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ABSTRACT. An approximate calculation is made of the rate at which a bottom crevasse in a cold ice shelf 
or tabular iceberg can close shut by freezing of water and can creep open through the creep deformation of 
ice. In all but the thickest ice shelves and icebergs, those with a thickness greater than about 400 m, the 
freezing process is the more important mechanism if the ice is cold « - 10°e) . Consequently in a cold 
iceberg or ice shelf a bottom crevasse, once form ed, will freeze shut. 

RESUME. Crevasses de fond. On fait un calcul approximatif de la valeur a laquelle une crevasse de fond 
dans une plateforme de glace froid e ou un iceberg tubulaire peut se refermer par regel de I'eau dans et peut 
rester ouverte par le glissement lors de la deformation de la glace par fluage. Sauf pour les plateformes de 
glace et les icebergs les plus epais, ceux dont l'epaisseur excede 400 m, le processus de regell'emporte si la glace 
est froide « - IOOC). Par consequent, dans une plateforme de glace ou un iceberg froid, une crevasse de 
fond, une fois formee, se refermera par regel. 

ZUSAMMENFASSUNG. Spaiten im Ulltergrund. Die Geschwindigkeit, mit der eine Spalte am Untergrund eines 
kalten Schelfeises od er T afeleisbergs durch Anfrieren von Wasser sich schliessen bzw. durch die Kriech­
deformation des Eises sich bffnen kann, wird naherungsweise berechnet. In all en Schelfeisen und Eisbergen, 
ausser den dicksten mit einer Dicke von mehr als etwa 400 m uberwiegt der Gefrierprozess, wenn das Eis kalt 
« - IOOC) ist. Folglich wird eine Spalte am U ntergrund eines kalten Eisberges oder Schelfeis, die sich 
einmal gebildet hat, wieder zufrieren. 

INTRODUCTION 

In an earlier paper (Weertman, 1973[a]), the existence of bottom crevasses in floating ice shelves 
was proposed on theoretical grounds. Bottom crevasses have subsequently been "seen" with the aid of 
radar within the Ross Ice Shelf by Clough (1974) and within the Larsen Ice Shelf by Swithinbank 
([CI978]). Bot~om crevasses that extend above the water-line ofa tabular iceberg are shown in a figure 
ofa paper of Weeks and Melior ([CI978]). 

Because floating ice shelves and the tabular icebergs that break off of them are cold it might be 
expected that bottom crevasses within them are short-lived features. A bottom crevasse is, of course, 
filled with water. This water must freeze continuously to the walls of a bottom crevasse within a cold ice 
mass if there is no appreciable circulation of water into and out of the crevasse. But creep deformation 
can cause continuous opening of a crevasse. Thus whether a bottom crevasse remains open for an 
appreciable length of time depends upon the relative importance of two competing processes. The 
purpose of this short paper is to make an approximate calculation of the rate at which a bottom crevasse 
closes or opens. Such a calculation should be of interest to the problem of towing tabular icebergs .. 
Bottom crevasses might lead to rapid disintegration of towed tabular icebergs. Virtually no attention 
was given to bottom crevasses in the papers in the very recently published book on iceberg utilization 
(Husseiny, [CI978]). 

THEORY 

It can be shown (Weertman, x973[a] ) that an isolated crevasse which contains no water at the upper 
surface of an ice mass (a top crevasse) penetrates downwards to a depth L given by 

L = 1Ta/2 pg, (x) 

where p is the density of ice, g is the gravitational acceleration, and a is the tensile stress that exists within 
the ice mass in addition to the hydrostatic stress component. In a floating ice shelf the average value of a 
is equal to 

a = t.pgh/2, 

where h is the ice thickness and t.p is the difference in the density between sea-water and the average ice 
density of the ice shelf. Thus an isolated, water-free top crevasse in an ice shelf has a depth L equal to 

L = 1Tht.p/4P· (3) 
For high-density ice the crevasse depth is about 7% of the ice thickness. 

x85 
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It can also be shown (Weertman, 1973[a)) that a bottom crevasse in an ice shelf, which of course is 
filled with water, penetrates upwards to a height that is approximately a factor p/ /',.p larger than the 
value of L that is given by Equations ( I) and (3 ) . Thus a bottom crevasse has a .length L equal to 

or a length that is equal to 78% of the total thickness of an ice shelf. A pair of top and bottom crevasses, 
one above the other, could account for about 85 % of the cross section of an ice sheet or tabular iceberg. 
(The length L that is given by Equation (4) is probably an underestimate of a bottom-crevasse length. 
It was found under the assumption that a crevasse moves into an infinite half-space. The upper surface 
ofa floating ice shelf will cause the actual value of L to be larger than that given by Equation (4).) 

