https://doi.org/10.1017/jfm.2025.10507 Published online by Cambridge University Press

J. Fluid Mech. (2025), vol. 1018, A4, doi:10.1017/jfm.2025.10507

Formation of a condensate in two-dimensional
turbulence on a sphere

Antonio SegaliniI and Erik Lindborg2

IDepartment of Earth Sciences, Uppsala University, Villavigen 16, SE-75236 Uppsala, Sweden
ZDepartment of Engineering Mechanics, KTH, Osquars backe 18, SE-10044 Stockholm, Sweden
Corresponding author: Erik Lindborg, erikl@mech.kth.se

(Received 18 February 2025; revised 19 July 2025; accepted 19 July 2025)

We simulate the formation of a condensate on a sphere, generated by an inverse energy
cascade originating from a stochastic forcing at spherical harmonic wavenumber Iy > 1.
The condensate forms as two pairs of oppositely signed vortices lying on a great circle
that is randomly rotating in three dimensions. The vortices are separated by 90° and
like signed vortices are located at opposite poles. We show that the configuration is
the maximum energy solution to a Hamiltonian dynamical system with a single degree
of freedom. An analysis in wavenumber space reveals that interactions between widely
separated scales of motions dominate the formation process. For comparison, we also
perform freely decaying simulations with random initial conditions and prescribed spectra.
The late time solutions consist of four coherent vortices, similar to the solutions of the
forced simulations. However, in the freely decaying simulations the vortex configuration
is not stationary but exhibits periodic motions.
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1. Introduction

One of the most striking examples of self-organisation in a physical system is the formation
of a condensate generated by a two-dimensional (2-D) inverse energy cascade. That such
a condensate can form was predicted by Kraichnan (1967) and numerically confirmed by
Smith & Yakhot (1994) and Chertkov et al. (2007) who simulated 2-D turbulence on a
square domain with periodic boundary conditions and stochastic forcing at wavenumber
kg > 1. Musacchio & Boffetta (2019) showed that a condensate can also arise in a thin
box with periodic boundary conditions. In two dimensions, there are two conserved
quadratic quantities, energy and enstrophy (half the square of vorticity). Energy cascades
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towards small wavenumbers and enstrophy towards large wavenumbers. The simulations
revealed that a Kolmogorov energy spectrum, E (k) ~k=>/3, formed at k < k¢ during a
transient period, consistent with theoretical predictions. When the energy cascade reaches
wavenumber unity, corresponding to the size of the confinement, energy starts to pile up
in the smallest wavenumbers, the spectrum steepens to E (k) ~ k— and the flow organises
into two vortices of opposite sign.

On a sphere, this process is best described in spherical harmonic space. On a plane,
the eigenvalue of the Laplace operator applied to a Fourier mode is equal to —k2,
where k = |k| is the magnitude of the wavenumber vector. On a sphere with radius a,
the eigenvalue of the Laplace operator applied to a spherical harmonic, Y;", is equal to

—a~21(l + 1), where [ is the wavenumber specifying the order of the associated Legendre
polynomial and m is the wavenumber specifying the number of harmonic oscillations
in the azimuthal direction. In the spherical harmonic description, [ is the wavenumber
corresponding to k in the Fourier description, while m has a less obvious connection
to scale and is therefore less important. In a landmark paper, Fjgrtoft (1953) made
a spherical harmonic decomposition of the vorticity field on a sphere and formulated
an argument showing that energy will cascade towards small / and enstrophy towards
large [ in spherical harmonic space, where small / corresponds to large scales and large
[ to small scales in physical space. The spherical harmonic formulation was further
developed by Tang & Orszag (1978) and Boer (1983). Lindborg & Nordmark (2022)
showed that the theory can be formulated in complete analogy with the planar formulation
developed by Kraichnan (1967), with [ playing the same role on the sphere as k on the
plane. Fourier modes exchange energy and enstrophy through nonlinear triad interactions,
described by the function T (k, p, ¢), which is the energy transfer to k from p and ¢,
with integration over all wavenumber vector triplets, {k, p, ¢}, that form a triangle with
sides {k, p, g} (Kraichnan 1967). The transfer of enstrophy to k¥ from p and ¢ is equal
to k2T (k, p, q). Correspondingly, interactions between spherical harmonic modes, are
described by G(/, n, s), which is the transfer of energy to / from » and s, corresponding
to triplets of harmonics, {Y¥;", Y,’;, Y/}, with summation over all {m, i, j} (Lindborg &
Nordmark 2022). The transfer of enstrophy is equal to a=2/(I + 1)G(l, n, s). Using an
elegant proof given by Silberman (1954), it can be shown that G is zero unless s + n + [
is odd and |l —n| <s <[+ n. The spectral energy flux across wavenumber [/ can be
calculated as

Oeh= Y. G@.np— Y. Gp.ns), (L1)

l<p<n<I<s l<p<il<n<s

and the spectral enstrophy flux can be calculated as

oy= Y a*sG6+DGe.np)— > a’p(p+DG(p.n.s). (12)

l<p<n<I<s l<p<i<n<s

As shown by Fjgrtoft (1953), for each triad {p, n, s} such that p <n < s, n either acts
as a source or a sink of energy and enstrophy for p and s. He argued that the first
type of interaction, where n acts as a source, is dominant. The first sums in (1.1) and
(1.2) contain all triads where energy and enstrophy flow through / from n to s and the
second sums contain all triads where energy and enstrophy flow through / from n to p.
In a constant energy flux range at / > 1, the Kolmogorov form of the spherical harmonic
energy spectrum is

E() = Ca**g|* 1773, (1.3)
1018 A4-2
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where C is a dimensionless constant that has the same value as the corresponding constant
in the Fourier description. The energy spectrum is invariant with respect to rotations of the
polar axis of the spherical harmonic system, as is G(/, n, s) (Lindborg & Nordmark 2022).

