Mckendrick (1927) to
evaluate the performance of contagious diseases such as the spread and duration of the diseases as
well as the reproductive number of the disease agents. Afterward, Kocic and Ladas (1993) released
the continuous time path constraint, and Allen (1994) extended the model into a discrete-time
framework by incorporating a range of linear approximation formulas. The compartment model
equations have also been reformulated in many ways. According to Kemper (1978), the com-
partment model could be extended by including an additional carrier state. Moreover, several
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studies have been conducted using compartment models to study the vaccination effect during
pandemics, for example, Cohen et al. (2003), Zhu et al. (2019), and Liu et al. (2021).

Compartmental models are typically developed with predefined parameters and are used to
analyze the evolution of populations over time in accordance with traditional model formula-
tions. As a result, there is a high degree of uncertainty associated with a variety of scenarios.
As a way of mitigating these uncertainties, we can constrain the epidemic models based on the
available data records and ensure the parameter values are selected according to the calibration
results in order to reduce these uncertainties. It has been demonstrated that this process, when
compared with simply using prior-determined parameters as inputs to the model, can have a sig-
nificant positive impact on the fitting results and on the accuracy of the prediction. The calibration
process is comprised of adjusting the parameters of the model to bring it as close as possible to
the actual track, thereby enhancing the accuracy of the model. For instance, Soper (1929), Daley
and Gani (2001), and Jia and Tsui (2005) explored a range of actual epidemics that have occurred
throughout human history using the compartment models.

Building on a large body of literature on mathematical epidemiology, we study the evolution
of populations within each compartment over time. As far as epidemiology is concerned, the
basic reference model is the Susceptible-Infected-Recovered (SIR) model proposed by Kermack
and Mckendrick (1927), which divides the entire population into three groups. With this basic
structure in place, Bastos and Cajueiro (2020) add a Death state to disentangle the proportion of
people who die from the contagious disease. The addition of the Dead compartment meets the
insurance industry’s requirement to work with death benefits. In light of recent vaccination cam-
paigns, vaccination appears to play a crucial role in preventing the spread of disease. Regarding the
recent insurance application, a widely accepted model is suggested by Ye et al. (2022), known as
the Susceptible-Vaccinated-Exposed-Infected-Recovered-Dead (SVEIRD) model. Nevertheless,
the fundamental formulation of this model implies that it cannot separate the number of peo-
ple suffering from severe symptoms from those with mild symptoms. In this case, we use it as
a baseline model and calibrate the parameters to serve as an initial reference. We develop an
improved model, called Susceptible-Exposed-Infected-Containing-3-Substates-Recovered-Dead
(SVEI3RD), that further separates infected individuals into three subgroups while keeping the
apparent vaccination status. We present an analysis of the Coronavirus pandemic behavior in
Victoria using both models in this paper and make a comparison of the results. The updated
model produces a more comprehensive and effective approach by subdividing the infectious state,
enabling us to obtain parameter values closer to those found in industry reports. Therefore, we
consider this model to be more suitable for real-life applications. Taking these circumstances into
account, this paper discusses the calibration of parameters and analyzes the statistical results of
the first and second doses, emphasizing the effectiveness of vaccination during a pandemic. The
purpose of this procedure is to take factual data and apply theoretical models to investigate the
dynamics of virus spread over time.

Aside from formulating and testing the mathematical model and examining Victoria’s case
study, we also apply epidemiological models to the insurance modeling. As the valuation of
pandemic insurance discussed by Gründl et al. (2021) is based on the number of infected and sus-
ceptible populations at a given time, it requires a more comprehensive calculation. This scenario
utilizes the epidemiological model as a building block for actuarial measures, which provides a
more robust estimation while accommodating the rapidly changing environment during the pan-
demic.With amore detailed description of populationmovements in different compartments, this
paper uses the SVEI3RD model with calibrated parameter values to study the relevant insurance
applications. The insurance company collects premiums from the susceptible population as part
of a basic pandemic health insurance plan. In case of infection, it provides predetermined benefits
based on the severity of the symptoms, as well as death benefits upon the death of the insured.
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On top of the basic design, modern travel insurance also provides additional financial quaran-
tine coverage for people exposed to the virus. As a result, the firm can calculate the zero-profit
premium level by equating the premium received and the expected benefit payments. Despite
this, the insurance company would like to charge a higher premium in order to ensure a high
level of security throughout the coverage. This paper further explores different premium levels
under various contract durations, while taking into account the importance of a prudent analysis
of reserves to a company’s sustainable operation.

Following the integration of several epidemiological models, our primary contribution is to
implement them to innovate, value, and reserve. Given the increased uncertainties during the
outbreak, it becomes imperative for the insurance industry, whose primary purpose is to provide
appropriate provisions to ensure public risks, quantify the exposures, and devise pandemic-related
insurance contracts. To our knowledge, the proposed work is the first attempt to establish a sci-
entific model informing insurance companies of understanding the impacts of varying model
parameters by using real state-level data sets. Referring to the first half of the paper, which pro-
vides insight into understanding the effectiveness of vaccinations during different periods of the
pandemic, we highlight the importance of taking into account the external environments of spe-
cific periods for the valuation of pandemic insurance products. Since there are different sources
of uncertainties during the pandemic, our reserve analysis asserts that an inadequate premium
amount may lead to insufficient reserves for insurance companies during the coverage period,
which merits special attention for long-term insurance contracts. In contrast, short-term con-
tracts in areas that have reasonable medical facilities and regulations would allow insurance
companies to perform an essential role in providing people with security and earn inflated profit
figures.

This paper is organized as follows. Section 2 introduces the fundamental compartment mod-
els developed over time to model pandemics, including the SIR model and its extensions. One
of the defining characteristics of this range of models is that they are all described by a system
of Ordinary Differential Equations (ODEs). Using the actual data set, Section 3 presents a real-
life case study of the spread of the Coronavirus pandemic in Victoria, Australia. As a basis, this
section uses the well-accepted SVEIRD model in relation to pandemic insurance and discusses
its limitations, particularly the inability to separate individuals with severe symptoms. Taking
this shortcoming into consideration, we propose an improved model called the Susceptible-
Exposed-Infected-Containing-3-Substates-Recovered-Dead (SVEI3RD). It is intended to evaluate
the effectiveness of Dose 1 andDose 2 vaccinations in preventing the transmission of Coronavirus.
Both models are fitted for the same time intervals during the pandemic to determine the tendency
of the parameters and investigate how Coronavirus spreads. Based on the calibrated results, the
extended SVEI3RD model provides a set of parameters that are considered to be more realistic
and suggests that this model is more appropriate in real-life applications.

A discussion of pandemic insurance is provided in Section 4 as well as guidelines to followwhen
developing pandemic insurance products in reality. In this section, standard actuarial practices,
namely premium pricing and reserve analysis, are discussed concerning two types of insurance
arrangements. As a result of the necessity for insurance companies to provide various benefits
to infected individuals depending on the level of seriousness of their symptoms, we pay specific
attention to the SVEI3RD model in this section. We analyze the differences between health and
travel insurance, as well as the changes in reserve levels. We do this by comparing the differences
between various benefit designs while taking into account the changing needs of customers dur-
ing different pandemic periods. As a further element of our analysis, we also use the calibrated
parameter results and forecast the model for extended periods of time. This is a tool to evaluate
how the actual and predicted reserve changes over different periods of time with multiple load-
ings. Additionally, we discuss the real-life implementation procedures for each insurance product

https://doi.org/10.1017/S1748499523000246 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000246


Annals of Actuarial Science 245

to ensure its practicality. Finally, Section 5 concludes along with some possible extensions for the
future.

2. Model formulation
An overview of compartment models is provided in this section, along with an introduction to
the formulation of the extended SVEI3RD model, which will be used in our subsequent case
study.

We begin this section by analyzing the standard SIR model. Subsequently, we discuss the
SVEIRDmodel, which has gained broad acceptance in the insurance industry, and point out some
of its limitations, including the inability to separate patients with severe symptoms. On the basis
of these foundations, we propose a more comprehensive SVEI3RD model that is considered an
approach that could be more suitable for analyzing population dynamics during a pandemic. Our
proposal is to use the SVEI3RD model to obtain a better understanding of the current pandemic
situation and its implications for insurance risk assessment.

2.1 Formulation of the SIR model
Fundamentally, the SIR model has three compartments, denoted as S for susceptible, I for
infectious, and R for recovered. Each variable S(t), I(t), and R(t) illustrates the number of indi-
viduals within each compartment at a particular point in time t. Considering that this model
is implemented over a short interval of time, it is based on the assumption that the overall
population of the design remains unchanged over the computation period, which implies that
S(t)+ I(t)+ R(t)=N for every t within the time interval. Additionally, in this primary model
setup, no newly born babies enter the population, nor do older people leave the population due to
natural death as it pertains to the system of equations. Furthermore, themodel’s structure assumes
that an infected individual will be granted temporary immunity within a short period after recov-
ering from the contagious disease. This causes the Recovered state to be an absorbing state in the
short-term epidemic model configuration.

