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LARGE DEVIATION PROPERTIES OF
CONSTANT RATE DATA STREAMS
SHARING A BUFFER WITH LONG-RANGE
DEPENDENT TRAFFIC IN CRITICAL LOADING
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Abstract

We consider a constant rate traffic which shares a buffer with a random cross traffic. A first
come first served or priority service discipline is applied at the buffer. After service at
the first buffer the constant rate traffic moves to a play-out buffer. Both buffers provide
service at constant rate and infinite waiting room. We investigate logarithmic large and
moderate deviation asymptotics for the tail probabilities of the steady-state queue length
distribution at the play-out buffer for long-range dependent cross traffic in critical loading.
We characterize the asymptotic behavior of the cross traffic which leads to a large queue
length at the play-out buffer and compare it to the one for renewal cross traffic.
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1. Introduction

Up to now, only a few explicit analytical results have been obtained for the behavior
of queueing systems with more than one buffer and long-range dependent random traffic.
Here processes are called long-range dependent when the auto-correlation function of their
increments is not integrable [4, p. 4], [6].

Heavy traffic convergence in distribution [16], [21] constitutes a general framework in which
such an analysis is reduced to an investigation of the properties of reflected multi-dimensional
fractional Brownian motion when the queues approach critical load. We call a process reflected
if it is the image of a process under a Skorokhod map which restricts the movements of the
process to the positive orthant by shifting it at the border [9], [14]. (A definition of the one-
dimensional Skorokhod map is contained in Section 2.) However, again, only a few explicit
results about the behavior of multi-dimensional reflected fractional Brownian motion have
been obtained so far. Most of them can be classified as logarithmic asymptotics for certain tail
probabilities of their distribution [20], [26].

To some extend these two observations (which also partially apply to a single queue and
short-range dependent traffic) have motivated a large number of publications which address the
analysis of queueing systems by investigating large deviations of reflected Gaussian processes
[1], [20], [26], [28], [31], [32]. In such models the Gaussian input approximates statistical

properties of the traffic processes, and the Skorokhod map captures the response of the queueing
system to this input. However, the use of Gaussian input requires additional justification, and
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the class of queueing networks which can be directly modeled through a Skorokhod map is
rather restricted.

In contrast to this, moderate deviations in critical loading constitute a direct approach to
expressing logarithmic asymptotics of tail probabilities of queueing systems through those of
reflected Gaussian processes. We refer to moderate deviations when the scaling is situated
between an ordinary large deviation principle and a central limit theorem, such that the rate
function of a Gaussian process appears; see [7], [30], [36]. This connection has been estab-
lished for single class queueing networks (i.e. generalized Jackson) in [36] and for multi-class
feedforward queueing networks in [24]. In [25] and [36] a moderate deviation principle for the
input processes is combined with a heavy traffic convergence. The result is the characterization
of logarithmic tail asymptotics for the behavior of queueing networks in critical loading. The
rate function in the examples of [24] and [36] can be identified with the rate function for
the tail probabilities of a (multi-dimensional) reflected Brownian motion, for which numerous
analytical results are available [3], [10], [13], [19]. This approach takes advantage of both the
simplified heavy traffic model and the explicit rate function of a Gaussian process. It can be
used to rigourously justify the calculation of large deviations of reflected Gaussian processes as
a means of analyzing moderate deviations of queueing networks in critical loading. However,
it has not yet been applied to queueing networks with long-range dependent input. In this work
we exemplify how this can be done and find, surprisingly, that with long-range dependent input
we can obtain both large and moderate deviation principles in critical loading.

Our example network consists of two queueing nodes with constant service rates and infinite
waiting rooms. A constant rate fluid stream must visit both nodes. It shares the service and
buffer capacity of the first node with a random cross traffic.

For cross traffic, we discuss a long-range dependent superposition of fluid sources with
exponential inter start times and Pareto distributed durations, and, for the purpose of comparison,
short-range dependent renewal traffic. Such cross traffic processes can satisfy sample path large
and moderate deviation principles when they are centered and suitably scaled [22], [23], [34],
[35]. The rate functions of these moderate deviation principles are well known from large
deviations of fractional Brownian motion in the long-range dependent case and of Brownian
motion in the renewal cross traffic case.

We use the framework of [21] and [24] to characterize the steady-state buffer contents at the
second node. This queue length distribution is a measure of the cell delay variation induced on
the constant rate stream by sharing the first buffer with random cross traffic. The results of [24]
yield a sample path large deviation principle for the queue length processes when the sequence
of centered arrival processes satisfies a large deviation principle, and the queues approach
critical load with a certain speed.

In the main result of this work we characterize moderate and large deviation asymptotics
for the steady-state queue length distribution at the second node by solving two-dimensional
minimization problems. This result makes it possible to expose the transition of moderate
deviations for the behavior of the network from short-range to long-range dependent input, and
to reveal the distinction between large and moderate deviations for the behavior of the queueing
network with long-range dependent input. Figures containing logarithmic decay rates visualize
the findings for first come first served (FCFS) and priority service disciplines at the first node.
Furthermore, we calculate certain minimizing paths which display the ‘most likely’ asymptotic
behavior of the cross traffic and the queue length processes conditioned to a large queue length
at the second buffer.
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Large deviation asymptotics for this queueing system with short-range dependent input
processes and FCFS service discipline can also be found in [37]. A scaling is applied in [37], in
which time and state are scaled with the same increasing factor. The traffic intensity at the nodes
remains constant and away from a critical load. In contrast to this, we apply a scaling where time
is scaled faster than state and a heavy traffic condition compensates for this difference. Similar
remarks apply to the work of [5], which focused on large deviations for queueing systems with
a priority service discipline.

We refer the reader to [12] for further references and background on large and moderate
deviations for queueing systems with short- and long-range dependent input. Furthermore, the
‘infinite intersections approach’ in [27] could be of use in identifying moderate deviation rates
and minimizing paths for variants of the example network considered here.

An overview of this work is as follows. We recall necessary basic definitions and facts in
Section 2. We introduce a sequence of networks with two queues approaching heavy traffic in
Section 3. We characterize large deviation rates and minimizing paths leading to a large queue
length in the second buffer in Section 4. Three sequences of cross traffic processes satisfying
the assumptions are presented in Section 5. We calculate and display large deviation rates and
minimizing paths for these sequences in Section 6. Appendix A contains the proof of our main
result.