Unlike the planar case, a condensate on a sphere cannot form as a single pair of vortices.
Two vortices of same sign can be ruled out, since mean vorticity over a sphere is zero. Two
vortices of opposite sign, situated in opposite hemispheres, would generate a circulation
around the corresponding polar axis in the same direction in each hemisphere. This
can also be ruled out, since mean angular momentum with respect to any main axis is
conserved and therefore must remain zero, if initially zero, implying that the energy in
[ =1 is zero. If the condensate on a sphere forms as a number of coherent vortices, just as
the condensate on a plane, we can thus expect that it will consist of two pairs of vortices
of opposite sign.

2. Numerical set-up
We perform numerical simulations of the vorticity equation on a sphere

yow+u-Vo=—v(V:+2/a>w+e - (V x f), 2.1

where w = e, - (V x u) is the vorticity, u the non-divergent velocity, v is hyperviscosity,
f is a stochastic forcing and e, is the radial unit vector. The viscous term is designed
to conserve angular momentum, analogous the Navier—Stokes viscous term on a sphere,
v(V2 + 2/a2), (Gilbert, Riedinger & Thuburn 2014; Lindborg & Nordmark 2022). The
high order of the hyperviscosity ensures that it acts almost exclusively at the highest-order
modes. For this reason, a hyperviscosity operator of the form —vV!® can also be used,
without any change of the general results, which we have confirmed numerically.

Equation (2.1) is solved using of a pseudo-spectral code based on spherical harmonics,
developed by the first author. The code employs full dealiasing with the 3/2 rule
(Peyret 2002), triangular truncation between wavenumbers (Krishnamurti et al. 2006)
and an efficient method to compute Legendre transforms developed by Ishioka (2018).
A semi-implicit third-order Adams—Bashforth backward-differentiation (AB/BDI3) time
advancement scheme is implemented (Peyret 2002) to reduce the computational cost by
minimising evaluations of the nonlinear terms in the pseudo-spectral framework. The
time step is adjusted adaptively to maintain numerical stability. The hyperviscous term
is integrated exactly in time via the factor.

a:exp{—a%[l(un—z]l’ At}, 2.2)

so that the AB/BDI3 scheme will take the form

6 3 2
wt! = 1_‘;‘ [3600 - 7“0)—' + %aﬂ —A13Q° 3207 +0?07 ) + AtFO], (23)

where the superscripts indicate the time step (O is the current one and +1 is the next one),
Q indicates the advective nonlinear term in (2.1) and F is the forcing term. The equation
is solved for each spherical harmonic mode w;" with corresponding nonlinear term Q}"
and forcing term F;". As (2.3) shows, the AB/BDI3 requires storing of two prior fields
at earlier time steps and two precomputed nonlinear terms. Thus, only one evaluation of
the nonlinear term is needed per time step, significantly reducing the computational cost
compared with Runge—Kutta methods. The spherical harmonics transform is performed
by combining the FFTW3 library (Frigo & Johnson 2005) for longitudinal Fast Fourier
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Name Niar Nlong Imax lf v le
Run 1 256 512 170 100 1.83 x 1073

Run 2 1024 2048 682 400 1.20 x 10742

Run 3 256 512 170 1.83 x 1073 8
Run 4 1024 2048 682 1.20 x 10~42 8
Run 5 256 512 170 1.83 x 1073 100

Table 1. Parameters of the simulations.

Transforms and the ISPACK library (Ishioka 2018) for meridional Legendre function
transform (LXPACK). The code is written in Fortran 90 and it is parallelised by using
the message passing interface standard.

The forcing is similar to the forcing used by Lindborg & Alvelius (2000) in Fourier
space. It is white noise in time, has random phases and a narrow spectrum of the form
Cexp((l — lf)2 /0.18), where the constant C is set so that the forcing injects energy at a
prescribed rate, €, which is set to unity. The enstrophy injection rate is then approximately
equal to [ (Iy + 1). As far as possible, the forcing is designed to be isotropic (directionally
unbiased), by letting the magnitude of Fl be independent of m. In the limit of /; — oo,
such a forcing would be perfectly isotropic (Lindborg & Nordmark 2022). Since lf > 1, it
seems safe to assume that it is almost isotropic. For comparison, we also perform freely
decaying simulations, initialised in a similar way as the simulations by Cho & Polvani
(1996), with a random vorticity field conforming to a relatively narrow spectrum centred
at [ =1.. We present two forced simulations, run{1, 2}, at resolution /4, = {170, 682}
and forcing wavenumber [; = {100, 400}, both initialised from rest. We also present
three freely decaying simulations, run{3, 4, 5} at resolution [, = {170, 682, 170} and
I ={8, 8, 100}. The simulation parameters are listed in table 1.

3. Results
3.1. Forced simulations

For a significant duration, the vorticity fields display only random fluctuation at the size
of the forcing scale. This is seen in figure 1, (a, run 1) and (c, run 2), both from ¢ = 10,
where time is measured in units € ~'/34%/3. At r ~ 100, four coherent vortices emerge
from the random field in both runs and keep growing in magnitude, but not in width. The
vortices arrange themselves on a great circle with 90° separation and like signed vortices
at opposite poles. In figure 1, (b, run 1) and (d, run 2), we see the four vortices in final
states, where the vortex quartet is shown rotated to the equatorial plane. The great circle
defining their configuration undergoes a random solid body rotation around the origin,
with a characteristic velocity that is far slower than the typical fluid velocities. It may
seem paradoxical that the circle moves in this way, since the mean angular momentum
of the flow is zero, which is ascertained by the numerical method. Noting that the fluid
velocity at the points defining the centres of the vortices is always zero, makes it less
paradoxical. The circle is not a material line moving with the fluid, but moves as a solid
body through the fluid which has no motion as a solid body. Animations of the vorticity
fields in stereographic projections are available at Run1, Run2.