As a complete specification of the model, we need to derive a system of ordinary differential
equations to determine transition rates between separate compartments as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −βSI
N

,

dI
dt

= βSI
N

− δI,

dR
dt

= δI.

(1)

In this introductory SIR model, the crucial parameter β pertains to the average number of
contacts per person per time. This results in βI

N being regarded as the expected infected num-
ber per unit time of one susceptible, and βIS

N being the expected number of new cases per unit
time among S susceptible individuals. Furthermore, movements from the Infected state into the
Recovered state are influenced by the parameter δ, which represents the probability of recovery
over time for the individual. In addition, Hethcote et al. (1981) showed that under the hypothesis
that waiting times are identical and independently distributed in each compartment and follow
an exponential distribution, the average waiting time for an individual within the Infected state is
1
δ
, and this is generally defined as the infectious period.
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Figure 1. Transfer diagram for the Susceptible-Vaccinated-Exposed-Infected-Recovered-Dead model with the Susceptible
class, the Vaccinated class, the Exposed class, the Infectious class, the Recovered class, and the Dead class.

Another key concept in compartment modeling is the basic reproductive number R0. It is
demonstrated that if the reproductive number, R0, falls below one, the number of infected
people decreases over time, and all solution paths approach steady states. Ultimately, disease-free
equilibrium can be achieved with no individual infected by the disease.

2.2 Formulation of the SVEIRDmodel
As a consequence of the current Coronavirus pandemic, Bastos and Cajueiro (2020) extended the
fundamental SIR model with an extra Death state to disentangle the proportion of people who die
from the contagious disease. In this configuration, the Recovered state is divided into two sub-
compartments: the Revised Recovered state and the Death state. An extra parameterμ is added to
the system, which represents the death rate of the infected individuals within the system. In addi-
tion, the Death state can only be triggered once in this model because it is an absorbing state. A
person who enters the state of Death is expected to remain in that state without being able to enter
any other state. During this scenario, the individual remains in the Death state throughout his life,
and the system’s population does not change. Under this circumstance, Fernandez-Villaverde and
Jones (2022) showed that there are only two ways for an infected individual to exit the Infected
state, either by recovery or due to death.

There is another important model development along with the design of a Dead state, which
corresponds to the inclusion of a Vaccinated state and an Exposed state, as proposed by Ye et al.
(2022). Regarding the inclusion of the Exposed state, this configuration contributes to the circum-
stance in which people are infected, but do not suffer from the symptoms of the disease. In this
case, they are classified as carriers or asymptomatic infected individuals based on the fact that they
continue to carry the virus during this state. This means that there is a latent exposure period of E
for an individual who is infected with a disease but has not yet manifested symptoms. Following
this, the extra parameter γ indicates the incubation rate for individuals exposed to the disease to
become infected. Moreover, there are two additional parameters related to vaccination, namely
σ , which represents the vaccination inefficiency ratio, and α, which reflects the injection rate for
vaccinations. In terms of the vaccination inefficiency rate, for instance, if σ = 0.05, that means
that 95% of the contacts can be reduced with an effective vaccination strategy. In this model back-
ground, the contact rate β becomes σβ for those persons who meet the vaccination requirements.
In other words, this means that only 5% of the initial contacts are retained, and the remaining
95% vanish as a result of vaccination.

Taken all improvements into consideration, the extensive model system shown in Figure 1
accounts for both the death and vaccination effects among the whole population and the new
model configuration becomes:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −βSI
N

− αS,

dV
dt

= αS− σβVI
N

,

dE
dt

= βSI
N

− γE+ σβVI
N

,

dI
dt

= γE− δI − μI,

dR
dt

= δI,

dD
dt

= μI.

(2)

Nonetheless, a notable limitation of this model configuration lies in its treatment of all infec-
tious individuals within the same compartment. Real-life observations suggest that additional
emphasis should be placed on patients exhibiting severe symptoms, warranting the allocation of
additional hospital resources to cater to their needs. Conversely, individuals displaying no or mild
symptoms often can recover from the disease without extensive medical intervention. In light
of this observation, it becomes essential to divide the infectious state into distinct subgroups, as
outlined in the subsequent discussion.

2.3 Formulation of the SVEI3RDmodel
Taking the limitation of SVEIRD model into consideration, another extension of the model that
can be applied is to divide the infectious people into three subgroups based on their illness sever-
ity. Since the cost of treatment varies depending on the severity of the symptoms, it is important to
note that using this type of model allows insurance companies to provide adequate medical cov-
erage to insurers based on their varying degrees of symptoms, as well as making sure the insured
is satisfied with the benefits he or she receives for the premiums paid. Following this idea, the
SVEI3RD model is denoted as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= − (β1I1 + β2I2 + β3I3)S
N

− αS,

dV
dt

= αS− σ (β1I1 + β2I2 + β3I3)V
N

,

dE
dt

= (β1I1 + β2I2 + β3I3)S
N

+ σ (β1I1 + β2I2 + β3I3)V
N

− γE,

dI1
dt

= γE− (δ1 + p1)I1,

dI2
dt

= p1I1 − (δ2 + p2)I2,

dI3
dt

= p2I2 − (δ3 + μ)I3,

dR
dt

= δ1I1 + δ2I2 + δ3I3,

dD
dt

= μI3,

(3)

with an outline shown in Figure 2.
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Figure 2. Transfer diagram for the Susceptible-Exposed-Infected-Containing-3-Substates-Recovered-Dead model with the
Infectious class subdivided into three levels depending on the severity level of symptoms.

Under this model setting, for the infected individual, the first state of the illness occurs when
he only shows mild symptoms and does not require medical treatment at the hospital. In such
cases, the individuals are considered to be in state I1, which denotes the first stage of infection. An
insurance company provides only a limited number of benefit payments to patients in this state
to support the basic requirements of residency. If the symptoms continue to worsen over time,
he or she must be admitted to the hospital for medical treatment. If this is the case, it transfers to
the second Infectious state as I2. In addition to this, if the person is confined to the ICU due to
inadequate health conditions, it enters the third phase of infection, known as I3.

The SVEI3RDmodel extends the SVEIRDmodel by subdividing the Infectious state into three
substates according to the presence and severity of symptoms. It can be seen from Equation 3 that
the parameter p1 represents the likelihood of an individual being transferred to a hospital from
mild to severe symptoms. Furthermore, if the patient is already in the hospital, there is a chance
that the patient will require ICU treatment represented by p2. Furthermore, in Figure 2, people
are shown that they can recover from each of the three stages of infection at varying rates of δ1, δ2,
and δ3 depending on the stage at which they were infected. There is evidence that individuals with
mild symptoms have a higher recovery rate (δ1) than those undergoing medical treatment at the
hospital (δ2) as discussed by Regis and Jevtie (2022). Furthermore, when comparing the recovery
rate for infected individuals with ICU requirements (δ3) to the recovery rate for infected individ-
uals with the other two states of infection, it would be the lowest. The design of this structure
assumes that only infected individuals in the ICU will die as a result of the illness, based on the
idea that all infected individuals should receive medical treatment if their symptoms worsen. As a
result, it is logical for insurance companies to take advantage of this model to develop appropriate
insurance products during a pandemic that would be beneficial to their customers.

3. An analysis of the compartment model fitting procedure based on the case study of
Victoria, Australia

In this section, the calibration of parameter values under the compartment models is conducted
using the real-life Victoria dataset. Our study involves fitting both the fundamental SVEIRD
model as well as the extensive SVEI3RD model. It is indicated that the SVEI3RD model fits the
data more accurately and the calibrated parameter values align more closely with real-life sit-
uations. This observation suggests that the SVEI3RD model is better suited for the subsequent
analysis of insurance application.

To begin this section, we perform an explanatory data analysis of the Victoria dataset.
Subsequently, the SVEIRD and SVEI3RD models are fitted to the data by minimizing the
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Table 1. Selected variables from the dataset COVID-19 data for Australia

Date State Confirmed Confirmed_cum Deaths

Deaths_cum Tests Tests_cum Recovered Recovered_cum
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hosp Hosp_cum ICU ICU_cum Vaccines
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vaccines_cum

corresponding objective function, resulting in a set of parameter estimates. By examining these
parameter values, we find that while the SVEIRDmodel has been extensively studied in the context
of the pandemic, it still possesses certain limitations. In contrast, our newly introduced SVEI3RD
model, which further disaggregates infectious individuals into subgroups, appears to be a superior
approach.

3.1 An overview of the dataset
A historical record of the Coronavirus data in Victoria is obtained from the dataset,1 which
consists of a variety of variables as listed in Table 1. This enormous data set contains the daily
Coronavirus data records for each state of Australia. In the analysis of this paper, records associ-
ated with Victoria are subtracted to be used in the parameter computation step of model fitting.
In addition, by incorporating newly released records of everyday data, the author continues to
update the data set. At the time of implementing the data analysis, data up to the end of March
2022 are used.