The calculations that lead to the equations just given are made under the assumption that ice is an 
elastic solid with essentially zero fracture strength. Since the fracture process that occurs during the 
initial cracking takes place rapidly, ice indeed does act in this short time period as an elastic solid. The 
correction to the value of L because ice has a finite fracture strength is very small when the value of a is 
within several orders of magnitude of the value a = O. I MPa ( I bar) . One need only use the experi­
mental values of the critical stress intensity factor Kc that are collected from the literature and tabulated 
by Smith ([CI978] ) to demonstrate this fact. 

The critical value Lc that a pre-existing crack must have before it can grow in a catastrophic fashion 
into a crevasse under a stress a is not a small length. The values of Kc for ice that are listed by Smith 
(1978) are of the order of 0.15 MPa ml. Since a(rrLc)1 = Kc the value of Lc is equal to 0.7 m when 

-a = 0.1 MPa. This value of a would exist in an ice shelf 200 m thick. However, the critical crack 
length is probably considerably smaller than the value just calculated. Johnston and Parker (1957) 
showed that the fracture strength of ice is reduced by a factor of three in the presence of surface-active 
agents. Salt water was one of the effective surface-active agents they used in their experiments. Thus the 
value of Kc should be reduced by a factor of three in the presence of sea-water and the critical crack 
length Lc will be reduced by one order of magnitude. 

Cracks at the bottom of an ice shelf might be formed by the etching by sea-water of grain boundaries 
within the ice. If sea-water freezes to the bottom, surface cracks 'could form through brine entrapment. 
Of course, if processes such as bottom melting prevent the formation of surface cracks, bottom crevasses 
will not form because they cannot be nucleated. 

The crevasse length given by Equations (I), (3), and (4) apply to isolated crevasses. In a field of 
closely spaced crevasses, ones whose spacing is appreciably smaller than their lengths, the crevasse length 
is reduced by a factor of 2/7T. (When the fracture strength of ice is finite, crevasse spacing must satisfy 
the stability criterion recently investigated by Nemat-Nasser and others (1979) .) 

Freezing shut 

Bottom crevasses in a cold ice mass might heal themselves shut after their formation through the 
freezing of water. The average displacement A with which an air-filled top crevasse or a water-filled 
bottom crevasse is opened elastically is approximately equal to (Weertman, 1973[a] ) 

A ~ L(a/JL)' 

where JL is the shear modulus of ice. This thickness of water must be frozen in order to close a bottom 
crevasse. 

Inserting Equation (2) and (4) into Equation (5) gives 

(6) 

as an estimate of the average displacement within a bottom crevasse immediately after its formation. 
For h = 200 m and t!"p / p ~ ~ with JL = 3 GPa the value of A is A ~ 5 mm. Thus only a small amount 
of water need be frozen to close the crevasse. 

In a time period equal to t cold ice out to a distance r on either side of a crevasse is warmed to a 
temperature close to the melting point where r is given by 

where D is the thermal diffusion coefficient. (Equation (7) is the usual estimate of the diffusion distance 
in diffusion problems.) If /',.8 is the change in temperature of the ice within the distance r, then for a 
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unit area of crevasse an amount of heat equal to 2CA8r is absorbed by the ice and removed from the 
sea-water. The rate of closing of the crevasse, - dA/dt, is thus given by 

dA/dt = - (2CM/H )(D/t)l, (8) 

where H is the heat of fusion of ice and C is the specific heat capacity of ice. 
The crack displacement A is found by integrating Equation (8) and is equal to 

A = Ao-(4CM/H)(Dt)l, (9) 
where Ao = 7rApgh'/8J1-. 

The crevasse closure time is found by setting A = 0 in Equation (9). (The actual displacement on 
crevasse opening varies from a value equal to zero at the crevasse tip to a maximum displacement at the 
bottom surface. Thus, if the ice-shelf temperature is a constant, crevasse closure occurs first near the tip 
and last at the bottom surface.) The average time for a crevasse with a 5 mm opening displacement to 
freeze shut is about 2 min when A8 = 15 K (using D = I.5 X 10- 6 m' S-I, C = 2 MJ m-3 K-I, and 
H = 0.34 CJ m-3 ). Thus bottom crevasses should freeze shut very quickly if their opening displacement 
is only an elastic one. 

Creeping open 

Immediately after a crevasse is created, its opening displacement is primarily an elastic one. But at 
later times the opening displacement can be the result of creep deformation. The creep-deformation 
displacement 'can be orders of magnitude larger than the elastic displacement. 