In figure 2(a,b), we see the time evolution of mean enstrophy. The cascades are set

up at t ~/ ~2 3, after which enstrophy is quasistationary and then enters into a stage of
slow growth. Also in this stage, the enstrophy growth is less than 1 % of the enstrophy

1018 A4-4


https://uppsalauniversitet-my.sharepoint.com/:v:/g/personal/antonio_segalini_geo_uu_se/EWkpmWtmokZLgB4b4KWzpcEBcDECarBtcAUAR44IXNhJjA?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=5ib74I
https://uppsalauniversitet-my.sharepoint.com/:v:/g/personal/antonio_segalini_geo_uu_se/EdrQ1yL_OPJHmIXPsDhr90EBPHPmyxkJskpHxkVO6MTvOg?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=W2RiwB
https://doi.org/10.1017/jfm.2025.10507

https://doi.org/10.1017/jfm.2025.10507 Published online by Cambridge University Press

Journal of Fluid Mechanics

~
Q
A

90

454 T AR
B : o/N2

Latitude (deg.)
(=)

~
S
N

Latitude (deg.)
(=)
*
W
L
i

~
)
N
]
T
S

Latitude (deg.)
(=)
L

A
&

-12

Latitude (deg.)
o
@
"w
#

-90 " T T r ; ; T
0 45 90 135 180 225 270 315 360

Longitude (deg.)

Figure 1. Vorticity fields. Run 1: (a) t = 10, (b) t = 1256; run 2: (¢) t = 10, (d) t = 1067. In (b) and (d) the
fields have been rotated so that the vortices lie on the equator.

injection, implying that virtually all injected enstrophy goes into a forward cascade. After
the set up of the cascades, mean energy is growing at a constant rate which is close
to 0.5 in both simulations, implying that approximately half of the injected energy is
transferred to large wavenumbers where it is dissipated. In figure 2(c,d), we see the
evolution of the compensated energy spectrum, E(I)|[1g |=2/315/3, where |ITg| is taken as
the energy growth. In the early stage, the spectra are similar to Fourier spectra from planar
simulations (Smith & Yakhot 1994; Boffetta, Celani & Vergassola 2000; Chertkov et al.
2007), especially in run 1, where the Kolmogorov constant can be estimated as C ~ 6,
indicated by a dashed line. In a later stage, energy accumulates in low wavenumbers of
even order, leading to a zig-zag shaped spectrum with high/low energy in even/odd modes.
This is first visible at / < 10 and subsequently appears at / > 10. The zig-zag spectrum is

1018 A4-5


https://doi.org/10.1017/jfm.2025.10507

https://doi.org/10.1017/jfm.2025.10507 Published online by Cambridge University Press

A. Segalini and E. Lindborg

(@) (b)
100 4
=
+
<
~
SIRUSE /L ,,,M/

107! 100 10! 102 100 1070 100 10! 102 103

~
)
~

103 )\
102.

10! 4

PRI P E)

10°

~
[
~

103.

102.

10! 4

PRI P E()

10°

10! 102

Figure 2. Mean enstrophy, £2, normalised by [(1 +[f) versus time; (a) run 1, (b) run 2. Evolution of
compensated energy spectra; (c) run 1, (d) run 2. The colour of each spectrum is associated with the time
where it is computed, as indicated in (a) and (). The dashed lines in (c—d) indicate the Kolmogorov constant
C=6.

a manifestation of the symmetric arrangement of the vortices. To see this, we expand the
vorticity field in a spherical harmonic system whose polar axis coincides with the polar
axis of the great circle of the configuration

l max l

0@ 0= > oY ®. ¢, (3.1)

=1 m=—I

where 6 is the colatitude and ¢ is the longitude. A symmetric configuration of four vortices
of equal strength on the equator satisfies the symmetries @ (90° 46, ¢) = w(90° — 9, ¢)
and w (0, ¢ +90°) = —w (0, ¢). The spherical harmonics that satisfy these symmetries
are those with {/ =even, m =2+ 4i}, where i is an integer. In figure 3, we see the
enstrophy m-spectra from run 2 for (a) [ =2, 4, 6, 8, 10 and (b) [ =20, 30, 40. In both
plots, essentially all enstrophy is found in m = 2 + 4i. A close inspection of figure 2 reveals
that there is a secondary period in E([), with extra strong peaks in [ =2 + 4i.
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Figure 3. Azimuthal enstrophy spectra normalised by mean enstrophy, §2, for different / from run 2 at
t = 1067. Panels show (a) [ =2, 4, 6, 8, 10, (b) [ =20, 30, 40.

Clearly, the spherical harmonic energy spectrum of the condensate is very different
from the continuous Fourier spectrum of the two coherent vortices in the condensate
simulated by Chertkov et al. (2007). However, also in this case it can be argued that energy
accumulates in certain modes, due to the overall symmetry, although this is not revealed by
the Fourier spectrum, E (k), which only contains information of the averaged energy as a
function of the magnitude, k, of the wavenumber vector k. A vorticity field of two coherent
vortices of equal strength and opposite sign in a 27 -periodic domain, whose centres are
located along a diagonal, obeys a symmetry of the formw(x + 7, y — ) = —w(x, y) (see
figure 1c in Chertkov et al. 2007). All energy of such a field is contained in Fourier modes,
k = (ky, ky), satisfying k, + ky, =odd, while there is no energy in modes satisfying
ky + ky = even (see Appendix A).

A striking feature of the spectra seen in figure 2(c,d) is the attenuation of energy close
to Iy, which is most clearly seen in run 1 but is also seen in run 2. In the end state of
run 1, the zig-zag spectrum is visible all the way up to [ = [y, where the energy content
is one order of magnitude smaller than in the early stage. A similar attenuation of energy
close to the forcing wavenumber is also seen in the Fourier energy spectrum of the end
state of the simulation by Chertkov et al. (2007) (see their figure 3a), although it is not
as strong as in the end state of our run 1. Most likely, had the simulation been continued,
an equally strong attenuation would have been observed in the Fourier spectrum as in the
spherical harmonic spectrum. The observation that energy is attenuated close to the forcing
wavenumber suggests that the presence of the vortices qualitatively alters the way energy
is transferred in wavenumber space. More specifically, it suggests that condensation is a
process in which interactions between widely separated scales of motion play a crucial
role. To investigate this, we divide the set of all triads into local, defined as n < 5p,
where n is the middle and p the smallest wavenumber, and non-local, defined as the
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Blue: fluxes generated by the first sums in (1.1) and (1.2). Red: fluxes generated by the second sums. Green:
fluxes generated by local triads.