Before fitting the theoretical models to the real-life data, an explanatory data analysis is con-
ducted. From the data set, Date and State are the first two variables that define the time horizon
and geographical location of the Covid data, respectively. To perform the analysis, two time peri-
ods corresponding to Dose 1 and Dose 2 are selected using the Date variable, and the State variable
is set to Victoria, Australia, which contains the city with the longest lockdown in the world,
Melbourne. For the following variables “Confirmed” and “Confirmed_cum,” they correspond to
the number of newly infected individuals per day and the cumulative number of positive cases
over time. However, there is a discrepancy between the cumulative number of infected people and
the population of the Infectious state in the model formulation. In order to obtain the number
of active cases at a given point in time, we need to manipulate the records of the data set. As a
standard, we use At to represent the value of “Confirmed_cum” at certain date. To calculate the
population of people in the Susceptible state It , our approach is to subtract the dead and recovered
individuals from the cumulative number of confirmed cases as At − Rt −Dt .

In addition, the data set also includes categorical classification of individuals who are infected
based on the severity of their symptoms. The number of infected individuals who require med-
ical treatment is designated under the headings “Hosp” and “Hosp_cum,” which indicates that
these patients experience serious symptoms related to the infection. In this regard, people in the
Intensive Care Unit (ICU) are reported as “ICU” and “ICU_cum.” For the model fitting purpose,
we use the “Hosp” and “ICU” values as I2t and I3t correspondingly. Thus, it is possible to deter-
mine the number of mildly infected persons, who have not yet been hospitalized, by subtracting
the total number of infected persons from those in the hospital and those in the intensive care unit.
Furthermore, the number of individuals who are exposed to the virus can be taken as the number
of Coronavirus tests conducted under “Tests” and “Tests_cum” variables. In accordance with the
announcement of the Victorian Government, people should only be tested for Coronavirus when
they are experiencing moderate to severe symptoms. We assume that the individuals who under-
take the tests are exposed to the virus and use the number of daily test conducted under “Tests” as
Et value in the model.

1COVID-19 Data for Australia. Available online at the address https://github.com/M3IT/COVID-19_Data.
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Figure 3. Coverage ratios for the first dose and the second dose in Victoria from 29/08/2021 to 29/11/2021 (left). Rates of
vaccination injections in Victoria from 23/02/2021 to 14/12/2021 (right). The orange section refers to the coverage ratio of the
first dose from 50% to 80% between 29/08/2021 and 04/10/2021. The gray section refers to the coverage ratio of the second
dose from 50% to 80% between 01/10/2021 and 01/11/2021.

In regard to the remaining variables within the dataset, the variables labeled as “Deaths” and
“Deaths_cum” represent the daily new deaths attributed to Covid and the cumulative number of
deaths. The terms “Recovered” and “Recovered_cum” refer respectively to the daily number of
individuals who recover from COVID-19 and the cumulative number of recovered individuals.
Since the Recovered and Dead states are absorbing states, we utilize the values of “Deaths_cum”
and “Recovered_cum” as the corresponding values for Dt and Rt in our model. In light of the
relatively short duration of our modeling period, we assume that individuals will not transition
out of these states once they enter, which corresponds with the cumulative numbers in the dataset.

There is a limitation to this data set, in that only the total vaccination digits are recorded as
“Vaccines” and “Vaccines_cum,” without categorizing the data by injection attributes, such as the
first dose, second dose, and booster injection. For this reason, to support the data modeling, addi-
tional detailed vaccination records are obtained from the website of the Australia Government
Department of Health.2 The official weekly Coronavirus reports issued by the state government
contain the vaccination rates for each dose, as well as the coverage percentages that are relevant to
our modeling of vaccination.

3.2 Fitting of the SVEIRDmodel
Due to the rapid increase in the level of vaccination coverage, it is imperative that Vaccinated indi-
viduals be included as a separate state in the pandemic model. It is determined that two intervals
are chosen to correspond to the time when the first and second dose coverage ratios increase from
50% to 80% over the entire population. There is a detailed representation in Figure 3 for the actual
development of vaccination campaigns in Victoria in a given period of time.

In choosing these time ranges, it is necessary to take into account the maturity of the vaccina-
tion injection process. There were many uncertainties at the early stages of the vaccine process,
and the rate of injection was very unstable. As time passed, the government medical system devel-
oped, and the attitude of the public toward vaccines changed. Since social media continued to
release information on vaccination, a large proportion of the population in Victoria become recep-
tive to dose injections in the present day. In this circumstance, the State Government is working
toward achieving herd immunity against the Coronavirus by expanding vaccine coverage rapidly
to a sufficient level.

In this case, the existing data in Victoria is used to fit the SVEIRD model. For estimating epi-
demiological parameters in the system of equations, the sum of squared errors for It and Dt is
minimized since the number of infections and deaths are the most significant concerns during
the pandemic. It is defined as the difference between the values of the model projections and the
actual observations. Under this model setting, the objective function is:

2COVID-19 Vaccination Data. Available online at the address https://www.health.gov.au/resources/publications
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min
α,β ,σ ,γ ,δ,μ

1
2

∑
t

f [(At −Dt − Rt − Ît)2]+ f [(Dt − D̂t)2], (4)

where At , Dt , and Rt are the cumulative numbers of infected, dead, and recovered individuals
corresponding to the actual records in the data set. Additionally, the estimates D̂t and Ît represent
the estimated numbers of dead and infected individuals given the outcomes of the SVEIRDmodel.
Accordingly, the nonlinear equation:

f (z)= C2 log

[(
g(z)
C

)2
]

with g(z)= log (1+ z),

suggested by Bastos and Cajueiro (2020) is used as part of the parameter estimation approach to
correct for the exponential nature of the series so that the errors coming from the last values of
the series do not dominate the minimization process. Furthermore, the scaling parameter is set to
be C = 2 to soften the threshold between inliers and outliers.

In addition, we should ensure that the fitted results and the observed values are comparable.
Recall that we modify the data set value “Confirmed_cum” by excluding the number of recovered
and dead people to obtain the number of active cases at a certain date. This allows us to com-
pare the fitted (Ît) values with observed At − Rt −Dt values, where At represents the cumulative
number of confirmed cases defined in Section 2.2. On the other hand, for the number of people in
the Dead state, the comparison is taken by working out (Dt − D̂t)2 where Dt and D̂t refer to the
number of actual and predicted death populations at time t. After the objective function has been
formulated, the system of equations can be solved hierarchically by using the EpiModel package
in R. In regards to solve the system of ODEs, the Runge-Kutta Method, maintained by Boyce and
Diprima (1986), is the most widely used numerical method. For this insurance application, the
fourth-order Runge-Kutta algorithm (RK-4) is implemented to provide an appropriate balance
between implementation and accuracy.

Moreover, in this vaccine-related model, it is important to note that the number of vaccinated
people varies with different modeling intervals, dependent on the formulation of the model. In the
first fitting period, individuals in the Vaccinated state refer to those who have received one dose.
In contrast, to attain the Vaccinated state of the model in the second fitting stage, an individual
needs to complete two doses of injection following the essence of the model. Also, the vaccination
rates in the two modeling stages correspond to the injection rates for the first dose and the second
dose, respectively, rather than the overall daily injection ratio.

The calibrated parameter results of the fittedmodel are shown in Table 2. Figure 4 illustrates the
corresponding fitted results. It is showcased that the vaccine inefficiency parameter σ is approxi-
mately 0.5, which means that the contact rate decreased by 50% under both modeling periods. In
this circumstance, if all parameter values for vaccinated and unvaccinated people are supposed to
stay the same, this difference in contact rate would result in the distinction of R0 values as:

R0,unvacc = β

δ + μ

and

R0,vacc = σβ

δ + μ
.

In practice, the factors principally affecting contact rate are the spread rate of the virus strain.
Following the significant reduction in death and an increase in recovery, the reproductive number
R0 eventually decreases. Since the R0 value is a vital indicator of the speed of the disease spread, it
depicts that vaccination helps reduce the spread of Coronavirus.

Nevertheless, the parameter calibration result of σ under this model deviates from the industry
standard. In comparison with the findings of early vaccination studies, the ratio of 1− σ = 50% is
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Table 2. Estimated Susceptible-Vaccinated-
Exposed-Infected-Recovered-Dead model
parameters over the chosen first and second
time periods of 29/08/2021–04/10/2021 and
11/10/2021–01/11/2021

Parameter Dose 1 Dose 2

β 1.3189 0.7258
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α 0.1332 0.1026
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.5429 0.5091
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ 0.0059 0.0909
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ 0.4005 0.3460
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ 0.0006 0.0005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R0,unvacc 3.2738 1.9069
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R0,vacc 1.7774 0.9707

Figure 4. Fitted results and short-term forecasts of each compartment under the Susceptible-Exposed-Infected-Containing-
3-Substates-Recovered-Dead model for the first and second vaccination periods corresponding to 29/08/2021–04/10/2021
(left) and 11/10/2021–01/11/2021 (right).

considerably lesser than the official announcement by AstraZeneca of an efficiency rate of 95%.3
There may be a reason for this because there are only a limited number of compartments in the
model formulation and it implies that the SVEIRD model does not provide a good indication of
the estimated parameter values in relation to this data set.