2. Preliminaries

We first recall the following elements of large deviations theory for which [8] is a standard
reference. A [0, ∞]-valued lower semicontinuous function on a topological space is called a
rate function. A rate function is good if it has compact level sets. A sequence (Xk)k∈N of random
elements with values in a measurable space (E, E) satisfies a large deviation principle with
normalizing sequence (bk)k∈N and rate function I in the topology T on E if limk→∞ bk = ∞
and, for every measurable set A ∈ E ,

lim sup
k→∞

1

bk

log P(Xk ∈ A) ≤ − inf
x∈Ac

I (x), (1)

and lim inf
k→∞

1

bk

log P(Xk ∈ A) ≥ − inf
x∈Ao

I (x), (2)

where Ac (Ao) is the closure (interior) of A in the topology T , and P is the underlying probability
measure. This work deals with large deviation principles for the sample paths of random
processes. The underlying function spaces are therefore called path spaces and are introduced
next.

We let D be the set of paths d : R → R which are right continuous, possess left-hand limits
and have limits

d := lim
t→−∞

d(t)

t
and d := lim

t→∞
d(t)

t
,

in R. (On product path spaces these limits are taken componentwise.) With � we denote the
subset of D consisting of nondecreasing (continuous) paths. With C we denote the subset
of D consisting of continuous paths. We provide these (and further) path spaces with the
σ -algebras generated by the family of one-dimensional projections and topology induced by
the norm ‖ · ‖, given by

‖d‖ := sup
t∈R

|d(t)|
1 + |t | .
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Product path spaces are equipped with corresponding product σ -algebras and topologies. With
pointwise and componentwise addition and scalar multiplication, product path spaces formed
from D become topological vector spaces. We use bold-face symbols for elements of, or
mappings into, path spaces.

We let D0 be the subset of D containing all paths d ∈ D satisfying d = d = 0. Clearly, if
a path d ∈ D satisfies d = d =: δ, then the centered path d − δid is an element of D0, where
id : R → R, t �→ t denotes the identity map of R.

For τ ∈ R, we define the (time-)shift �τ : D → D by (�τd)(t) := d(t + τ) for every
t ∈ R. We say that a process x on D is stationary, when the distribution of �τx is the same
for every τ ∈ R. We say that a process x on D has stationary increments when the distribution
of �τx − x(τ ) is the same for every τ ∈ R. We define, for τ > 0, the scaling mapping
�τ : D → D by (�τd)(t) := d(τ t)/τ for t ∈ R.

On the set Dsup := {d ∈ D : d > 0} we consider the ‘running supremum’ sup : Dsup →
Dsup ∩ � defined for d ∈ Dsup and t ∈ R by

(sup d)(t) := sup
τ∈ ]−∞,t]

d(τ ).

This mapping is continuous (see [11]), and satisfies sup d = d and sup d = max{0, d}. (For a
finite subset K of R, we let max K denote the maximum of its elements.)

For a path d ∈ D with d < 0, the path w := d +sup(−d) is the unique path in D0 for which
there exists a nondecreasing path y ∈ � such that w = d + y ≥ 0 and

∫
R

w(t) dy(t) = 0;
see Lemma 5 in [20]. (Inequalities with paths are satisfied if they hold for every argument.)
The backlogged workload w ∈ D0 and cumulative idle time y ∈ � at a nonidling queueing
node naturally satisfy these two properties, namely, the workload remains nonnegative and
the cumulative idle time increases only during time intervals in which the workload is zero.
Therefore, a (one-dimensional) Skorokhod or reflection map of the form d �→ d + sup(−d)

can often be found in the definition of the behavior of a queueing system or its heavy traffic
approximation; compare (3), (4), (6), (10), and (11) below. The image of a process under the
Skorokhod map is frequently called (somewhat imprecisely) a reflected process: it is constrained
to remain nonnegative, but is pushed upwards only at zero.

3. Two queues approaching heavy traffic

We consider the queueing system depicted in Figure 1. It possesses two queueing nodes
N := {switch,bucket} with infinite buffer capacities and constant service rates. It is
populated with customers of two types C := {long,cross}. Customers of type long (=
longitudinal) must queue up for service at node switch and subsequently at node bucket.
Customers of type cross must visit only node switch before leaving the system. We are
interested in the impact of sharing queue switch with the random cross-traffic consisting
of type cross customers on the traffic of type long customers. In order to assess this
impact we calculate large (and moderate) deviation asymptotics for large queue lengths at
queue bucket. We distinguish two different service disciplines S := {FCFS,PRIO} at the
first node. In caseFCFS a FCFS service discipline is applied at the nodeswitch. In casePRIO
customers of type cross have high priority and customers of type long have low priority at
node switch.

We let along and across be two independent random processes on � with stationary
increments, which model the cumulative number of arrivals of typelong andcross customers
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Figure 1: Queueing network with two nodes.

respectively, at node switch as a function of time. We assume that there are arrival rates
αlong > 0 and αcross > 0, such that

αlong = along = along and αcross = across = across

have probability 1. We let σswitch > 0 and σbucket > 0 be the constant service rate at the
first and second queue respectively, and impose the stability conditions

αlong + αcross < σswitch and αlong < σbucket.

For the FCFS service discipline, we define the workload process (the amount of unfinished
work measured in units of time) at the first queue by

wswitch,FCFS := along + across

σswitch
− id + sup

(
id − along + across

σswitch

)
. (3)

This standard construction of the workload process of a nonidling queueing node on the entire
time interval R has its root in Loynes’s lemma ([2, Section IX.2], [18]) and is also used in (4)
and (6).

If the first queue applies a FCFS service discipline, and the values τ ≤ t satisfy

along(t) + across(t) − along(τ ) − across(τ ) ≥ σswitchwswitch,FCFS(t),

then all the customers which arrive up to time τ complete their service at the first queue until
time t . Otherwise some of these customers are still waiting for service or service completion.
This motivates the following definition of the cumulative departure process d

switch,FCFS
c of

type c ∈ C customers at the first node under the FCFS service discipline: For t ∈ R, we set

dswitch,FCFS
c (t) := sup

τ≤t, along(t)+across(t)−along(τ )−across(τ )≥σswitchwswitch,FCFS(t)

ac(τ ).