complementary set. This is the same division of interactions into local and non-local as
was introduced by Kraichnan (1971) in Fourier space. Then we use (1.1) and (1.2) to
calculate the fluxes generated by each subset. Since each triad conserves both energy and
enstrophy, the same is true for each subset. In figures 4 and 5(a,b) we see the energy and
enstrophy fluxes at an early time, ¢ =5, from both simulations. The contributions from
the first sums in (1.1) and (1.2), both denoted by I1, are positive, while the contributions
from the second sums, both denoted by 15, are negative. This is in agreement with the
prediction by Fjgrtoft (1953) that the middle wavenumber in each triad interaction acts
as a source of energy and enstrophy for the other two wavenumbers. At t =5, the local
energy and enstrophy fluxes are approximately half of the total fluxes close to Ir, while
the local energy flux is less than half of the total at [ ~ 100 in run 2 (figure 5a,b). This
is in general agreement with predictions by Kraichnan (1971) and Chen et al. (2006) that
non-local interactions are relatively strong in 2-D turbulence. During the formation of the
condensate non-local interactions become increasingly dominant. In figures 4 and 5(c,d)
we see the fluxes in the end states of the simulations. In run 1, the fluxes generated by the
local triads are essentially zero in the end state, and in run 2 they are considerably smaller
in the end state than in the early state. In particular, it is striking that there is such a weak
contribution to the enstrophy flux. Since the enstrophy flux through / is generated by triads
where p <n <[ <s, the flux through [ is totally dominated by triads such that p <1/5.
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Thus, the condensate not only absorbs small-scale energy generated by the forcing, it also
drains the flow from small-scale enstrophy.

In figure 6, we see the normalised mean vorticity profiles for the four vortices from both
runs at ¢+ =500 and ¢ = 1000 and vorticity fields at these times. Kolokolov & Lebedev
(2016) developed a theory for the structures of vortices that are generated by an inverse
energy cascade that is balanced by large-scale friction. The theory is not applicable to our
fields, since we have no large-scale friction. All of the four vortices are more or less equal
in shape in both runs, and they are not wider at = 1000 compared with ¢ = 500. The width
of the vortices in run 1 is approximately four times that of the vortices in run 2, reflecting
the fact that [ is four times larger in run 2 than in run 1. In the limit of large Iy, we
can thus expect that the condensate would consist of four point vortices of equal strength,
configured in the way we observe the vortices in our simulations. Indeed, this is a quite
mysterious result. However, it is fully consistent with the simulations on a plane, exhibiting
a Fourier energy spectrum E (k) ~ k3, which is the form of spectrum generated by two
point vortices on a periodic plane (see Appendix A). We will not pretend to be able to
explain why the condensate on the sphere consists of four point vortices of equal strength
that are configured in this way. However, a comparison with some results derived from the
theory of interacting point vortices on a sphere may provide some clues to an explanation.
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Figure 6. (a) Normalised vorticity as function of normalised distance from the vortex centre, for the four
vortices at t = 500 (black) and # = 1000 (magenta) from run 1. (b,c) Vorticity field from run 1 at # = 500 and
t =1000. (d,e,f) Corresponding plots for run 2.

3.2. Four point vortices on a sphere

The classical theory of a dynamical system of point vortices on a plane (see Eyink &
Sreenivasan 2006 for a review) was extended to a system of point vortices on a sphere
by Polvani & Dritschel (1993). The theory has been applied to investigate the stability
and equilibria of a system of four point vortices on a sphere (Dritschel 2020) and further
extended to general curved surfaces (Dritschel & Boatto 2015). The equations of motion
of a system of point vortices on the unit sphere can be written as

dn; n; X n;j
_any i J
uj=—-= E Kj—————— (3.2)
J T o’
dr vy l—n;-n;
where n; is the normal unit vector of the sphere at the position of the ith vortex and «; =
is the strength of the ith vortex, which is related to its circulation, I3, as x; = I /4. The
system (3.2) conserves angular momentum and energy defined as

L :ZK,-n,-, (3.3)
i
E:—ZK,'KJ' ln(l—n,- -nj), (34)
i#]

and describes the motions of the point vortices in an inertial frame where the mean angular
momentum of the flow is L and the energy is E. The energy can either can be interpreted
as a potential energy of interaction between the point vortices or a kinetic energy of the

1018 A4-10


https://doi.org/10.1017/jfm.2025.10507

https://doi.org/10.1017/jfm.2025.10507 Published online by Cambridge University Press

Journal of Fluid Mechanics

flow. The expression (3.4) can be deduced from the derivation found in Dritschel & Boatto
(2015).

Since the position of each vortex is specified by two coordinates and the conservation
laws provide four holonomic constraints, it appears that a system with k vortices has 2k — 4
degrees of freedom. In the following, we develop a symmetry argument showing that the
number is reduced to 2k — 7 in the case L = 0. In this case, the motion can only depend on
how the vortices are configured relative to each other. To count the number of coordinates
that are needed to specify such a configuration, fix the first vortex on the sphere. That
leaves us with 2k — 2 coordinates. However, one of these can be removed, because the
whole configuration can be rotated around a main axis going through the point where we
have fixed the first vortex, without changing the relative configuration. That leaves us with
2k — 3 coordinates. The conservation laws provide four holonomic constraints. Thus, there
are 2k — 7 degrees of freedom. The four vortex system is thus the smallest possible, and
this system has a single degree of freedom. In Appendix B, we formalise this argument.
In the case L # 0, which corresponds to a rotating sphere where the flow has zero mean
angular momentum, a similar symmetry argument shows that the numbers of degrees of
freedom is 2k — 5 and the smallest number of vortices is three.