It is important to note that, despite the fact that this model is well-known in the insurance
industry, it still has a number of disadvantages. In addition, as discussed in Section 2.2, the
formulation of this model limits its ability to support the insurance company’s need to pro-
vide different levels of benefit payments based on patients’ symptoms. Furthermore, the lack of
separation among infectious individuals makes it challenging to allocate hospital resources in real-
life situations, thereby limiting its usefulness in assisting the government in reducing healthcare
pressure.

Additionally, it is also essential to examine the model’s goodness-of-fit and we consider the
fitted performance with regard to the residual standard error (RSE) values for both Dead and
Infectious states. The RSE is a standard measure used to evaluate the discrepancy between actual
observations and the predicted values derived from the fitted model. Using this approach, we are

3The Oxford AstraZeneca COVID-19 Vaccine: what you need to know. Available online at the address https://www.
who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-you-need-to-know.
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Table 3. Estimated Susceptible-Exposed-
Infected-Containing-3-Substates-Recovered-Dead
model parameters over the chosen first and
second time periods of 29/08/2021–04/10/2021
and 11/10/2021–01/11/2021

Parameter Dose 1 Dose 2

α 0.0008 0.0009
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β1 0.2962 0.2760
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β2 0.2579 0.1532
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β3 0.0428 0.0331
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.0945 0.0529
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ 0.3083 0.3176
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ1 0.2592 0.2938
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ2 0.2510 0.2916
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δ3 0.1013 0.1513
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p1 0.0582 0.0123
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p2 0.2933 0.1519
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ 0.0008 0.0028

able to derive the RSE values for the SVEIRD model, which could then be compared to the values
obtained under the following SVEI3RD model in Section 3.3.

In spite of this, it is important to note that the performance of model fitting does not necessarily
guarantee the performance of future predictions. In general, it is essential to select a model that
is capable of accurately predicting future values while also being able to fit past data well. Our
primary objective in this particular case is to forecast future populations in each compartment and
determine the appropriate premium levels as well as analyze future reserves. Therefore, it is also
necessary to assess the accuracy of the model predictions after examining the fitting performance.

3.3 Fitting of the SVEI3RDmodel
For Coronavirus spread within the context of a SVEI3RDmodel, we have used the same period for
Dose 1 and Dose 2 as described in Section 3.2. In such a scenario, it would be helpful to compare
the parameter values before and after the infected groups are separated.

In terms of the parameter estimation procedure, it is similar to the methodology described
above. In this case, as “Confirmed_cases” includes all positive cases, including those in hospitals
and ICUs, the comparable terms should be At −Dt − Rt and Î1t + Î2t + Î3t . Consequently, the
objective function becomes:

min
α,β1,β2,β3,σ ,γ ,p1,p2,δ1,δ2,δ3,μ

1
2

∑
t

f [(At −Dt − Rt − (Î1t + Î2t + Î3t)2]+ f [(Dt − D̂t)2], (5)

where f (z) follows the form in (4).
Based on the calibration results in Table 3, it appears that all the parameters for the contact

rate β1, β2, and β3 have decreased from the first modeling period to the second. There is evidence
that a second dose of medication can reduce contact rates, which is consistent with the results
obtained from our SVEIRD model fitting procedure described in Section 3.2. According to this
model formulation, the graphical representation of the fitted results is shown in Figure 5.

By comparing the results between the first and second modeling periods, it appears that the
recovery rate parameters δs increase significantly between the two stages. It can be explained by
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Figure 5. Fitted results and short-term forecasts of each compartment under the Susceptible-Exposed-Infected-Containing-
3-Substates-Recovered-Dead model for the first and second vaccination periods corresponding to 29/08/2021–04/10/2021
(left) and 11/10/2021-01/11/2021 (right).

the fact that the prevalence of second vaccinations provides people with an increased level of pro-
tection against the disease. There is a greater likelihood that an individual who has received two
vaccination injections will recover more quickly than an individual who has received only one
injection. Additionally, decreases in p1 and p2 values indicate a reduction in transition probabil-
ities between mild symptoms and severe symptoms, supporting the concept that two doses also
provide greater protection for infected individuals.

Furthermore, it is noteworthy to point out that the death rate, as represented by μ, does not
decline with Dose 2, but rather increases. The underlying reason for this is that vaccinations have
reduced the number of patients transferred to hospitals and ICUs, resulting in a significant decline
in the population of I3. As μ directly correlates with the number of patients in the intensive
care unit, in this case, the decline in deaths is not as significant as the reduction in the num-
ber of patients experiencing severe symptoms. This finding is in accordance with recent research
obtained by Wright et al. (2022), which concludes that individuals with weak physical conditions
are still at risk of mortality during a pandemic.

Moreover, the key parameter that illustrates the effectiveness of vaccination is the σ value.
Under this model setting, the σ value, for the first period, is 0.0945, whereas for the second period,
it decreases to 0.0529 as shown in Table 3. It demonstrated that the first vaccination provides
1− σ = 90% of protection and this protection rate can increase to 95% if a second dose of vacci-
nation is administered as well. On the basis of the data available, the results of the SVEI3RDmodel
are consistent with the official industry report of 95% vaccination efficiency, indicating that this
model’s calibration results are more practical.

Additionally, in the same way as we have done for the SVEIRD model, we also compute the
RSEs for the SVEI3RD model and find that the values obtained by the SVEI3RD model are much
smaller than those obtained under the SVEIRD model in Section 3.2, indicating that the newly
developed model provides a better fit to the dataset. Consequently, in order to further study the
forecast performance of the model, we proceed with insurance applications and analyze the pre-
diction accuracy by comparing actual and expected reserve levels over future extended periods in
Section 4.

4. Insurance applications under the SVEI3RDmodel
Our objective in this section is to provide a practical application for insurance companies to use
as a guideline in pricing and reserving operations by using the SVEI3RD model formulation and
calibrated parameter values derived in Section 3.3.

We begin this section by providing a brief overview of the settings for sample health and
travel insurance products. It is done theoretically by illustrating the formulation of premiums
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and reserves, and practically by discussing how to collect clinical data in real-life situations. In our
study, health insurance and travel insurance were analyzed separately, but in a similar manner. In
Sections 4.2.1 and 4.3.1, we use the Equivalence Principle to determine the fair premium, followed
by an analysis of actual and predicted reserve levels in Sections 4.2.2 and 4.3.2. Lastly, our analy-
sis of either insurance product concludes with a discussion of its practical significance in real-life
situations.

4.1 An overview of pandemic insurance
4.1.1 A theoretical framework for pandemic insurance
The impact of contagious diseases differs from the standard concept of contingency in practice. In
such instances, the epidemic model is usually employed to determine the number of policyholders
in each state at various points throughout the pandemic in the insurance industry.

In this paper, we examine two types of insurance products during an epidemic. The first type
of insurance is health insurance, which offers healthcare support to infected individuals under a
pandemic scenario and functions similarly to traditional health insurance. A continuous premium
contribution is required from healthy individuals and medical treatment assistance is provided if
the insured person becomes ill.

Another type of insurance we consider during a pandemic is travel insurance. Starting in 2021,
the restrictions imposed by COVID-19 on travel have been loosened by many countries, except
for some notable exceptions in East Asia, such as China and Japan. By the end of July 2022, Qin
Xie4 reports that 85 countries have largely regained normalcy. Individuals are free to travel with-
out the requirement of a PCR test or vaccination. As a result of these facts, the travel insurance
products have also been analyzed. The product provides coverage for overseas medical expenses
related to treating contagious diseases during the pandemic. Additionally, we include the manda-
tory quarantine costs incurred during travel in our benefit design as they play a significant role in
the benefit expenditures of the insurance company during a pandemic. In terms of other related
terms, such as cancellation and delay costs, these could be covered based on the judgment of firms.
Moreover, both insurance products include the accidental death benefit payment to support the
spouses if the insured dies as a result of the pandemic.

To conduct the analysis, we use the SVEI3RD model with parameter values based on the com-
putation results in Table 3. It is done in order to better calibrate the situation over the modeling
period and also to allow the insurance companies to set different levels of coverage for their clients
depending on the severity of symptoms.

As most traditional health and travel insurance policies do not include pandemic coverage in
their Product Disclosure Statements (PDS), it is possible to trade our product designs as either a
stand-alone product or as a component of other existing insurance contracts, which combine to
provide additional coverage during the pandemic with an extra premium. Practically, this paper
presents two applications for each insurance product.