It is not difficult to check that the processes dswitch,FCFS
cross and d

switch,FCFS
long are nondecreasing

and right continuous. As the same set of τ -values appears in the supremum for both customer
types c ∈ C, the departures are in the order of the arrivals. As intended these properties
characterize a FCFS service discipline. See [21] and [24] for a more general version of this
construction, which is similarly applied in (5) and (7).
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For the priority service discipline, the workload generated by the high priority customers
(i.e. the time needed to complete service for all the high priority customers that are currently at
the node) of type cross at node switch is given by

wswitch,PRIO
cross := across

σswitch
− id + sup

(
id − across

σswitch

)
. (4)

The workload generated by the low priority customers of type long is

w
switch,PRIO
long := wswitch,FCFS − wswitch,PRIO

cross .

Hence, the cumulative departure process of type c ∈ C customers at queue switch can be
defined by

dswitch,PRIO
c (t) := sup

τ≤t, ac(t)−ac(τ )≥σswitchw
switch,PRIO
c (t)

ac(τ ). (5)

In particular, the behavior of type cross customers at the first node does not depend on that
of type long customers, and type long customers are only served when no type cross
customers are present at node switch. Such behavior is usually called a preemptive resume
priority service discipline.

The queue length process formed by type c ∈ C customers under the service discipline s ∈ S

at node switch is given by

qswitch,s
c := aswitch,s

c − dswitch,s
c .

The workload process at the second node for the service discipline s ∈ S is defined as

w
bucket,s
long := d

switch,s
long

σbucket
− id + sup

(
id − d

switch,s
long

σbucket

)
. (6)

The departure process of type long customers at queue bucket under the service discipline
s ∈ S at queue switch can be defined as

d
bucket,s
long (t) := sup

τ≤t, d
switch,s
long (t)−d

switch,s
long (τ )≥σbucketw

bucket,s
long (t)

d
switch,s
long (τ ). (7)

This eventually leads to the definition of the queue length process at queue bucket under the
service discipline s ∈ S at queue switch, given by

q
bucket,s
long := d

switch,s
long − d

bucket,s
long .

We note that these definitions support both discrete customers and continuous fluids. Jumps
in the arrival or departure process represent an arrival or departure respectively, of a discrete
customer with a size corresponding to the height of the jump at the time of the jump. Whereas
a continuous increase in the arrival or departure process can be interpreted as an arrival or
departure respectively, of a certain amount of fluid. In this way discrete customer and fluid
models are unified.

The use of the infinite negative time interval permits a direct modeling of steady-state
behavior. In fact, as a consequence of Lemma 9 in [24] we find that the processes q

switch,s
long ,
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qswitch,s
cross , and q

bucket,s
long are jointly stationary for every service discipline s ∈ S. In particular,

the random variable q
bucket,s
long (0) models the stationary queue length at queue bucket for the

service discipline s ∈ S at queue switch.
Next, we consider a sequence of the networks discussed above, in which a critical load is

approached at both queues. Hence, the rates αlong, αcross, σswitch, σbucket, and all defined
random processes (for instance along and across) receive an additional index k distinguishing
their position in the sequence. The assumptions and definitions detailed in the first part of this
section are assumed to hold for each index k ∈ N individually.

The load at queue switch and bucket in the kth network is, respectively, given by

�switchk := αlong,k + αcross,k

σswitch
k

< 1 and �bucketk := αlong,k

σbucket
k

< 1.

We assume that there exist values γ > 0, κswitch > 0, and κbucket > 0, such that

lim
k→∞ αcross,k = ∞, (8)

lim
k→∞(αlong,k − γαcross,k) = 0,

lim
k→∞(σswitch

k − αlong,k − αcross,k) = κswitch,

lim
k→∞(σbucket

k − αlong,k) = κbucket.

These conditions imply that
lim

k→∞
αlong,k

αcross,k

= γ,

lim
k→∞ �switchk = lim

k→∞ �bucketk = 1,

lim
k→∞(αlong,k + αcross,k)(1 − �switchk ) = κswitch,

and lim
k→∞ αlong,k(1 − �bucketk ) = κbucket.

Under these assumptions a critical load at node switch is approached with speed κswitch/

((1 + γ )αcross,k) and a critical load at node bucket is approached with speed κbucket/

(γ αcross,k). This justifies speaking of heavy traffic or critical loading.

4. Main result

In this section we assume that the centered sequences of arrival processes satisfy sample path
large deviation principles. This leads to the main result of this work, namely, the characterization
of logarithmic asymptotics for the steady-state probability of a large queue length at node
bucket in heavy traffic.

We let (bk)k∈N be a sequence in R+ \ {0} converging to infinity. We assume that the
sequence (across,k − αcross,kid)k∈N satisfies a large deviation principle with normalizing
sequence (bk)k∈N and good rate function Icross on D0. We assume that Icross(a) = ∞,
whenever a ∈ D0 is not continuous or a(0) 
= 0. We note that the stationary increments of the
process across,k , for every k ∈ N, implies that the rate function Icross is invariant under time
shifts, i.e. for every τ ∈ R and a ∈ D0,

Icross(�τa − a(τ ) + a(0)) = Icross(a). (9)

In Section 5 we give examples of cross traffic processes satisfying these assumptions.
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As indicated in the introduction, the sequence of cumulative arrival processes (along,k)k∈N

should model a constant rate traffic. In order to make this notion precise we assume that the
sequence (along,k −αlong,kid)k∈N satisfies a sample path large deviation principle in D0 with
normalizing sequence (bk)k∈N and good rate function Ilong given by

Ilong(a) :=
{

0 if a = 0,

∞ otherwise.

This assumption is, for example, satisfied when along,k := αlong,kid. (It is also satisfied when
along,k(t) := �ktαlong,k�/k for k ∈ N and t ∈ R, if we want to model a constant rate traffic
with discrete customers. Here �x� is the largest integer z ∈ Z with z ≤ x for x ∈ R.)

We define the values

gFCFSlong := γ,

gFCFScross := 1,

gPRIOlong := 1 + γ,

gPRIOcross := 0.