The motion of the four vortex system with zero angular momentum can be represented
by constant energy trajectories in a 2-D parameter space. Since the system has a single
degree of freedom, there can be little doubt that such trajectories correspond to non-
chaotic periodic motions. Extreme points, if they exist, correspond to stable and stationary
solutions. To find the constant energy trajectories and possible extreme points of such a
system we let (6;, ¢;), i =1, 2, 3,4 be the coordinates of the vortices, where 6 is the
colatitude and ¢ is the longitude. As argued above, without loss of generality we can set
61 =m/2, ¢1 =0and 6, = /2. In Appendix B, we show that these coordinates specify the
positions of the vortices in a rotating frame in which the first vortex is at rest and the second
vortex has a single degree of freedom. The remaining five coordinates, ¢2, 63, ¢3, 64 and
@4, are constrained by angular momentum and energy conservation, expressed as

k3 cos 03 + k4 cos 64 =0, 3.5
K1 =+ k2 COS (2 + K3 sin 03 cos ¢3 + k4 Sin B4 cos ¢pg =0, 3.6)
Kk sin ¢ + k3 sin 63 sin ¢3 + k4 sin 04 sin ¢4 = 0, (3.7

E = —«1k2 In(1 — cos ¢p) — k143 In(1 — sin 03 cos ¢3) — kqk4 In(1 — sin 64 cos ¢4)
— kK3 In(1 — sin 63 cos(¢p3 — ¢2)) — kok4 In(1 — sin B4 cos(pg — ¢2))
— k3k4 In(1 — cos 63 cos 64 — sin 63 sin 04 cos(¢ps — P3)). (3.8)

In figure 7(a), we plot the constant energy trajectories in the space of ¢, and 63 for the
case k] =k3 =1, kp =k4 = —1. In figure 7(b) we plot the corresponding constant kinetic
energy trajectories for a system of four Rankine vortices, for which the vorticity is constant
and equal to +1 /4r5 out to a distance, r, = 0.1a, from the vortex centre and equal to
zero for larger distance. The strengths of the vortices are then x; = &=1. The energy levels
were calculated numerically (see Appendix C). In both plots, the energy levels have been
shifted so that the maximum energy is zero. Apart from this, there is no renormalisation.
It is reassuring to see that we obtain very similar results in the two cases. There is a
single maximum at ¢, = 63 = /2, corresponding to the configuration we observe. This
is consistent with the demonstration given by Dritschel (2020) that this is the only steady
and stable configuration of two pair of point vortices of equal but opposite strength, in the
case L = 0. That the configuration is stationary can intuitively be grasped by noting that
the net motion of one vortex induced by the other three is zero. That the configuration
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Figure 7. Constant energy trajectories for the four vortex system. (a) Interaction energy for four point vortices,
calculated using the point vortex model. (b) Kinetic energy of four localised vortices, calculated numerically.
The energy level has been shifted in both plots, so that the maximum energy is zero. Apart from this, the energy
levels have not been renormalised.

is an energy extreme, may be intuitively grasped by regarding E as a potential energy of
interaction.

Is there an interesting interpretation of this? First, it provides a clue to why the vortices
are fixed in their configuration. They cannot move out from it, because that would decrease
the energy of the system. Second, it may also provide a clue with deeper significance.
In some sense, the flow seeks a maximum energy solution. This observation makes
it very tempting to seek an explanation based on a statistical mechanics variational
principle applied to an inviscid fluid, such as the maximum entropy principle (Robert
1991; Robert & Sommeria 1991). However, noting that the formation takes place under the
action of a stochastic forcing, leading to a state with constant energy growth and almost
constant enstrophy, it is difficult to see how such a principle can be applied. Enstrophy
dissipation is a crucial element of the formation process. The configuration seems to be
the one that maximises the energy for a given enstrophy. To prove or disprove this, we
would need to investigate whether the observed field is the one of maximum energy out of
all possible fields with a prescribed enstrophy, which seems to be an overwhelming task.
To be more modest, we investigate if it is the maximum energy configuration out of all
four point vortex configurations. To do this, we note that the sum of the squares of the
strengths is an enstrophy measure. Strictly speaking, the mean enstrophy is infinite for a
point vortex system if the strengths are finite. However, if we regard the vortices as Rankine
vortices with constant vorticity out to a radius d, the mean enstrophy is proportional to
d=? D /cl.2. For every finite d, the sum of the squares of the strengths will thus be an
enstrophy measure. Thus, we numerically determine the maximum energy configuration
of all configurations satisfying (3.5)—(3.7) and all combinations of ky, k2, k3, k4 satisfying

K1+ K2+ K3 +Kk4=0, (3.9)
K12+K22+K32+K2=4. (3.10)

For a given set of parameters k1, k2, 03 and ¢», the associated solutions of the vortex
positions and strengths satisfying equations (3.5)—(3.7) and (3.9)—(3.10) were identified

1018 A4-12


https://doi.org/10.1017/jfm.2025.10507

https://doi.org/10.1017/jfm.2025.10507 Published online by Cambridge University Press

Journal of Fluid Mechanics

and the energy was calculated by means of equation (3.8). The search in the 4-D space was
first made by a random search algorithm to seek the highest local maximum, identified
in the neighbourhood of the great circle configuration k; =1, k; =—1, 3 =7/2 and
¢o = /2. After that, a numerical optimisation based on the Broyden—Fletcher—Goldfarb—
Shanno algorithm was performed converging to the same maximum. Indeed, there is a
single maximum configuration, which is exactly the configuration of four vortices of equal
strength that we observe.

The fact that the configuration is an energy maximum, suggests that it will remain steady
if the forcing is turned off. We have carried out two experiments to investigate this. In the
first one, we took the full end state field of run 1 as the initial field. In the second one,
we made an effort to initialise the field in such a way that it had a maximum degree of
symmetry, by setting all modes for which / > 30 to zero as well as all remaining modes
for which [ =odd or [ =even and m # 2 4 4i. In both cases, the configuration remained
steady, however, with a spectacular difference that we cannot explain. In the first case, the
great circle continued to rotate in a stationary solid body rotation around an axis in its own
plane. In the second case, the flow remained completely steady.