In the first approach, we use the Equivalence Principle and its fundamental formula:
E [PV of premium received]=E [PV of benefit paid],

proposed by Feng et al. (2021) to determine the appropriate premium levels for relevant insurance
products. By measuring the expected value of the premium received and the amount of benefit
paid, the insurance company determines the minimum premium amount required for the prod-
uct, also known as the fair premium level. In this scenario, the expected asset outflow equals the
expected profit inflow, and the insurance company thus conducts a zero-profit operation.

The second analysis examines the reserve amount of the insurance company and calculates the
accumulation of earnings over various premium levels. In reality, an insurance company would

4Where can I travel without a vaccine? Available online at the address https://www.thetimes.co.uk/travel/advice/where-
can-i-travel-without-a-vaccine.
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charge a higher premium than the minimum required to ensure a higher level of security. At the
time t, the reserve amountV(t) represents the policy value of the insurance plan and is an essential
factor when analyzing the solvency status. In general, a positive reserve level is achieved when a
large percentage of the population remains within the Susceptible state and pays premiums to
the insurance company. At the same time, fewer claims are made due to infectious diseases and
death. Nevertheless, in the case of a negative reserve, the large number of infectious and death
cases results in a huge amount of benefit payments to policyholders, as well as a reduction of
premiums owing to the decreasing susceptible population.

Additionally, the insurance company can accumulate more reserves by charging a high pre-
mium to the susceptible population. Nevertheless, this results in a decrease in the competitiveness
of the insurance product. For this type of pandemic insurance, the insurer should make a delib-
erate decision regarding the appropriate premium level. As such, the insurance company would
find it beneficial and necessary to conduct an advanced study of the spread process of the virus.

4.1.2 A practical procedure for pandemic insurance
Regarding the insurance products’ real-life implementation, a governance institute or other pro-
fessional institute can issue official guidelines for pricing pandemic products in this case. By
addressing the natural spread of pandemic viruses, it is possible to develop software or a set of
tools that can make the pricing process more robust and easier to use every time a pandemic
occurs. Furthermore, it would be sensible for insurance companies to develop a handbook or a set
of standards during the preliminary stages of the development process of the pandemic insurance
products.

In this case, all the data utilized for model implementation are sourced from publicly available
online repositories. As the majority of these datasets originate from official government publi-
cations, they generally require minimal data cleansing procedures and can be readily employed
with minor modifications. As a result, concerns regarding the availability of data resources for
modeling purposes are alleviated and the reliable and readily available data further enhances the
reproducibility of empirical results, which is intrinsic to scientific research.

In order to accelerate the calibration procedure more rapidly, it can be advantageous to select
appropriate initial parameters during the calibration process. In this circumstance, a variety of
techniques are presented that may assist insurance companies in making initial guesses for param-
eters and improving the efficiency of the model fitting process under real-life conditions. For
example, the vaccination rate parameter (α) can usually be found in the online publication of the
state government. Further, the official data publications of the World Health Organization can
provide initial estimates of the recovery rate and death rate parameters as well as the value of
γ , which can be calculated based on the incubation period value. It is also possible to select the
parameter relating to vaccination efficiency (σ ) depending on the announcements made by large
pharmaceutical companies. Thus, as long as the insurance companies have appropriate starting
values for each parameter, they should be able to calibrate the parameters more efficiently and
without experiencing any significant difficulties.

4.2 An analysis of the design of health insurance products
4.2.1 Premiums for health insurance
In a pandemic, Krueger et al. (2022) uncovered that individuals are more concerned about their
health and it is extraordinarily challenging for infected people to overcome their physical discom-
fort and medical treatment expenses. In light of the limited medical treatment resources available
in the hospital, the infective period for an individual is prolonged when the pandemic first arises.
There are no effective methods for doctors to heal patients within a short period. All of these fac-
tors contribute to the heightened level of pain experienced by individuals during the pandemic.
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Table 4. Sample product designs for 30-day and 60-day health and travel pandemic insurance

Item Compartment Health insurance Travel insurance

Benefit coverages Exposed (q) $0 $20
Infectious (b1) $50 $50
Hospital (b2) $200 $500
ICU (b3) $1,000 $1,000
Death (c) $100,000 $10,000

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Target customers People concerned about being
infected and death

People with essential needs to
travel around

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Premium frequency Daily premium One-off premium
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contract term 30 days 30 days
60 days 60 days

Consequently, there have been demands for health insurance products tailor-made to cover losses
due to the pandemic. This fact may contribute to the expansion of the health insurance industry
under pandemic conditions.

Our approach is similar to the analysis proposed by Lefèvre et al. (2017), except that we scru-
tinize the design of an insurance product with symptom-specific benefit support. Under this
pandemic insurance model, the insurance company is assumed to collect premiums from the sus-
ceptible population at a constant rate of π per unit of time. In return, the insurer offers benefit
payments at a rate of b1 for mildly infected individuals, a rate of b2 for patients in the hospi-
tal, and a rate of b3 for those who require intensive care in the ICU. In the event of death, a
lump-sum benefit of cwill be paid. Based on this arrangement, the Equivalence Principle equation
becomes:

π

∫ T

0
S(u)+V(u)du= b1

∫ T

0
I1(u)du+ b2

∫ T

0
I2(u)du+ b3

∫ T

0
I3(u)du+ c[D(T)−D(0)]

and can be rearranged to work out the premium rate:

π = b1
∫ T
0 I1(u)du+ b2

∫ T
0 I2(u)du+ b3

∫ T
0 I3(u)du+ c[D(T)−D(0)]∫ T

0 S(u)+V(u)du
. (6)

This Equation 6 reflects the zero-profit level for the insurance companies over a coverage period
of length T.

For health insurance design, individuals continually contribute premiums while in the
Susceptible state. Meanwhile, once they are infected, medical support will be provided during the
entire treatment period, with various amounts depending on the seriousness of their symptoms.
Afterward, the plan terminates if the individual recovers from the infectious disease. Otherwise, if
the insured person dies because of the virus, his close family members will receive a one-off death
benefit payment.

In the following study, a sample health insurance product is described. Details are illustrated in
Table 4. This basic design includes a daily benefit payment of b1 = $50 as long as the individual is
infected. Moreover, if the symptoms of the insured person develop more severely than anticipated
and require further hospitalization, the benefit amount provided is increased up to b2 = $200. If
the patient is transferred to the ICU, he obtains a persistent benefit amount of b3 = $1, 000 from
the insurance company to cover the high medical expenses. Additionally, if the insured dies as a
result of the pandemic, his/her family members will be entitled to a lump-sum death benefit of
c= $100, 000.

In regard to the duration of health insurance coverage, this paper evaluates two scenarios of
30 days and 60 days. As a general rule, a 30-day period is considered to be a standard period
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Table 5. Estimated premium levels with loadings for health insur-
ance contracts with a 30-day and 60-day validity period

Health insurance Premium 30-day 60-day

Dose 1 Fair premium $0.8829 $0.5173
10% loading $0.9712 $0.5690
20% loading $1.059 $0.6208

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dose 2 Fair premium $0.2900 $0.1533
10% loading $0.3190 $0.1686
20% loading $0.3480 $0.1840

of insurance coverage for short-term health insurance products. This is due to the fact that cer-
tain insurance products, such as the one offered by Suncorp Group,5 normally offer a one-month
cooling-off period for new policyholders. Essentially, this means that insurance companies offer
newly enrolled members the option of receiving a full refund of their premiums if they cancel the
policy within the first 30 days of membership provided that no claims have been filed. In accor-
dance with this term set, we determine that a 30-day period is a minimum time frame for our
analysis. Additionally, policyholders may be able to prolong their contract depending on the ser-
vices they receive. This leads to the insurance with a selection of an extended coverage period of
60 days. Under this setting, we are able to compare the daily premium levels for these two types
of products over various time periods. For instance, the corresponding fair premium amounts for
this short-term 30-day sample products are calculated as $0.8829 and $0.2900 for the first and
second dose modeling period shown in Table 5. In this case, while keeping the coverage period
fixed, the daily payment requirement is much lower during the second dose period. Recall that
in Section 3.3, we have proved that people are better protected with two injections. As a result,
the expected benefit payout amount during the second period would be smaller than in the first
period. Consequently, the insurance company will charge a corresponding lower daily premium
rate with respect to the lower overall payments. This pattern also occurs for the comparison
between 60-day health insurance for Dose 1 and Dose 2, where the Dose 1 daily fair premium
is much larger than the Dose 2 settings.

The fact that the fair premiumwould offer the insurance company a zero-profit position makes
it unrealistic to expect an insurance company to price its products at this level. To ensure a higher
level of security, insurance companies normally set actual premium amounts with extra loading
factors. Based on the Australian government’s Lifetime Health Cover policy,6 we determine that
a high premium level is calculated with a loading factor of 20%, and that is the Lifetime Health
Cover for people who take out private patient hospital cover at the age of 40. Similarly, a low pre-
mium level is determined with a safety loading of 10%, which corresponds to the safety loadings
for 35-year-old individuals who purchase their first private health insurance policy. In particular,
we set the premium of each of the products at 1.1 times (or 1.2 times) the fair premium amount
as shown in Table 9 and analyze how the reserve levels respond to these prices.