If ice obeyed a Newtonian (that is, linear) creep-deformation equation the crevasse displacement 
velocity dA/dt would be very simple to find. The creep problem is formally the same as the elastic 
problem in this situation. It is only necessary to substitute the term dA/dt for A and the viscosity TJ for the 
shear modulus J1- in the equations. Thus Equation (5) is replaced by the equation 

dA/dt ~ L(o/TJ) (10) 
and Equation (6) by 

(I1) 
Equation (9) becomes 

According to Equation (12), the crevasse never freezes shut if the following inequality is satisfied 

(2CM/AoH )(DTJ //L )1 = y(Mp/h'/:1p)(TJ//L)1 < I, (13) 

where y = 16CJ1-DI/7rpgH = I I m' K-I s-I. 
But the creep law of ice is non-Newtonian. For a uniaxial tension test it is given by the power-law 

creep equation (except at very high stresses and very low stresses) 

€ = €o(o/ao)n exp (-Q/R8) exp (Q/B80 ), (14) 

where € is the creep-rate, €o is the creep-rate at a reference temperature 80 and reference stress ao, R is 
the gas content, Q is the creep activation energy, and n ~ 3. At any stress level a an effective viscosity TJ 
can be defined by the equation 

TJ = 0/2€. 
Thus 

TJ = TJo(ao/a)n-1 exp (Q/R8) exp (-Q/R80 ), (16) 

where TJo = 00/2€0 is the effective viscosity at the reference temperature and stress. 
The stress (that is, the non-hydrostatic stress) around a crevasse will range in value from a magnitude 

of that of a away from the crevasse tip to very high values right at the crevasse tip. Thus the effective 
viscosity will take on a wide range of values near a crevasse. A similar situation exists for a crack in a 
solid that is elastic until a yield stress is exceeded. Above the yield stress the material deforms plastically. 
In this situation if 0 does not exceed the yield stress, intense non-linear deformation occurs only very 
close to the crack tip. The elastic displacement of the crack faces is almost the same as for a crack in an 
elastic solid. Thus for a crevasse in a power-law-creep material it is reasonable to use an effective 
viscosity where the effective viscosity is calculated using the stress level o. The crack-opening displace­
ment velocity calculated using this particular effective viscosity will be approximately equal to but 
somewhat smaller than the actual displacement velocity. 
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At a temperature of - IOoe the creep-rate of ice under a uniaxial stress of o. I MPa is about 2 X 10-10 

S-I (see fig. 4 in Weertman, 1973[b]) . If this stress and this temperature are used as reference ones then 
"10 = 2·5 X 1014 Pa s. 

By combining Equations (2), (13), and (16) the following relationship is found for the condition 
required to have a bottom crevasse remain open 

For n = 3, 0 = - IOoC, and /:;,0 = 10 K, Equation (17) predicts that a bottom crevasse in an ice shelf 
or tabular iceberg that is thicker than about h ;;;. 400 m will remain open. (Of course, bottom crevasses 
in thinner ice shelves can remain open if there is sufficient circulation of water whose temperature is 
above the melting point into and out of the crevasses. Equation (17) is found under the assumption that 
such circulation is negligible.) 

Partial check 

One partial check can be made of the equation for crevasse opening velocity. Meier (1958) measured 
the velocity with which a water free crevasse opened up in blue ice at the top surface of the Greenland 
ice sheet. He found that a 25 m deep crevasse opened up at a rate of I to 2 mm d - I. The crevasse was 
in ice of a temperature of - l oe to -6°C. The stress a was not measured but the crevasse was in ice that 
evidently was extending at a strain-rate of the order of 0.01 year-I. For a temperature of -3°C this 
strain-rate corresponds to a stress of about 0.084 MPa (using Q = 63 kJ mol- I) . (A crevasse depth of 
L = 25 m according to Equation (I) requires a stress of o. I 6 MPa, a value in approximate agreement 
with this estimate.) For this stress (0.084 MPa) and temperature the effective viscosity "I is equal to 
"I = 1.8 X 1014 Pa s. Inserting the values "I = 1.8 X 1014 Pa s, a = 0.084 MPa, and L = 25 m into 
Equation (10) gives the result that dA/dt = 1.2 X 10-8 m S-I = I mm d-I, a result that is in reasonable 
agreement with the measured opening velocity. 

CONCLUSION 

The approximate analysis given in this paper shows that bottom crevasses, once formed, are likely 
to freeze shut in all but the thickest cold ice shelves and cold tabular icebergs. 

MS. received 6 March I979 and in revised form 3I May I979 
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