3.3. Freely decaying simulations from random initial conditions

Dritschel, Qi & Marston (2015) undertook simulations of freely decaying 2-D turbulence
on a sphere, leading to late time solutions with four coherent vortices, quite similar to
the solutions we observe. The simulations were carried out to test statistical mechanics
theories based on the 2-D Euler equation (Miller 1990; Robert 1991; Robert & Sommeria
1991), predicting that the solutions will relax to steady equilibrium states. The four vortices
in the late time solutions reported by Dritschel et al. (2015) were of unequal strength
and underwent unsteady oscillatory motions. They also reported evidence of small-scale
vortices emerging in the flow fields at high resolution, and concluded that the flow remains
persistently unsteady with no indications of relaxation to a steady state. Evidently, similar
conclusions are not applicable to the end states of our forced simulations, which display a
high degree of symmetry and steadiness. To explore the similarities between the solutions
of our forced simulations and the late time solutions of decaying simulations, we have
carried out three decaying simulations from random initial conditions with a prescribed
energy spectrum. In runs 3 and 4, the initial spectrum is centred around /. = 8, while the
resolution is four times higher in run 4 compared with run 3. The initial conditions of run
3 and run 4 are not identical although the initial spectrum is the same, since the random
phases are different in the initial fields. In run 5, the initial spectrum is centred around
[, =100.

In figure 8, we see the evolution of mean energy and mean enstrophy from the three
decaying runs. Time is measured in units a//Eg, where Ej is the initial mean energy
which is set to unity, as is a. As seen in the figure, the energy is more or less constant in
runs 3 and 4, implying that there is essentially no energy dissipation at all in these runs,
while there is some energy dissipation early in run 5, reflecting the fact that it is initialised
with a spectrum peaking at /. = 100. In all three runs, the flow relaxes to a state in which
mean enstrophy, as well as mean energy, can be regarded as constant. In figure 9(a.b), we
see the evolution of the energy spectra from runs 4 and 5. In the early stage of run 4, the
initial spectrum centred at /. = 8, broadens to a wide spectrum of the form E(l) ~ 173,
in accordance with the prediction of Kraichnan (1967) for the forward enstrophy cascade.
This is clearly seen at t = 15. In a corresponding way, the initial spectrum in run 5, centred
at [, = 100, broadens to a wide spectrum peaking at / < 10. This broadening is caused
by the inverse energy cascade. For comparison, we have added a line with slope —5/3,
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Figure 8. Evolution of (a) mean energy and (b) enstrophy from runs 3, 4 and 5.
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Figure 9. Energy spectra from (a) run 4, (b) run 5. Enstrophy fluxes from (¢) run 4, (d) run 5.

although it is unclear if the spectrum conforms to this shape. In figure 9(c,d), we see
the spectral enstrophy flux from the same runs. Using the value [T, =0.5 and fitting
the spectrum in run 4 at t =15 to E(l) = KI"[_?ZBZ_3 we obtain K ~ 2, not too far from
K = 1.3, as found by Lindborg & Alvelius (2000) in Fourier space. At late times, the

spectra approach a steady shape and the enstrophy fluxes become very small. The late
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Figure 10. Normalised mean vorticity as function of normalised distance from the vortex centre and vorticity
fields at = 500 and ¢t = 900 from (@—c) run 3 and (d—f) run 4. In (d) the profiles at = 500 (black) and r = 900
(magenta) are indistinguishable.

time solutions are similar to the late time solutions of Dritschel et al. (2015), exhibiting
four coherent vortices.

In figure 10, we see the vorticity profiles for the four vortices and the vorticity fields at
t =500 and ¢ =900 from runs 3 and 4. The profiles are computed as the average vorticity
along a circle with distance d from the vortex centre. In both cases, there are no signs
of other vortices in the field and the profile of each vortex has not changed in the time
span ¢ € [500, 900]. In the higher resolved run, the profiles at t =500 and ¢ =900 are
completely indistinguishable. The field consists of four persistent vortices that are slowly
advected over the sphere, without any changes in their internal structure. Unlike the forced
simulations, the four vortices are not of equal strength. They are wider and less symmetric.
Some of the profiles are step-like, as also found by Dritschel et al. (2015).

In figure 11, we see time series of the geodesic distances between like signed, d ™+ and
d~~, and opposite signed vortices, d*t~, from runs 3 and 4. In both cases, the distances
undergo periodic motions that are in phase. In run 3, the period of d '~ is half the period
of d™* and d~~. In run 4, it is the other way around. The motions bear every sign of
a dynamical system with a few degrees of freedom, possibly a single one, as in the four
point vortex model. It is noteworthy that the configuration is not very far from lying on
a great circle in run 3, where the amplitudes of the motions are quite small, while the
configuration is further away from a great circle in run 4, where the amplitudes are larger.
Interpreting these results in the light of the four point vortex model, the configuration in
run 3 is closer to the energy maximum of the four vortex system than the configuration in
run 4. We can conclude that increased resolution does not move us closer to the maximum.

1018 A4-15


https://doi.org/10.1017/jfm.2025.10507

https://doi.org/10.1017/jfm.2025.10507 Published online by Cambridge University Press

A. Segalini and E. Lindborg

(a) T (b) b/
S
7

S |

~ S

L o7z AN

S £
I
S

0 T T /2 T T
1900 1950 1900 1950
4 14

(© » @ 5
S
7
|
]
S
~
+
I
S

0 T T 7{/2 T T
600 800 600 800
t t

Figure 11. Normalised geodesic distances between vortex centres versus time. Distances between opposite
signed vortices denoted as d*~ /a and distances between like signed vortices denoted as d*+/a and d~~ /a.
(a,b) Run 3, (c,d) run4.

The theory of Robert (1991) and Robert & Sommeria (1991) predicts that solutions to
the Euler equations will relax to states in which there is a functional relation between
the vorticity and the streamfunction. Such states are stationary solutions to the Euler
equations, since # -+ Vo =0, when w = F (). The prediction can be tested by making
a scatter plot of (¥, w). If all points fall on the same line, there is a functional dependence,
otherwise not. In figure 12, we present such plots from the forced simulations, run 1 and
run 2, and the decaying simulations, run 3 and run 4.