4.2.2 Reserves for health insurance
After the zero-profit premium level and the corresponding loadings are determined, in real-life
practice, the key term that insurance companies consider is the reserve level. The purpose of this
paper is to examine the relationship between the predetermined premiums set by insurance com-
panies and the future reserves that they accumulate over time. Regarding our health insurance

5Health Insurance Policy booklet. Available online at the address https://www.suncorp.com.au/content/dam/suncorp/
insurance/suncorp-insurance/documents/health/suncorp-health-insurance-policy-booklet.pdf.

6Lifetime health cover. Available online at https://www.ato.gov.au/Individuals/Medicare-and-private-health-insurance/
Private-health-insurance-rebate/Lifetime-health-cover/#Lifetimehealthcoverloading
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Figure 6. Comparison of actual and projected reserve levels with predefined loadings under the Susceptible-Exposed-
Infected-Containing-3-Substates-Recovered-Dead model over Dose 1 (left) and Dose 2 (right) modeling period for 30-day
health insurance products. The solid lines refer to the actual reserve levels. The dashed lines refer to the predicted reserve
levels.

Figure 7. Comparison of actual and projected reserve levels with predefined loadings under the Susceptible-Exposed-
Infected-Containing-3-Substates-Recovered-Dead model over Dose 1 (left) and Dose 2 (right) modeling period for 60-day
health insurance products. The solid lines refer to the actual reserve levels. The dashed lines refer to the predicted reserve
levels.

design, the reserve level can be determined as:

V(t)= π

∫ t

0
S(u)+V(u)du− b1

∫ t

0
I1(u)du− b2

∫ t

0
I2(u)du− b3

∫ t

0
I3(u)du− c[D(t)−D(0)].

(7)
In relation to reserve levels, the most significant characteristic is that higher premium amounts

lead to greater accumulation of reserves over time as the colored lines with high loadings always
sit above the reserve line under fair premium assumption in Figures 6 and 7.

Contrary to the typical reserve progression, the profit accumulation for health insurance under
a pandemic scenario appears more complicated. In the traditional actuarial field, insurance prod-
ucts are generally designed based on a life table. This attribute pertains to the rate of natural death
of humans, which peaks at a relatively young age, shortly after birth, and as individuals get older.
However, this character is incompatible with pandemic conditions. According to the beliefs of
pandemic epidemiologists, the contact rate increases rapidly during the early stages of the pan-
demic. Afterward, when the contagious rate reaches a peak, it tends to decline until other events
occur, such as the emergence of a new virus strain. This is mainly due to the fact that it takes
people a substantial amount of time to discover the origin of the virus and develop the appropri-
ate resolutions or treatments to counteract it. This results in the building of the expected reserve
levels at the start of the policy period. Then, because of the increasing liabilities of infection and
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Table 6. Comparison of predicted and actual premiums for health insurance contracts with
a 30-day validity period over Dose 1 and Dose 2 modeling period

30-day health insurance Premium Predicted reserve Actual reserve

Dose 1 Fair premium $0 $107,961,598
10% loading $17,107,147 $125,152,972
20% loading $34,214,293 $142,344,347

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dose 2 Fair premium $0 $11,740,755
10% loading $6,539,662 $17,362,531
20% loading $13,079,325 $22,984,306

Table 7. Comparison of predicted and actual premiums for health insurance contracts with
a 60-day validity period over Dose 1 and Dose 2 modeling period

60-day health insurance Premium Predicted reserve Actual reserve

Dose 1 Fair premium $0 $92,060,005
10% loading $20,024,040 $112,156,366
20% loading $40,048,080 $132,252,726

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dose 2 Fair premium $0 −$28,935,749
10% loading $6,906,539 −$23,012,804
20% loading $13,813,077 −$17,089,859

death benefit payouts, the predicted reserve level would decrease significantly in the middle of the
insurance term. In some cases, if the virus has a relatively high contact rate, the reserve level could
fall below zero, leading to the insurance company becoming financially insolvent.

Furthermore, in order to analyze the predictability of our model, we compare the predicted
reserve levels with the actual reserve amounts over time. In this case, actual reserve levels are cal-
culated based on the number of observed individuals in each compartment, using real-life data
retrieved from the Victoria data set. As an alternative, predicted reserves are calculated based on
the population forecasts in each compartment of the SVEI3RD model using its calibrated param-
eter values from the previous period listed in Table 3. The results are summarized in Tables 6
and 7. Additionally, Figures 6 and 7 provide graphical views in relate to the progress of how
reserves change over time, where the projected reserve level over time is shown by the dashed
lines, and the actual reserve level is represented by the solid lines. There is a tendency for the
dashed lines to fall below the solid lines for both Dose 1 and Dose 2, which indicates that the
actual reserves are higher than the predicted ones. The reason behind this is due to the fact that
as the vaccines become more popular over time, the contact rate and death rate are expected to
keep decreasing over time. Consequently, the actual number of infected individuals will be lower
than our model predictions since our parameter values are based on the calibration results from
the previous period.

Another conclusion that can be drawn from this analysis is that the overestimation effect is
more pronounced during the Dose 1 modeling period than the Dose 2 period. According to
Table 6, the final actual reserve level at the end of the 30-day period is much greater than the
expected amount for the Dose 1 period, while only slightly greater for the Dose 2modeling period.
As a result of these findings, it suggests that it is more appropriate to use Dose 2 data in our mod-
eling process because it tends to give a more stable valuation result. In case of a second dose of
vaccination being administered, the prevention performance of the vaccine is more stable and
this is more in accordance with the pricing procedure for insurance products. Consequently, as
the second dose data becomes available to the public, insurance companies are encouraged to
reevaluate their products based on the number of people who have had two doses injected. By
doing this, the overestimation effect of the pricing model can be reduced.

In contrast, there is an exception that when the time period is extended to 60 days, the reserve
level becomes more uncertain and the result in Figure 7 shows that over a longer period, there
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Table 8. Break up of predicted and actual benefit payments for 60-day health insurance
contract with 20% premium loading over the Dose 2 modeling period

Dose 2 60-day health insurance payouts Predicted reserve Actual reserve

Infectious payment 37,308,883 (54.02%) 40,218,000 (45.62%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hospital payment 4,248,823 (6.15%) 4,632,200 (5.25%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ICU payment 21,502,927 (31.13%) 4,115,000 (4.67%)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Death payment 6,004,754 (8.69%) 39,200,000 (44.46%)

is a possibility that the actual reserve amount could largely deviate from what we predicted. In
order to determine what is causing this phenomenon, we break up the total benefit payout into
different pieces for our sample 60-day health insurance product with the result amount correlating
to each part displayed in Table 8. In particular, we find that the main cause of this problem is
the underestimation of deaths throughout the period. These findings are in line with the results
obtained during the fitting procedure of the SVEI3RDmodel in Section 3.3. Keeping in mind that
the death rate computed by μ in the second modeling period increases compared to the Dose 1
period as shown in Table 3, we conclude that people with fundamentally weak physical conditions
are still at risk of death during the pandemic. Consequently, although vaccinations provide better
protection for most people, the virus still causes significant death rates among the individuals
with weak bodies. Therefore, it is necessary for insurance companies to apply an adjustment for
their long-term pandemic-related products and ensure that their reserve levels are above the safe
line.

4.2.3 Discussion of real-life health insurance practices
An essential aspect of the insurance process is the variable benefit amount paid by the insurance
company to each infected patient based on the severity of their symptoms. Suppose an insurance
company gives the same subsidy to all individuals who are infected without regard to their cir-
cumstances. Consequently, patients with severe symptoms and high medical costs may not obtain
adequate benefits to cover their medical expenses. Thus, they may choose to leave their current
contracts and be insured by other insurers in the market. Additionally, if an insurance company
imposes a fixed benefit level across all infected persons, it is expected that the average premium
rate will be more than when support is provided based on the fitness status. Mildly symptomatic
patients are unwilling to accept the high premium price for the insurance product. As a result, peo-
ple with better health conditions are disadvantaged, and thereby, the company loses this group of
customers and is left with a clientele made up primarily of the old and the infirm. This is simi-
lar to the insurance term of adverse selection, referring to the situation where healthy individuals
gradually leave the insurance contract, leading to a pool of high-risk policies.

With the recent Coronavirus pandemic background, the treatment cost varies based on the
severity of the symptoms experienced by infected individuals. According to a recent medical study
by Ohsfeldt et al. (2021), the medical costs for treating patients in the ICU are almost five times
the amount for treating other patients in the public hospital. Thus, we believe that our previous
assumption of a subsidy of $200 for patients receiving regular hospital care and $1,000 for those
undergoing intensive care is reasonable in real-life circumstances.