Furthermore, we set, for a ∈ D0 and s ∈ S,

Xswitch(a) := a − κswitchid
1 + γ

,

Wswitch(a) := Xswitch(a) + sup(−Xswitch(a)), (10)

Qswitch,s
cross (a) := gs

crossW
switch(a),

Q
switch,s
long (a) := gs

longW
switch(a),

Xbucket,s(a) := −κbucket

γ
id − gs

long

γ
Wswitch(a),

Wbucket,s(a) := Xbucket,s(a) + sup(−Xbucket,s(a)), (11)

Q
bucket,s
long (a) := γWbucket,s(a).

Application of statement 6 in Theorem 2 of [24] yields that for each service discipline s ∈ S,
the sequence

(across,k − αcross,kid, q
switch,s
cross,k , q

switch,s
long,k , q

bucket,s
long,k )k∈N, (12)

satisfies a sample path large deviation principle with normalizing sequence (bk)k∈N and good
rate function I s on D4

0 given by

I s(a, qswitchcross , qswitchlong , qbucketlong ) := inf
qswitchcross =Q

switch,s
cross (a),

qswitchlong =Q
switch,s
long (a),

qbucketlong =Q
bucket,s
long (a)

Icross(a).

This sample path large deviation principle directly implies the following convergence of con-
ditional distributions to minimizing paths of the rate function; compare Corollary 1 in [25].
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If for a service discipline s ∈ S the measurable set Q ⊂ D4
0 satisfies

inf
(a,qswitchcross ,qswitchlong ,qbucketlong )∈Qc

I s(a, qswitchcross , qswitchlong , qbucketlong )

= inf
(a,qswitchcross ,qswitchlong ,qbucketlong )∈Qo

I s(a, qswitchcross , qswitchlong , qbucketlong ) < ∞,

and there is a unique element (a∗, q∗,switch
cross , q

∗,switch
long , q

∗,bucket
long ) ∈ Qc which attains the

infimum in the last display, the distribution of the process (across,k − αcross,kid, q
switch,s
cross,k ,

q
switch,s
long,k , q

bucket,s
long,k ) conditioned to the event Q converges to the Dirac measure of the path

(a∗, q∗,switch
cross , q

∗,switch
long , q

∗,bucket
long ) in distribution as k → ∞. Furthermore, q∗,switch

cross =
Qswitch,s

cross (a∗), q
∗,switch
long = Q

switch,s
long (a∗), and q

∗,bucket
long = Q

bucket,s
long (a∗).

For t < u ∈ R, we let I t,u
cross : R

2 → R+ ∪ {∞} be the good rate function defined by

I t,u
cross(x, y) := inf

a∈D0, a(t)=x, a(u)=y
Icross(a).

The following theorem shows that large deviation asymptotics for the steady-state queue
length distribution at node bucket can be obtained by solving two-dimensional minimization
problems defined in terms of the rate function I t,u

cross. This constitutes the main result of this
work. Its proof is relegated to Appendix A.

Theorem 1. For δ > 0 and s ∈ S, we set

λs := 1 + γ

gs
long

δ and µs := 1 + γ

gs
long

κbucket − κswitch.

Then

lim sup
k→∞

1

bk

log P(q
bucket,s
long,k (0) ≥ δ) ≤ − inf

t<u<0, x≤κswitcht, y≥λs−µsu
I t,u
cross(x, y)

= − inf
t<u<0

I t,u
cross(κ

switcht, λs − µsu), (13)

lim inf
k→∞

1

bk

log P(q
bucket,s
long,k (0) ≥ δ) ≥ − inf

t<u<0, x<κswitcht, y>λs−µsu
I t,u
cross(x, y). (14)

Furthermore,

lim
k→∞

1

bk

log P(q
bucket,FCFS
long,k (0) ≥ δ) ≤ lim

k→∞
1

bk

log P(q
bucket,PRIO
long,k (0) ≥ δ). (15)

If there exist unique values t∗ < u∗ < 0 satisfying

I t∗,u∗
cross(κ

switcht∗, λs − µsu∗) = inf
t<u<0, x<κswitcht, y>λs−µsu

I t,u
cross(x, y) < ∞, (16)

and there exists a unique path a∗ ∈ D0 satisfying a∗(t∗) = κswitcht∗, a∗(u∗) = λs − µsu∗,
and

Icross(a
∗) = inf

a∈D0, a(t∗)=κswitcht∗, a(u∗)=λs−µsu∗
Icross(a),
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the distribution of the process (across,k − αcross,kid, q
switch,s
cross,k , q

switch,s
long,k , q

bucket,s
long,k ) con-

ditioned to the event

{(a, qswitchcross , qswitchlong , qbucketlong ) ∈ D4
0 : qbucketlong (0) ≥ δ},

converges to the Dirac measure of the path

(a∗, Qswitch,s
cross (a∗), Q

switch,s
long (a∗), Q

bucket,s
long (a∗))

in distribution as k → ∞.

If the rate function I t,u
cross is finite and continuous for every t < u < 0, the upper and lower

bounds in (13) and (14) agree, and the existence (but not the uniqueness) of t∗ and u∗ and a
path a∗ satisfying the conditions of the last statement in Theorem 1, follows from (13) and the
goodness of the rate function Icross. This is the case for the example rate functions presented
in Section 5.

5. Examples of sequences of input processes

Theorem 1 calls for a sequence of cross traffic arrival processes satisfying a sample path
large deviation principle. Furthermore, (8) requires that the arrival rates converge to infinity. In
this section we give three examples of such sequences: E := {lrdldp,lrdmdp,renmdp},
which can be classified as follows. In example lrdldp we specify a long-range dependent
sequence of cross traffic processes satisfying a large deviation principle. Under a slightly
different scaling this example is modified to examplelrdmdp, where a sequence of long-range
dependent processes satisfies a moderate deviation principle. The third example renmdpwith
a sequence of renewal processes satisfying a moderate deviation principle provides a contrast
to the long-range dependent cross traffic of the first two examples. We specify the appropriate
rate functions.

5.1. Large deviations for long-range dependent arrivals

We say that a nonnegative random variable τ is Pareto distributed [15, p. 222] with index
η > 1 and mean ξ > 0 when, for every t ≥ 0,

P(τ ≥ t) :=
(

(η − 1)ξ

t + (η − 1)ξ

)η

.

For η < 2 the Pareto distribution is heavy-tailed; see [39]. We fix a value ξ > 0 and a value η

with
1 < η < 2.