The plot where the points are closest aggregated in the vicinity of a single line is the one
from run 1. There are two branches of high and low vorticity, where we see two distinctive
lines representing the four vortex cores. Apparently, the vortex cores are very stable. At
lower values of vorticity, the points do not fall onto a single line but onto a broader band.
The plot from run 2 is similar to the plot from run 1, with some differences. The two
main branches of high and low vorticity are steeper and contain higher magnitude values.
This difference is a reflection of the fact that the vortices in run 2 are more narrow than
in run 1. A close inspection of the two main branches in run 2 reveals that each of them
is divided into two sub-branches, corresponding to two vortices of positive/negative sign.
This is particularly clear if we look at the negative branch. At lower values of vorticity,
the band in which the points aggregate is somewhat broader in run 2 than in run 1. These
differences can be attributed to the fact that the effective time span of condensation was
longer in run 1 than in run 2. A continuation of run 2 would probably result in a scatter
plot coming closer to a stationary solution. We conclude that the condensate is formed in
a close vicinity of a stationary solution to the unforced Euler equation.

In the decaying simulations, the points fall onto four branches of bands, corresponding
to the four vortices. That fact that the bands have limited width can be interpreted as
a sign of a relatively high degree of local stationarity, while the fact that the bands are
separated can be interpreted as a reflection of global unsteadiness. The difference between
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Figure 12. Scatter plots of (w, ¥) from the end states of (a) run 1, (b) run 2, (¢) run 3, (d) run 4.

the structure of the two plots from run 3 and run 4 can be attributed to the difference
in the initial conditions. Our plots are similar to the corresponding plots of Dritschel
et al. (2015) (see their figure 12), with an important difference. Dritschel et al. (2015)
used two different numerical methods, denoted as Geodesic Grid Method and Combined
Lagrangian Advection Method. Using the second method, they found that the scatter plot
(their figure 12b) exhibited a thin mist of points structured in vertical lines, falling outside
the main branches, while the scatter plot of the first method (their figure 12a) did not show
any such feature. Putting a high degree of confidence in the second method, Dritschel et al.
(2015) interpreted this feature as evidence of a multitude of small-scale vortices emerging
with increased resolution. Since none of our plots show any such feature, we are sceptical
to this interpretation. We see no signs of small-scale vortices emerging with increased
resolution in our scatter plots, in our plots of the vorticity fields in physical space or in
spectral space.

We now turn our attention to our last simulation, run 5, that was carried out mainly
to investigate if a field that is initialised with a spectrum centred at a large wavenumber
(I = 100) will display a late time solution consisting of four localised vortices. The answer
is yes, although we had to run the simulation for a very long time to confirm this. In
figure 13, we see how the vorticity field develops over time as we run the simulation.
A multitude of vortices are formed at a quite early time in the simulation. Their number is
subsequently reduced as they interact in a random way and undergo vortex pairings. In the
end, there are four vortices of unequal strength undergoing periodic motions. In figure 14,
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Figure 13. Evolution of the vorticity field over time in run 5.
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Figure 14. Geodesic distances between two vortex centres versus time, from run 5, plotted in the same way as
in figure 11.

we see the motions of the geodesic distances between the vortices, plotted in a similar way
as in figure 11. Again, we see regular periodic motions that are in phase, but the pattern
is a little bit more complex than in runs 3 and 4. The main period of the modulations in
d ™~ is the same as the main period of the modulations in ™ and d~~. There is also a
period of smaller amplitude modulations in d** and d~~ which is just as long. On top of
this, there is a longer period that is modulating the magnitude of the peaks. A future study
will reveal if these motions can be described by the four point vortex model with a single
degree of freedom.

4. Conclusions

Our simulations of forced 2-D turbulence on a sphere confirm the prediction by Kraichnan
(1967) that the flow generated by a 2-D inverse energy cascade undergoes something like
a phase transition, from a chaotic to an ordered state, when the cascade reaches the scale
of the confinement. The condensation process on a sphere is similar to the process on a
plane, with the important difference that the condensate forms as four coherent vortices on
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a sphere, whereas it forms as two vortices on a plane. We find that the width of the vortices
is set by the forcing scale, implying that the vortices will approach the point vortex limit
in the limit of very-small-scale forcing. Most likely, this is true also for the condensate
on a 2m-periodic square, and the k~3-spectrum that is observed in such simulations is
probably a reflection of this. While the formation of two equal vortices of opposite sign on
a plane may seem to be a straightforward consequence of the fact that mean vorticity must
remain zero, the formation of the condensate on a sphere seems more mysterious. It is quite
remarkable that the four vortices are of equal strength and that they arrange themselves on
a great circle which moves over the sphere under the influence of the random forcing.
These observations call for an explanation. Tentatively, we suggest that the symmetric
configuration of the vortices may be explained by a maximum energy principle. The late
time inverse energy cascade proceeds through a process in which the flow increases its
energy, without notably increasing its enstrophy, by reducing the number of vortices to a
minimum by vortex mergers and by finding the optimal distribution of vortex strengths as
well as the optimal vortex configuration in physical space.

The late time solutions of our freely decaying simulations also exhibit four coherent
vortices, similar to the condensate, with a quite high degree of steadiness. However, there
are important differences between the forced and the decaying simulations. The vortices
in the decaying simulations are not generally of equal strength and they do not arrange
themselves on a great circle. The vortex configuration undergoes regular periodic motions,
indicative of a dynamical system with a few degrees of freedom, possibly the four point
system with a single degree of freedom. However, increased resolution does not move us
closer to the stationary energy maximum of the condensate. Since there is essentially no
dissipation of enstrophy in the late time solutions, the periodic motions would persist
indefinitely, or nearly so, if we continued the simulations. We can therefore conclude
that the prediction of statistical mechanics theories (Miller 1990; Robert 1991; Robert &
Sommeria 1991) of a relaxation to a steady state does not hold. In this respect, we draw the
same conclusion as Dritschel ef al. (2015). Nevertheless, we find that the late time solutions
show a very high degree of steadiness and regularity. We find no evidence suggesting that
these solutions are chaotic. The existence of non-chaotic periodic solutions does not seem
to be an insurmountable obstacle to further developments of statistical mechanics theories
based on the Euler equation. The main challenge to such theories is to reconcile them with
fact that the late time solutions are reached in a process in which enstrophy dissipation
is a key element. Without enstrophy dissipation, the enstrophy cascade would go on
indefinitely to finer and finer scales, and the solutions would never approach non-chaotic
states. This is true for the decaying as well as the forced simulations.