In addition, the availability of public medical resources is another critical factor insurance com-
panies should take into account when developing the pandemic insurance product in practice.
Concerning Coronavirus, in most countries, the local government is responsible for providing
treatment costs for patients. It means that residents who are identified as infectious will be admit-
ted to a public hospital and treated as public patients, with all treatment expenses being fully
covered by the government. In this case, since most people receive adequate health care services
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Figure 8. Treatment approaches for patients with various symptoms during the COVID-19 pandemic in Australia.

under the mature national medical system without utilizing private health insurance, insurance
companies are less likely to payout large amount of private treatment fees during the pandemic.
If the resident wishes to be treated as a private patient and to use their private health insurance
coverage to obtain more comprehensive care at the clinic, most health insurance plans7,8 pro-
vide their customers with coverage of private hospital admissions for lung and chest conditions,
including most Coronavirus-related treatments. Additionally, due to the popularity of vaccina-
tion, a number of health insurance companies9 also cover treatment for rare adverse reactions to
Coronavirus vaccinations. On the contrary, there are no benefits payable on a health insurance
policy for food or accommodations, as its primary objective is to assist customers with medical
expenditures only. This approach is depicted in Figure 8.

Unlike in developed countries, insurance companies operate differently in some developing
countries. When the fast-spreading virus strain Omicron reached the public, the number of con-
firmed cases increased dramatically each day, causing immense pressure on the local healthcare
systems. Under this situation, many developing countries did not have adequate resources to han-
dle the rapid increase in patient numbers and were unable to provide treatment to each infected
person. This resulted in some countries starting to categorize infectious persons based on their
symptoms. The Thai Government,10 for example, classified infected people into three categories,
green, yellow, and red, depending on the severity of their symptoms. People in the red level were
provided with priority medical attention under the national healthcare system. However, due to
the lack of medical resources available, mildly infected individuals were unlikely to be able to
receive free public treatment.

There was, as a consequence, an increase in the use of private healthcare options and the need
to obtain private health insurance coverage. From the perspective of an insurance firm, a signifi-
cant amount of medical and death benefit payments were made during this period, which resulted
in a dramatic drop in the reserve balance. Specifically, two major Thai insurance companies

7COVID-19 (Coronavirus) and your cover. Available online at the address https://www.nib.com.au/health-
information/member-services/coronavirus-and-your-cover

8COVID-19 What you need to know about Coronavirus. Available online at the address https://www.bupa.com.au/
health-insurance/covid-19.

9Our Response to COVID-19. Available online at the address https://www.aia.com.au/en/individual/help-support/covid-
19.html.

10Thailand SituationUpdate Coronavirus (COVID-19). Available online at the address https://www.businesseventsthai-
land.com/en/situation-update-coronavirus-COVID-19.
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announced liquidation decisions in January 2022.11 Thus, in order to ensure a sustainable day-to-
day operation, insurance companies need to take into consideration external medical conditions
when implementing pandemic product configurations as well.

4.3 An analysis of the design of travel insurance products
4.3.1 Premiums for travel insurance
Travel insurance is another form of insurance associated with the pandemic. The Australian
Government re-opened its internal border for business and travel at the end of 2021. Despite the
existence of Coronavirus, individuals are permitted to travel within the nation and internation-
ally. This waiver of travel restrictions is primarily motivated by the availability of vaccinations in
all Australian states. The investigation indicates that vaccination injection aids in decreasing the
death rate and lowering the intensive medical requirements for infected individuals as well. In the
present state of affairs, most people with the contagious disease can recover after several days of
self-quarantine without having to seek medical attention. Nevertheless, the requirement for close
contact to undertake isolation is critical to preventing the spread of the virus. The person exposed
to the virus is not permitted to go out to work for a short period and must stay in a hotel or at
home for two weeks to ensure that he is not infected.

The nature of certain careers means that some job positions do not support work-from-home
functionality, indicating that individuals required to perform self-quarantine may not be able to
work during this time. In consequence, some insurance companies have developed a new form
of insurance to provide financial support to people during their quarantine period. This type
of insurance policy is designed to benefit employees whose work involves travel and who are
currently facing the possibility of coming into close contact with infected people during their
day.

As the timeframe for our study, we chose 30 days and 60 days as the coverage periods for travel
insurance, which is the same as the case for health insurance discussed in Section 4.2.1. It remains
close to the current market condition. As an example, we find that most travel insurance policies,
such as the one offered by Allianz,12 charge the same amount for travel periods of less than 30
days. Alternatively, a small discount is only offered when the client requests a longer period. As
a result, we will continue to model travel insurance products based on the original 30-day and
60-day term settings.

In this subsection, a typical example of such a travel insurance product is provided with
a summary in Table 4. In the first instance, the insured individual with weak symptoms will
receive a benefit amount of b1 = $50. According to real-life conditions, overseas hospital treat-
ment expenses are expected to be much higher than domestic hospital treatment expenses, which
has led insurance companies to provide greater benefit payments as b2 = $500 and b3 = $1, 000 for
infected patients in hospitals and intensive care units, respectively, compared to the local health
insurance product design in Section 4.2.1. Additionally, as part of the product design, a one-time
death benefit payment of c= $10, 000 is also involved. There is a fundamental difference between
this travel insurance and the formerly discussed health insurance in that it includes a quaran-
tine subsidy of q= $20, which is available to those who are exposed to the virus and forced to
undertake self-isolation. Furthermore, travel insurance normally requires a one-off premium at
the beginning of the contract (t = 0), as opposed to a series of payments in health insurance. We
use a similar manner as Health Insurance and the same set of parameter values as in Table 3 for
this emerging travel insurance product and evaluate the fair premium amount as:

11Thailand: 2 insurers petition for liquidation under the weight of COVID-19 claims. Available online at the address
https://www.asiainsurancereview.com/News/View-NewsLetter-Article/id/79438/type/eDaily.

12Allianz Travel Get a Quote. Available online at the address https://www.allianztravelinsurance.com/compare-plans.
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Table 9. Estimated premium levels with loadings for health insurance
contracts with a 30-day and 60-day validity period

Travel insurance Premium 30-day 60-day

Dose 1 Fair premium $28.60 $32.89
10% loading $31.46 $36.18
20% loading $34.32 $39.47

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dose 2 Fair premium $9.88 $10.34
10% loading $10.87 $11.37
20% loading $11.86 $12.41

Table 10. Comparisonof predicted andactual premiums for travel insurance contracts
with a 30-day validity period over Dose 1 and Dose 2 modeling period

30-day travel insurance Premium Predicted reserve Actual reserve

Dose 1 Fair premium $0 $132,690,964
10% loading $18,573,304 $151,349,745
20% loading $37,146,608 $170,008,526

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dose 2 Fair premium $0 $26,073,386
10% loading $7,485,049 $32,489,246
20% loading $14,970,098 $38,905,105

π = b1
∫ T
0 I1(u)du+ b2

∫ T
0 I2(u)du+ b3

∫ T
0 I3(u)du+ q

∫ T
0 E(u)du+ c[D(T)−D(0)]

S(0)+V(0)
. (8)

The premium values for this travel insurance sample design are summarized in Table 9. In this
case, due to the fact that the 60-day insurance plan covers a long period, it is evident that a higher
premium is required at the commerce of the contract when compared to the shorter one-month
coverage. For travel insurance, the one-off premium required at the beginning of the coverage
period is expected to cover the entire insured period benefit payouts. Consequently, the premium
amount should increase when the contract period is extended. In order to create suitable travel
insurance product, the same loadings of 0%, 10%, and 20% have been placed on top of the desired
premium levels similar to what we have done for health insurance product design in Section 4.2.2
with the premium values shown in Table 9. As we discussed previously, these differences in price
levels are microcosms of the judgment of the firm regarding the insurance policy.

4.3.2 Reserves for travel insurance
Following a similar technique as discussed in Section 4.2.2, the accumulated reserve level for travel
insurance can be worked out as:

V(t)= π[S(0)+V(0)]− b1
∫ t

0
I1(u)du− b2

∫ t

0
I2(u)du− b3

∫ t

0
I3(u)du

− q
∫ t

0
E(u)du− c[D(t)−D(0)].

with results shown in Tables 10 and 11.
For travel insurance, we also examine the reserve development path under three one-off

premium settings with the final reserve amounts at the end of coverage period shown in Table 10.
In contrast to health insurance, whose reserve curves fluctuate over time, the accumulation of

profits for travel insurance tends to decrease over time under all scenarios as shown in Figure 9.
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Table 11. Comparisonof predicted andactual premiums for travel insurance contracts
with a 60-day validity period over Dose 1 and Dose 2 modeling period

60-day travel insurance Premium Predicted reserve Actual reserve

Dose 1 Fair premium $0 $131,487,165
10% loading $21,358,628 $152,944,088
20% loading $42,717,255 $174,401,011

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dose 2 Fair premium $0 −$987,591
10% loading $7,832,661 $5,726,227
20% loading $15,665,322 $12,440,044

Figure 9. Comparison of actual and projected reserve levels with predefined loadings under the Susceptible-Exposed-
Infected-Containing-3-Substates-Recovered-Dead model over Dose 1 (left) and Dose 2 (right) modeling period for 30-day
travel insurance products. The solid lines refer to the actual reserve levels. The dashed lines refer to the predicted reserve
levels.