For k ∈ N, we let (τk,i)i∈Z be a sequence of independent and identically Pareto distributed
random variables with index η and mean ξ/k > 0. In addition, we let (θk,i)i∈Z represent
the random time points of a Poisson process with intensity rk > 0 on R. We assume that for
every k ∈ N the sequences (θk,i)i∈Z and (τk,i)i∈Z are independent. Each tuple (θk,i , τk,i) is
interpreted as a source which produces fluid with rate one between time θk,i − τk,i and θk,i .

For t ∈ R, we define the continuous and bounded kernel gt : R+ × R → R by

gt (τ, θ) :=
{

τ ∧ t ∧ (t + τ − θ)+ ∧ θ+ if t ≥ 0,

−(τ ∧ (−t) ∧ (τ − θ)+ ∧ (θ − t)+) if t < 0,
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where, as usual, s ∧ t (s ∨ t) is the minimum (maximum) of two numbers s, t ∈ R. For every
s < t in R, the value gt (τ, θ) − gs(τ, θ) can be interpreted as the cumulative output during the
time interval [s, t] of a source which produces fluid from time θ − τ to time θ . See [22] for
properties and graphical representations of this kernel.

For every k ∈ N, we let xlrd,k be the random cumulative traffic generated by superimposing
the fluid produced by the random sources (θk,i , τk,i)i∈Z with index k ∈ N, that is,

xlrd,k(t) :=
∑
i∈Z

gt (τk,i , θk,i).

We have E(xlrd,k(t)) = ξk−1rkt for every t ∈ R and from[22] we have

ξrk

k
= xlrd,k = xlrd,k with probability 1.

Furthermore, the process xlrd,k has stationary increments and is long-range dependent [29].
For n ∈ N and t1 < t2 < · · · < tn in R, we define the function �

t1,...,tn
lrd,η : R

n → R+ by

�
t1,...,tn
lrd,η (y1, . . . , yn)

:=
∫

R

∫
R+

(
exp

( n∑
i=1

yigti (τ, θ)

)
− 1 −

n∑
i=1

yigti (τ, θ)

)
η(η − 1)η dτ dθ

τη+1 .

In [23, Lemma 4] we proved that the function �
t1,...,tn
lrd,η is well defined and convex. We also

showed that its Fenchel–Legendre transform I
t1,...,tn
lrd,η : Rk → R+ ∪ {∞} of �

t1,...,tn
lrd,η defined by

I
t1,...,tn
lrd,η (x1, . . . , xn) := sup

y1,...,yn∈R

{ n∑
i=1

xiyi − �
t1,...,tn
lrd,η (y1, . . . , yn)

}

is a good and convex rate function. Hence, we can define a rate function Ilrd,η : D0 → [0, ∞]
by

Ilrd,η(x) := sup
n∈N, t1<···<tn∈R

I
t1,...,tn
lrd,η (x(t1), . . . , x(tn)).

In [23] we verified that Ilrd,η has compact level sets and is infinite for paths which are not
continuous or are nonzero at 0. In [25] we showed that under the prerequisites

bk = rk

kη
for k ∈ N, (17)

lim
k→∞

bk

log k
= ∞, (18)

the sequence (
kη

rk
xlrd,k − ξkη−1id

)
k∈N

,

satisfies a large deviation principle with normalizing sequence (bk)k∈N and rate function
ξηIlrd,η(·/ξη) in the topology induced by the norm ‖ · ‖ on D0. Hence, if we assume (17)
and (18) hold, set

across,k = kη

rk
xlrd,k,

αcross,k = ξkη−1,
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for every k ∈ N, and have

Icross = ξηIlrd,η

( ·
ξη

)
,

we satisfy the assumptions of Section 3 and Section 4. We call this set-up example lrdldp.

5.2. Moderate deviations for long-range dependent arrivals

We define the covariance function fH : R
2 → R+ for 0 < H < 1 by

fH (s, t) := 1
2 (|t |2H + |s|2H − |t − s|2H ).

From the function fH we derive the symmetric matrix M
t1,...,tn
fBm,H ∈ R

n×n with n ∈ N and
t1 < t2 < · · · < tn in R by defining its ith row and j th column entry as

(M
t1,...,tn
fBm,H )i,j := fH (ti , tj ).

If t1 
= 0, . . . , tn 
= 0, the matrix M
t1,...,tn
fBm,H is positive definite [25]. In this case we let

(M
t1,...,tn
fBm,H )−1

i,j denote the ith row and j th column entry of the inverse of the matrix M
t1,...,tn
fBm,H

and define the good rate function I
t1,...,tn
fBm,H : R

n → [0, ∞] by

I
t1,...,tn
fBm,H (x1, . . . , xn) = 1

2

n∑
i=1

n∑
j=1

(M
t1,...,tn
fBm,H )−1

i,j xixj .

We define the function IfBm,H : D0 → [0, ∞] by

IfBm,H (x) := sup
n∈N, t1<···<tn∈R\{0}

I
t1,...,tn
fBm,H (x(t1), . . . , x(tn)).

We note that this definition implies that IfBm,H (x) = ∞ if eitherx(0) 
= 0 orx is not continuous.
The function IfBm,H is a good rate function [17].

We know from Theorem 1 of [22] that, if (bk)k∈N is a sequence satisfying

lim
k→∞

bkk
η

rk
= 0, (19)

lim
k→∞

bk

log rk
= ∞, (20)

and the process xlrd,k is defined as in Section 5.1 for every k ∈ N, the sequence

(√
kη

bkrk
xlrd,k −

√
kη−1rk

bk

ξ id
)

k∈N

,

satisfies a sample path large deviation principle with normalizing sequence (bk)k∈N and good
rate function ξ−η�ηIfBm,(3−η)/2 with

�η := (2 − η)(3 − η)

2(η − 1)η−1 .
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Hence, if we assume (19) and (20) hold, set

across,k =
√

kη

bkrk
xlrd,k,

αcross,k =
√

kη−1rk ξ,

for k ∈ N, and have

Icross = ξ−η�ηIfBm,(3−η)/2,

we satisfy the assumptions of Section 3 and Section 4. We call this set-up example lrdmdp.
We make the following remarks concerning this example:

1. If BH is a standard fractional Brownian motion [38, Section 7.7.2, pp. 318–339]
(i.e. a zero expectation Gaussian process with stationary increments and autocovariance
function fH ), then for every sequence (bk)k∈N converging to infinity the sequence
(BH /

√
bk)k∈N satisfies a sample path large deviation principle with normalizing sequence

(bk)k∈N and good rate function IfBm,H [33]. We note that B1/2 is a standard Brownian
motion with time interval R.