There is a certain feature of the formation process that was not explicitly predicted by
Kraichnan (1967) but is implicitly suggested by the term ‘condensate’. The order is not
only established at the largest scales of motion, but also at smaller scales, all the way down
to the forcing scale. The condensate is first formed as an ordered symmetric state at / < 10.
The symmetry is subsequently established at / > 10. The four vortex system then acts as a
global attractor which is effectively absorbing the energy and dissipating virtually all the
enstrophy that is injected by the small-scale stochastic forcing. The energy and enstrophy
fluxes are maintained by highly non-local interactions, suggesting that condensation may
be modelled as a process in which a huge number of micro-vortices align into a global
pattern. In the end state, the random component of the flow is close to zero, even at the
small scales. Indeed, the process is a beautiful example of self-organisation.
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Appendix A. Energy spectrum of two point vortices on a plane

In this appendix, we show that the energy spectrum of two point vortices on a plane with
periodic boundary conditions has the form E (k) ~ k—3 and that the energy is zero in half
of the modes. We consider a field of two point vortices in a 2 -periodic domain

w(x,y)= (2n)2wo[6(x —n/2,y—3n/2) —86(x —37x/2, y —m/2)]. (A1)

We expand the vorticity field in a Fourier series

o, y)= Y &y, ky) explithex +kyy)], (A2)
ky ky
1
O (ky, ky) = e / / w(x, y)exp [—i(kex + kyy)] dxdy, (A3)

where ky and k, are positive or negative integers. The enstrophy distribution in Fourier
space can then be calculated as

2 (ky, ky) = %wa) =} {1 — cos[(ky — ky)m1}. (A4)

Itis equal to zero if k, + ky = even, and equal to 20)(2) if ky + ky = odd. Passing to the limit

of a continuous enstrophy spectrum, §2(k), where k is the magnitude of the wavenumber

vector (see Kraichnan 1967), we have

Q(ky. ky)
4k

where we have divided by 47k instead of 2k to account for the fact that half the modes

are zero. The corresponding energy spectrum is then

2
E(k) =k2Q(k) = ;U—j‘;k—? (A6)

k) = (A5)

El

Appendix B. Number of degrees of freedom for the four point vortex system with
zero angular momentum

In this appendix, we formalise the symmetry argument given in § 3.2, showing that the
four point vortex system with zero angular momentum has a single degree of freedom.
We transform the equations of motion to a frame rotating with angular velocity $2(t), that
is allowed to vary in both magnitude and direction. The equations of motion (3.2) are
transformed as

hi Xnj

u;:uj+anSZ:ZKi +n; x 2, (B1)
i

l—ni-nj

where ', is the velocity of the jth vortex in the rotating frame. The transformed equations
still conserve E, as defined in (3.4), which is clear from the fact that E is only a function
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of the geodesic distances between the vortices. We can also show this explicitly

dE KiKj dnj dn,
E|mt:Z m <ni . ?|rot+nj " —— lror

i#]
_ Kikj dn; dn;

i#j

=y — d(""'"j):d—Ezo, (B2)
1—mn;- dr dr

i#]

where we have used n; - (n; x £) +n; - (n; x ) =0. It should be pointed out that E
should still be interpreted as the energy in the inertial frame. In other words, the energy
in the inertial frame is conserved by the equations of motion in the rotating frame. The
angular momentum equation is transformed as

dL dL

dr |r()t - dr
where L is the absolute angular momentum in the inertial frame. If L =0, the absolute
angular momentum is conserved in the rotating frame.

Fix the position of the first vortex in the rotating frame, so that #} = 0. This determines
two components of £ in terms of u; — the components that are perpendicular to ny.
Constrain the motion of the second vortex so that it has only a single degree of freedom in
the rotating frame. This determines the component of 2 that is parallel to rn;. For example,
fix the first vortex at the north pole and the second vortex at a certain latitude in the rotating
frame. Express the velocities of the first and second vortex in the inertial frame as

+LxR=Lx%, (B3)

uy=uiex +vieyt+wie;, urx=uzex+vrey,+ wse,, (B4)
where (x, y, z) is a Cartesian system that is fixed in the rotating frame. Then write
ny=e;,, ny=cosbre,+sinbe,, (BS)
where 6, is the colatitude of the second vortex. This determines 2 as

vy — cos Bhvy

ﬂ:_vlex+u]e)7+ ez- (B6)

sin 6

Insert this expression into (B1). In this way, we obtain a coupled set of equations for
five coordinates, one specifying the position of the second vortex and the other four the
positions of the third and fourth vortices in the rotating frame. We have thus eliminated
three degrees of freedom. The conservation laws provide four holonomic constraints,
because they hold in the rotating frame. Thus, the system has a single degree of freedom.

Appendix C. Maximum energy for a configuration of four localised vortices

In this appendix, we describe how the constant energy trajectories in figure are calculated.
We assume that the vorticity for each vortex is constant for d < 0.1a, where d is the
geodesic distance from the vortex centre. For d/a > 0.1 we set the vorticity to zero. All
vortices have the same strength. Vortices 1 and 3 are positive and vortices 2 and 4 are
negative. We represent the vorticity field as a truncated spherical harmonic expansion

682 I

w® )= Y Y0, ¢). (C1)

=1 m=-—I
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We let (6;, ¢i), i =1, 2,3,4 be the positions of the four vortex centres. Without loss
of generality we set 81 =6, =m/2 and ¢ =0. If our vortices are regarded as point
vortices, the constraint L = 0 provides three equations relating the remaining five angles,
¢2, 03, @3, 04 and ¢4, which are equations (3.5)—(3.7) with k] = k3 =1and kp = k4 = —1.
In the case of localised vortices with d/a <« 1, these conditions can be assumed to hold
to a high degree of accuracy. These constraints are equivalent to constraining the three
spherical harmonic modes with / =1 to be zero. We use these constraints and calculate
the mean energy over all configurations numerically, by varying ¢, and 65. In figure 7(b),
the constant energy trajectories are displayed.
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