This is because the travel insurance provider collects the total premium payments before the pol-
icy is issued. Thus, the insurance company has its highest reserve level at the beginning of the
contract. As time passes, when people become infected or exposed to the virus, appropriate bene-
fits are expected to be provided, resulting in a reduction in the reserve level of the insurer for the
product. As a result, for an insurance corporation to avoid possible bankruptcy, it is vital that they
receive enough premium payments at the commencement of the contractual period and ensure
sufficient accumulations in their account to cover future liabilities of the policyholders.

When it comes to comparing actual and predicted reserve levels under travel insurance, the
results are similar to those discussed for health insurance in Section 4.2.2. In particular, the actual
reserve level also fell below zero during the extended 60-day period under the second modeling
period, indicating that the insurance company suffered a loss of profit. In order to prevent the
situation in Figure 10 from occurring in real-life cases, the company can adjust the price accord-
ing to the rapidly changing external environment for travel insurance products with a coverage
period exceeding 30 days. Since the one-time premium for travel insurance is fixed at the begin-
ning of the contract period, a possible way is to include extra compensation terms in relate to
the policy’s extended coverage term. It is expected that the loading on the one-off premium level
will be higher than for short-term travel insurance. The results of our sample case indicate that
if the loading of the premium increases to 30%, the insurance company will be able to accom-
plish a positive profit on the 60-day travel insurance sample product. Meanwhile, higher prices
are unfavorable for customers, and insurance companies may lose their competitive advantage in
the market. Consequently, finding the right balance for pricing such products is highly dependent
on the accuracy of their pricing models.
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Figure 10. Comparison of actual and projected reserve levels with predefined loadings under the Susceptible-Exposed-
Infected-Containing-3-Substates-Recovered-Dead model over Dose 1 (left) and Dose 2 (right) modeling period for 60-day
travel insurance products. The solid lines refer to the actual reserve levels. The dashed lines refer to the predicted reserve
levels.

4.3.3 Discussion of real-life travel insurance practices
For travel insurance, the most critical aspect of its real-life implementation is that the insurance
provider must set the adequate premium levels in a prudent manner. In the event that a new
virus strain spreads rapidly with a high contact rate among the public, the likelihood of a large
number of people becoming infected can be expected within a short period of time. Considering
the concept of superimposed effects, the contagious virus spreads more rapidly when there is
more infection. As a consequence, a wide range of people would be in close contact and require
mandatory quarantines. Due to the design of travel insurance products, insurance companies will
be under great pressure from the upcoming claims. Consequently, insurance companies need to
collect adequate premiums at the beginning of the contract period in order to cover upcoming
risks.

Concerning the recent pandemic, there is a variety of insurance policies13,14 that offer cov-
erage for traveling under Coronavirus. These refer to the policies that cover overseas medical
expenses and provide coverage for infected individuals who require hospitalization while abroad.
Furthermore, some insurance products also provide compulsory quarantine subsidies when the
insured person or a member of the traveling party is diagnosed with Coronavirus or confirmed
as having close contact during the trip. Generally, the cost of quarantine support is primarily set
for accommodation and food supply. Meanwhile, travel insurance does not provide coverage for
quarantine expenses if the necessity of isolation is acknowledged before departure. For instance,
at the time this paper was written, the Australian Government enforced mandatory isolation for
all returning residents. This requirement is known by travelers before they plan their journey, so
the insurance company will not cover this expense. It is evident that the insurance company pro-
vides coverage for uncertain events, but not for preexisting conditions. Therefore, it is critical to
carefully review the PDS of the relevant insurance policy.

Along with the features we discussed previously, there are a number of other factors that may
also contribute to the various pricing levels in the implementation of travel insurance products,
including the traveler’s current location, the destination, the product’s excess policy, the age of the
policyholder, and so on. Accordingly, the underwriting process should be carefully followed by
the insurance company prior to issuing an insurance policy. For instance, RACV15 offers different

13Travel insurance for Coronavirus (COVID-19). Available online at the address https://travel.insurance.qantas.com/
coronavirus-cover.

14COVID-19 Travel Insurance Benefits. Available online at the address https://www.medibank.com.au/travel-insurance/
covid-benefits/.

15Compare Travel Insurance. Available online at the address https://racv.tmmatravel.com.au/quotes/steps/2.
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travel insurance plans as Basics, Essentials, and Comprehensive, in increasing order of coverage,
which can be tailored to the preferences of customers.

5. Discussion and conclusion
In this paper, we examine the concept of epidemiological modeling and investigate the spread of
Coronavirus over time in Victoria, Australia. Based on the comparison of the estimated parame-
ters of epidemic models in different periods, this paper points out the significance of vaccination
with the use of the actual data in Victoria. It appears from the estimated parameter results that
individuals who have undergone a complete vaccination injection are better protected against the
Coronavirus. According to the words of Avery et al. (2020), modeling results play a critical role
in informing policy decisions in a variety of ways. Our findings suggest that vaccination is an
effective method for reducing the death rate and that the government should increase the dose
injection campaign among the general public.

Regarding the pandemic insurance application, the insurance company receives premium pay-
ments from individuals who are susceptible to the disease. In return, it provides benefits to the
insured person when he becomes infected, as well as one-time death benefits to his family mem-
bers in the event he dies. With regard to subsidies for infectious individuals, the amount of the
benefit depends on the level of symptoms experienced by the infected individual. Furthermore,
the travel insurance offers additional quarantine support for people exposed to the virus. In both
product configurations, all benefit payments are considered as continuous payouts except for the
death benefit, which is a one-off payment. By computing the integral over time and adding the
extra death benefit amount at the end, the total expenditure for an insurance company can be esti-
mated over time. Moreover, the zero-profit premium level is determined by equating the premium
received and the expected benefit payments. In practice, the insurance firm typically determines
the premiums with loadings to ensure higher level of security. In general, the higher the pre-
mium pricing, the greater the expected reserve amount of the insurance corporation over time. In
terms of real-world implementation, insurance companies must determine premium levels that
are sufficient to earn profit as well as maintain their competitiveness in the highly competitive
market.

In this paper, the following contributions are made. This paper proposes a more comprehen-
sive SVEI3RD that overcomes the limitations of the standard SVEIRD model by separating out
patients who needed healthcare during the pandemic. Furthermore, due to the widespread pop-
ularity of vaccination, we intend to calibrate parameter values using real-life Coronavirus data
in order to model the spread of the virus and examine the effectiveness of vaccination. In this
case, this paper examines the effects of the first and second doses, both of which contribute to
reducing contact rates among the general population. In addition, the newly proposed SVEI3RD
model provides more practical results and fits better with the changes in observed population
dynamics. Consequently, this updated model is considered to be more effective when it comes to
insurance-related applications.

In addition, two types of insurance products are developed on the basis of pandemic models in
order to assess the possible impact of an outbreak on the insurance industry. The insurance setup
is essentially a generalized version of the primary design proposed by Feng et al. (2021). Aside
from the base settings, the more comprehensive SVEI3RD model offers insurance companies the
ability to provide different benefit subsidies based on the severity of symptoms, thus enhancing
the pricing procedure for pandemic-related insurance products. Additionally, we introduce a new
form of travel insurance that extends the design to include additional benefits related to quarantine
during times of pandemic outbreaks. Currently, both types of insurance are in their infancy and
have a great deal of untapped potential for growth in the foreseeable future. Regarding real-life
practices, we also form discussions on the actual implementation of products, which can serve as
a guideline for insurance companies while developing their products during the pandemic.
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As a measure of the realistic feasibility of the model, we examine the profit reserve level of an
insurance company under different premium charges as well as the difference in the reserve curve
over time for both health and travel insurance. Furthermore, we perform a comparison between
the actual reserve levels and those predicted by our model in order to assess the practicality of our
model. In relation to practical insights, we uncover scenarios in which insurance companies fail
to develop products correctly, as well as discuss the real-life procedures involved in implementing
this type of insurance. Our research analyzes the potential risks associated with pandemic-related
insurance products, and how the insurance industry could assist the government health care sys-
tems by developing pandemic insurance products. By doing so, our results are linked closely to
actual industry procedures, thus forming a bridge between the theoretical framework and real-life
insurance practices.

In conclusion, considering the recent occurrence of infectious disease outbreaks, scientists
and researchers should prioritize the study of vaccines in the field of healthcare. For actuaries
who are also skilled at quantifying risk, we envision more future research aiming to integrate
epidemiological models and risk quantification under a dynamic framework.
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