2. In [29] it has been proved that the condition

lim
k→∞

rk

kη
= ∞,

implies that the sequence

(√
kη

rk
xlrd,k −

√
kη−1rk ξ id

)
k∈N

,

converges to the fractional Brownian motion
√

ξη/�η B(3−η)/2 in distribution with
respect to the topology of uniform convergence on compacts.

3. As the scaling in the large deviation principle of this section is situated between the
scaling in the functional central limit theorem of the previous remark and the scaling in
the large deviation principle of the previous section, and the rate function of a Gaussian
process shows up, it is called a moderate deviation principle.

5.3. Moderate deviations for renewal arrivals

We let (Zi)i∈Z be a sequence of independent and identically distributed nonnegative random

variables with mean ζ := E(Z0) > 0 and standard deviation � :=
√

E(Z2
0) − ζ 2 > 0. We let

�ren : R → ]−∞, ∞] be the logarithmic moment generating function of Z0 given by

�ren(y) := log E(exp(yZ0)),

and assume that �ren is finite in a neighborhood of zero. Hence, Z0 is light-tailed [39].
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We let N be a random variable which is uniformly distributed on [0, 1] and independent of
the sequence (Zi)i∈Z. We define for k ∈ N the process xren,k on � by

xren,k(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (N − 1)Z0 ≤ kt < NZ0,

m if NZ0 +
m−1∑
h=1

Zh ≤ kt < NZ0 +
m∑

h=1

Zh,

−m if (N − 1)Z0 −
−1∑

h=−m

Zh ≤ kt < (N − 1)Z0 −
−1∑

h=1−m

Zh.

(Here an empty sum is zero.) Clearly, for every k ∈ N the process xren,k has stationary
increments and satisfies

k

ζ
= xren,k = xren,k

with probability 1.
As a consequence of Corollary 7 in [24] we find that if (bk)k∈N is a sequence satisfying

lim
k→∞

bk

k
= 0, (21)

and lim
k→∞

bk

log k
= ∞, (22)

the sequence of centered and scaled renewal processes(
1√
bkk

xren,k −
√

k

ζ
√

bk

id
)

k∈N

,

satisfies a sample path large deviation principle on D0 with normalizing sequence (bk)k∈N and
good rate function �−2ζ 3IfBm,1/2. We note that more general results of this type are available
for the topology of uniform convergence on compacts [34].

Hence, if we assume (21) and (22) hold, set

across,k = 1√
bkk

xren,k,

αcross,k =
√

k

ζ
√

bk

,

for k ∈ N, and have

Icross = ζ 3

�2 IfBm,1/2,

we satisfy the assumptions of Section 3 and Section 4. We call this set-up example renmdp.

6. Large deviation rates and minimizing paths

In this section we calculate for each example e ∈ E and service discipline s ∈ S the large
deviation bounds and minimizing paths of Theorem 1. In Table 1 we recall the particularities
of the three examples.
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Table 1: Characteristics of the exemplified choices of cross-traffic.

Example name e lrd ldp lrd mdp ren mdp

Cross traffic across,k xlrd,kk
η/rk xlrd,k

√
kη/

√
bkrk xren,k/

√
bkk

Arrival rate αk,1 kη−1ξ b
−1/2
k kη/2−1r

1/2
k ξ b

−1/2
k k1/2ζ−1

Dependence long-range long-range renewal
Deviations type large moderate moderate
Restrictions on (bk)k∈N (17) and (18) (19) and (20) (21) and (22)
Rate function Icross ξηIlrd(·/ξη) ξ−η�ηIfBm,(3−η)/2 ζ 3�−2IfBm,1/2

PRIO

PRIO
PRIO

FCFS
FCFS
FCFSs

s
s
s
s
s

e
e

e
e
e
e

lrd ldp
lrd mdp
ren mdp
lrd ldp
lrd mdp
ren mdp

Figure 2: Large and moderate deviation rates as a function of δ for η = 0.7.

For every example e ∈ E and time points t < u, the function I t,u
cross is convex, finite,

and continuous. Hence, the upper and lower bounds in (13) and (14) match for every δ > 0
and s ∈ S. The value of the rate function I t,u

cross(x, y) for e = lrdldp can be calculated
numerically using the power series representation developed in Lemma 6 of [25]. For the
examples e ∈ {lrdmdp,renmdp}, we can use the formula

I
t,u
fBm,(3−η)/2(x, y) = x2|u|3−η + y2|t |3−η − 2xyf(3−η)/2(t, u)

2|t |3−η|u|3−η − 2f 2
(3−η)/2(t, u)

,

in order to numerically calculate the value of I t,u
cross(x, y). Thus, we can apply standard

optimization algorithms in order to solve the two-dimensional minimization problem on the
right-hand side of (13) for every cross traffic example e ∈ E and service discipline s ∈ S.

In the calculations we use the specific parameters ζ = ξ = γ = 1, κswitch = 0.2, and
κbucket = 0.1. Furthermore, we set �2 := 1/�η in order for the asymptotic variance of
the renewal cross traffic at time one to agree with the long-range dependent cross traffic. In
Figure 2 to Figure 6, one graph has been calculated for each service discipline s ∈ S and cross
traffic example e ∈ E.

In Figure 2 we plot the values of the infimum on the right-hand side of (13) as a function of
δ for η = 0.7, whereas in Figure 3 we plot these values as a function of η for δ = 10. These
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PRIO
PRIO
PRIO

FCFS

FCFS
FCFS

lrd ldp
lrd mdp
ren mdp
lrd ldp
lrd mdp
ren mdp

e
e
e

e
e
e

s
s

s
s

s

s

Figure 3: Large and moderate deviation rates as a function of η for δ = 10.

PRIO
PRIO

PRIO

FCFS

FCFS
FCFS

lrd ldp
lrd mdp
ren mdp
lrd ldp
lrd mdp
ren mdp

e
e
e

e

e
e

s
s
s
s
s
s

Figure 4: Minimizing paths a∗ for η = 0.7.

figures illustrate that the decay rates increase much faster for the renewal than for the long-
range dependent cross traffic when δ grows. The rate functions for the tail probabilities of the
queue length distribution at node 2 behave like those of a Pareto distribution for e = lrdldp
(for large δ), a Weibull distribution for e = lrdmdp, and an exponential distribution for
e = renmdp. When η increases to 2 (which corresponds to a Hurst parameter of 0.5) the
decay rates of all three types of asymptototic approach. Furthermore, large deviation rates are
smaller than comparable moderate deviation rates for the long-range dependent cross traffic.
They approach when δ is small or η is close to 1 or 2. As predicted by Theorem 1, the rates are
larger for the FCFS service discipline than for the priority service discipline.

The numerical solution of the two-dimensional minimization problems indicates that for
both service disciplines s ∈ S and all three cross traffic examples e ∈ E there exist unique
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PRIO
PRIO

PRIO

FCFS
FCFS
FCFS

lrd ldp
lrd mdp
ren mdp
lrd ldp
lrd mdp
ren mdp

e
e
e

e

e
e

s
s

s
s

s

s

Figure 5: Queue length behavior Q
switch,s
long (a∗) of type long customers at queue switch.

PRIO

PRIO
PRIO

FCFS
FCFS

FCFS lrd ldp
lrd mdp
ren mdp
lrd ldp
lrd mdp
ren mdp

e

e

e

e
e

e

s
s

s

s
s

s

Figure 6: Queue length behavior Q
bucket,s
long (a∗) of type long customers at queue bucket.

values t∗ < u∗ < 0 such that (16) is satisfied. It determines the values of these minimizing
time points as a by-product. Given these time points there exists a unique path a∗ minimizing
the rate function Icross subject to the conditions a∗(t∗) = κswitch and a∗(u∗) = λs − µsu∗.
This is proved in [25] and [22]. According to Theorem 1, this unique path a∗ characterizes the
asymptotically most likely behavior of the centered and scaled cross traffic which leads to a
large queue length at the second node. This asymptotically most likely conditional behavior
has a period with an extraordinarily large number of arrivals in the cross traffic followed by
a period with unusually few arrivals. In Figure 6 we plot the minimizing path a∗ for each
service discipline s ∈ S and cross traffic example e ∈ E for η = 0.7. The minimizing paths for
the renewal cross traffic show the typical piecewise linear behavior. Analogously to [25], the
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large deviation minimizing paths for the long-range dependent cross traffic (e = lrdldp) are
relatively close to the corresponding moderate deviation paths (e = lrdmdp). For each fixed
cross traffic example e ∈ E, smaller movements are needed to provoke a large queue length at
the second queue with the priority service discipline (s = PRIO) than with the FCFS service
discipline (s = FCFS).

In Figure 5 and Figure 6 we plot the queue length behavior Q
n,s
long(a

∗) of type long
customers corresponding to the minimizing path a∗ at node n = switch and node n =
bucket, respectively. (The corresponding queue length behavior Qswitch,s

cross (a∗) of type
cross customers at node switch is equal to Q

switch,s
long (a∗)/γ for s = FCFS, and 0 for

s = PRIO.) In these two figures we can observe how the deviation a∗ from the average
behavior of the type cross customers leads to a backlog of type long customers first at
queue switch and then at queue bucket. It is interesting to note that the behavior of these
queue lengths after time zero does not depend on the service discipline s and the cross traffic
example e.

Appendix A. Proof of Theorem 1

In order to prove (14) we can assume without loss of generality that its right-hand side is
finite. For ε > 0 we can therefore find values t ′ < u′ < 0, x′ < κswitcht ′, and y′ > λs −µsu′,
such that

I t ′,u′
cross(x

′, y′) ≤ ε + inf
t<u<0, x<κswitcht, y>λs−µsu

I t,u
cross(x, y) < ∞.

As the function Icross has compact level sets we can find a path a′ ∈ D0 such that Icross(a
′)

equals the value of the left-hand side of this display and the equations a′(t ′) = x′ and a′(u′) = y′
are satisfied. In particular, the function a′ is continuous and satisfies a′(0) = 0.

We let v be the smallest time with u′ ≤ v ≤ 0 and a′(v) = κswitchv. As

a′(u′) = y′ > λs − µsu′ > κswitchu′,

and a′ is continuous, we know that v > u′. We set t∗ := t ′ − v, u∗ := u′ − v, x∗ :=
x′ − κswitchv, y∗ := y′ − κswitchv, and a∗ := �−va

′ −a′(−v) ∈ C ∩D0. These quantities
have the following properties:

t∗ < u∗ < 0,

a∗(t∗) = x∗ < κswitcht∗,
a∗(u∗) = y∗ > λs − µsu∗,
a∗(u) > κswitchu for u ∈ [u∗, 0[,
a∗(0) = 0,

Icross(a
∗) = Icross(a

′) ≤ ε + inf
t<u<0, x<κswitcht, y>λs−µsu

I t,u
cross(x, y).

The last line follows from (9).
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Given these properties of the path a∗, the path x∗,switch := Xswitch(a∗) satisfies

x∗,switch(t∗) < 0,

x∗,switch(u∗) = a∗(u∗)
1 + γ

− κswitchu∗

1 + γ
>

δ

gs
long

− κbucketu∗

gs
long

,

x∗,switch(u) > 0 for u ∈ [u∗, 0[,
x∗,switch(0) = 0.

Furthermore, since x∗,switch = −κswitch/(1 + γ ) < 0, there exists a time v∗ ≤ 0 that
minimizes x∗,switch on ]−∞, 0]. This time v∗ satisfies v∗ < u∗ and x∗,switch(v∗) < 0. This
implies that, for the path w∗,switch := Wswitch(a∗),

w∗,switch(0) = −x∗,switch(v∗),
and w∗,switch(u∗) = x∗,switch(u∗) − x∗,switch(v∗).

In particular, the path x∗,bucket := Xbucket,s(a∗) satisfies

x∗,bucket(0) − x∗,bucket(u∗) = κbucketu∗

γ
− gs

long

γ
(w∗,switch(0) − w∗,switch(u∗))

= κbucketu∗

γ
+ gs

long

γ
x∗,switch(u∗) >

δ

γ
.

This in turn implies that

Q
bucket,s
long (a∗)(0) = γWbucket,s(a∗)(0) ≥ γ (x∗,bucket(0) − x∗,bucket(u∗)) > δ.

As the mapping Q
bucket,s
long is continuous, we conclude that there is an environment of a∗ such

that all elements a in this environment satisfy Q
bucket,s
long (a)(0) > δ. Application of the lower

bound of the large deviation principle, (2), for the sequence defined in (12) yields

lim inf
k→∞

1

bk

log P(q
bucket,s
long,k (0) ≥ δ) ≥ −Icross(a

∗)

≥ −ε − inf
t<u<0, x<κswitcht, y>λs−µsu

I t,u
cross(x, y).

Letting ε decrease to zero we obtain (14).
Next, we prove the inequality in (13). As the mapping Q

bucket,s
long is continuous and the set

{q ∈ D0 : q(0) ≥ δ} is closed, application of the upper bound of the large deviation principle,
(1), for the sequence defined in (12) yields

lim sup
k→∞

1

bk

log P(q
bucket,s
long,k (0) ≥ δ) ≤ − inf

a∈D0,Q
bucket,s
long (a)(0)≥δ

Icross(a). (23)

Without loss of generality we can assume that the right-hand side is finite.
Because the rate function Icross has compact level sets, there exists a path a′ ∈ D0 satisfying

Q
bucket,s
long (a′)(0) ≥ δ and being such that the value of −Icross(a

′) is equal to the right-hand
side of (23). As this value is finite the path a′ is continuous and satisfies a′(0) = 0.
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There exists a largest time τ < 0 at which the continuous path Q
bucket,s
long (a′) (or equivalently

Wbucket,s(a′)) is zero. Otherwise we would find that the path sup Xbucket,s(a′) is constant
on the negative time interval (since it can only increase on time intervals, where Wbucket,s(a′)
is zero), which would lead to the contradiction

sup Xbucket,s(a′) = 0 
= −κbucket

γ
= Xbucket,s(a′) = sup Xbucket,s(a′).

We let u′ be the smallest time with τ ≤ u′ ≤ 0 and Q
bucket,s
long (a′) = δ. We define

a∗ := �−u′a′ − a′(−u′). Since Q
bucket,s
long (a∗) = �−u′Qbucket,s

long (a′) we conclude that

Q
bucket,s
long (a∗)(t) < δ for every t ∈ [τ − u′, 0] and that Q

bucket,s
long (a∗)(0) = δ. Furthermore,

(9) yields Icross(a
∗) = Icross(a

′).
This set-up implies that the path w∗,bucket := Wbucket,s(a∗) satisfies w∗,bucket(0) =

δ/γ . Hence, there exists a u < 0 such that the path x∗,bucket := Xbucket,s(a∗) satisfies

x∗,bucket(0) − x∗,bucket(u) = δ

γ
.

By definition this equation is equivalent to

gs
long

γ
(w∗,switch(u) − w∗,switch(0)) = δ

γ
− κbucketu

γ
, (24)

where we have set w∗,switch := Wswitch(a∗).
If we assume that there is a v ∈ [u, 0[ with w∗,switch(v) = 0, we obtain

w∗,bucket(v) = x∗,bucket(v) + (sup(−x∗,bucket))(v) ≥ x∗,bucket(v) − x∗,bucket(u)

>
κbucket(u − v)

γ
+ gs

long

γ
w∗,switch(u) ≥ δ

γ
.

We used (24) in the last step. This yields the contradiction Q
bucket,s
long (a∗)(v) ≥ δ. We conclude

that w∗,switch is nonzero on the time interval [u, 0[. Therefore, we can find a t < u such that
we obtain, with the definition x∗,switch := Xswitch(a∗),

sup(−x∗,switch)(0) = sup(−x∗,switch)(u) = −x∗,switch(t) = a∗(t)
1 + γ

− κswitcht

1 + γ
.

In particular,

w∗,switch(0) = x∗,switch(0) + sup(−x∗,switch)(0) = a∗(t)
1 + γ

− κswitcht

1 + γ
,

w∗,switch(u) = x∗,switch(u) + sup(−x∗,switch)(u)

= a∗(u)

1 + γ
− a∗(t)

1 + γ
− κswitch(u − t)

1 + γ

= −κswitchu

1 + γ
.
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Using (24), this implies that

a∗(u) = (1 + γ )(w∗,switch(u) − w∗,switch(0)) + κswitchu

= (1 + γ )δ

gs
long

− (1 + γ )κbucketu

gs
long

+ κswitchu

= λs − µsu.

Furthermore, we obtain

a∗(t) = κswitcht − (1 + γ )wswitch(0) ≤ κswitcht.

In particular,

lim sup
k→∞

1

bk

log P(q
bucket,s
long,k (0) ≥ δ) ≤ −Icross(a

∗)

≤ − inf
t<u<0, x≤κswitcht, y≥λs−µsu

I t,u(x, y),

which completes the proof of the inequality in (13).
In order to prove the right-hand side equality in (13), we have only to show ‘≤’. Hence, we

can assume without loss of generality that the second last term is finite. For every ε > 0 we
can therefore find values t ′ < u′ < 0, x′ ≤ κswitcht ′, y′ ≥ λs − µsu′ and a path a ∈ C0 such
that a(t ′) = x′, a(u′) = y′, and

Icross(a) = I t ′,u′
cross(x

′, y′) ≤ ε + inf
t<u<0, x≤κswitcht, y≥λs+µsu

I t,u
cross(x, y) < ∞.

In particular, a is continuous. As λs > 0 and µs > −κswitch, there exist values t ′′ < u′′ < 0
such that a(t ′′) = κswitcht ′′ and a(u′′) = λs − µsu′′. This implies that

I t ′′,u′′
cross(κ

switcht ′′, λs − µsu′′) ≤ Icross(a) ≤ ε + inf
t<u<0, x≤κswitcht, y≥λs+µsu

I t,u
cross(x, y).

Letting ε tend to zero, we therefore recover the equality in (13). The second statement, (15), of
Theorem 1 follows from the first statement and the inequalities λFCFS > λPRIO and µFCFS >

µPRIO. The last statement of Theorem 1 is a consequence of Corollary 1 of [25].
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